Hydrogen bromide
- Formula: BrH
- Molecular weight: 80.912
- IUPAC Standard InChIKey: CPELXLSAUQHCOX-UHFFFAOYSA-N
- CAS Registry Number: 10035-10-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Hydrobromic acid; Anhydrous hydrobromic acid; HBr; Hydrogen bromide, anhydrous-; Acide bromhydrique; Acido bromidrico; Bromowodor; Bromwasserstoff; Broomwaterstof; UN 1048; UN 1788; Hydrogen monobromide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Reaction thermochemistry data: reactions 51 to 76
- Gas phase ion energetics data
- Ion clustering data
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -36.29 ± 0.16 | kJ/mol | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
ΔfH°gas | -36.44 | kJ/mol | Review | Chase, 1998 | Data last reviewed in September, 1965 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 198.700 ± 0.004 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 198.70 | J/mol*K | Review | Chase, 1998 | Data last reviewed in September, 1965 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1100. | 1100. to 6000. |
---|---|---|
A | 31.71409 | 32.88913 |
B | -13.69992 | 2.822116 |
C | 23.35567 | -0.478035 |
D | -9.008529 | 0.032464 |
E | -0.028758 | -3.174958 |
F | -45.57464 | -52.46318 |
G | 240.0428 | 230.8597 |
H | -36.44306 | -36.44306 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in September, 1965 | Data last reviewed in September, 1965 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 186.1 | K | N/A | Dreisbach, 1955 | Uncertainty assigned by TRC = 0.02 K; TRC |
Tfus | 187.2 | K | N/A | Maass and Russell, 1918 | Uncertainty assigned by TRC = 1. K; TRC |
Tfus | 187.15 | K | N/A | Beckmann and Waentig, 1910 | Uncertainty assigned by TRC = 1.5 K; TRC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
134.3 to 206.7 | 4.02419 | 695.466 | -33.542 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
206.7 to 343.8 | 4.15585 | 754.969 | -25.086 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
By formula: Br- + HBr = (Br- • HBr)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 86.2 ± 8.4 | kJ/mol | TDAs | Caldwell and Kebarle, 1985 | gas phase; B,M |
ΔrH° | 73.2 | kJ/mol | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; From thermochemical cycle,switching reaction(Br-/NO3-HNO3/HBr); DG>, ΔrH>; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.3 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; M |
ΔrS° | 92. | J/mol*K | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; From thermochemical cycle,switching reaction(Br-/NO3-HNO3/HBr); DG>, ΔrH>; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 58. ± 11. | kJ/mol | TDAs | Caldwell and Kebarle, 1985 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
39. | 367. | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; From thermochemical cycle,switching reaction(Br-/NO3-HNO3/HBr); DG>, ΔrH>; M |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1353.69 ± 0.21 | kJ/mol | D-EA | Blondel, Cacciani, et al., 1989 | gas phase; reported: 27129.170±0.015 cm-1; B |
ΔrH° | 1353. ± 8.8 | kJ/mol | G+TS | Taft and Bordwell, 1988 | gas phase; B |
ΔrH° | 1341.4 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; F-; ; ΔS(acid)=19.2; ΔS(EA)=6.4; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1331.8 ± 0.63 | kJ/mol | H-TS | Blondel, Cacciani, et al., 1989 | gas phase; reported: 27129.170±0.015 cm-1; B |
ΔrG° | 1331. ± 8.4 | kJ/mol | IMRE | Taft and Bordwell, 1988 | gas phase; B |
ΔrG° | 1319.6 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; F-; ; ΔS(acid)=19.2; ΔS(EA)=6.4; B |
C8H6MoO3 (cr) + (solution) = (solution) + (cr)
By formula: C8H6MoO3 (cr) + Br2 (solution) = HBr (solution) + C8H5BrMoO3 (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -150. ± 12. | kJ/mol | N/A | Nolan, López de la Vega, et al., 1986 | solvent: Carbon tetrachloride; The reaction enthalpy was calculated Nolan, López de la Vega, et al., 1986 from the experimental values for the enthalpies of the following reactions: Mo(Cp)(CO)3(H)(cr) + 2Br2(solution) = Mo(Cp)(CO)2(Br)3(solution) + HBr(solution) + CO(solution), -254.0 ± 8.4 kJ/mol, and Mo(Cp)(CO)3(Br)(cr) + Br2(solution) = Mo(Cp)(CO)2(Br)3(solution) + CO(solution), -104.2 ± 8.4 kJ/mol; MS |
By formula: NO3- + HBr = (NO3- • HBr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrS° | 96. | J/mol*K | N/A | Davidson, Fehsenfeld, et al., 1977 | gas phase; switching reaction(NO3-)HNO3, Entropy change calculated or estimated, DG<, ΔrH<; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 73. ± 16. | kJ/mol | TDEq | Davidson, Fehsenfeld, et al., 1977 | gas phase; Anchored to HBr..Br- in Caldwell and Kebarle, 1985.; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
53.1 | 367. | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; switching reaction(NO3-)HNO3, Entropy change calculated or estimated, DG<, ΔrH<; M |
By formula: I- + HBr = (I- • HBr)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67.4 ± 8.4 | kJ/mol | TDEq | Caldwell and Kebarle, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.0 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; switching reaction(I-)SO2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 43. ± 11. | kJ/mol | TDEq | Caldwell and Kebarle, 1985 | gas phase; B |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
42.7 | 300. | PHPMS | Caldwell and Kebarle, 1985 | gas phase; switching reaction(I-)SO2; M |
By formula: HBr + C3H6 = C3H7Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -85.48 | kJ/mol | Cm | Lacher, Kianpour, et al., 1957 | gas phase; ALS |
ΔrH° | -83.889 | kJ/mol | Cm | Lacher, Lea, et al., 1950 | gas phase; Heat of hydrobromination at 367°K; ALS |
ΔrH° | -84.10 ± 0.59 | kJ/mol | Cm | Lacher, Walden, et al., 1950 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -84.4 ± 1.0 kJ/mol; Heat of hydrobromination; ALS |
By formula: (Br- • O2S) + HBr = (Br- • HBr • O2S)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.0 | kJ/mol | PHPMS | Caldwell and Kebarle, 1985 | gas phase; From thermochemical cycle,switching reaction(Br- HBr)SO2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 80.3 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; From thermochemical cycle,switching reaction(Br- HBr)SO2; M |
By formula: (NO3- • HNO3) + HBr = (NO3- • HBr • HNO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.9 | kJ/mol | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; switching reaction(NO3-)2HNO3; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.8 | J/mol*K | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; switching reaction(NO3-)2HNO3; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 38. | kJ/mol | FA | Davidson, Fehsenfeld, et al., 1977 | gas phase; switching reaction(NO3-)2HNO3; M |
(g) + CH3BrMg (solution) = (solution) + Br2Mg (solution)
By formula: HBr (g) + CH3BrMg (solution) = CH4 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -274.5 ± 2.2 | kJ/mol | RSC | Holm, 1981 | solvent: Diethyl ether; The enthalpy of formation was calculated using the assumptions and the auxiliary data in Holm, 1981, except for the organic compound, whose enthalpy of formation was quoted from Pedley, 1994; MS |
By formula: (Br- • HBr) + HBr = (Br- • 2HBr)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.0 | kJ/mol | PHPMS | Caldwell and Kebarle, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 71.1 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; M |
By formula: C4H4BrNO2 + 0.5H4N2 = HBr + C4H5NO2 + 0.5N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -260.3 ± 0.46 | kJ/mol | Cm | Howard and Skinner, 1966 | solid phase; solvent: Aqueous solution; Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -261.7 ± 0.46 kJ/mol; ALS |
By formula: CH3+ + HBr = (CH3+ • HBr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 232. | kJ/mol | PHPMS | McMahon, Heinis, et al., 1988 | gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M |
C4H9Li (l) + (g) = (l) + (cr)
By formula: C4H9Li (l) + HBr (g) = C4H10 (l) + BrLi (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -374.0 ± 2.0 | kJ/mol | RSC | Holm, 1974 | Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS |
By formula: HBr (g) + CH3Li (cr) = CH4 (g) + BrLi (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -317.3 ± 2.0 | kJ/mol | RSC | Holm, 1974 | Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS |
By formula: HBr (g) + C2H5Li (cr) = C2H6 (g) + BrLi (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -345.7 ± 2.0 | kJ/mol | RSC | Holm, 1974 | Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS |
(g) + C4H9Li (l) = (l) + (cr)
By formula: HBr (g) + C4H9Li (l) = C4H10 (l) + BrLi (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -352.7 ± 2.0 | kJ/mol | RSC | Holm, 1974 | Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS |
By formula: (NO3- • HBr) + HNO3 = (NO3- • HNO3 • HBr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.9 ± 8.4 | kJ/mol | TDEq | Davidson, Fehsenfeld, et al., 1977 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 40. ± 12. | kJ/mol | TDEq | Davidson, Fehsenfeld, et al., 1977 | gas phase; B |
By formula: HBr + C4H8 = C4H9Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -77.07 ± 0.50 | kJ/mol | Cm | Lacher, Billings, et al., 1952 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -76.8 ± 6.6 kJ/mol; Heat of Hydrobromination at 373 K; ALS |
By formula: HBr + C4H8 = C4H9Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -72.22 ± 0.50 | kJ/mol | Cm | Lacher, Billings, et al., 1952 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -72.6 ± 5.6 kJ/mol; Heat of hydrobromination at 373 K; ALS |
By formula: HBr + C4H8 = C4H9Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -83.85 ± 0.50 | kJ/mol | Cm | Lacher, Billings, et al., 1952 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -84.3 ± 7.5 kJ/mol; Heat of hydrobromination at 367 K; ALS |
By formula: HBr + C3H6 = C3H7Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -107.8 ± 1.3 | kJ/mol | Cm | Lacher, Kianpour, et al., 1957 | gas phase; ALS |
ΔrH° | -94.94 ± 0.65 | kJ/mol | Cm | Lacher, Walden, et al., 1950 | gas phase; Heat of hydrobromination; ALS |
By formula: (Br- • HBr) + O2S = (Br- • O2S • HBr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.6 | kJ/mol | PHPMS | Caldwell and Kebarle, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.1 | J/mol*K | PHPMS | Caldwell and Kebarle, 1985 | gas phase; M |
By formula: C2H3BrO + H2O = HBr + C2H4O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -97.53 | kJ/mol | Cm | Devore and O'Neal, 1969 | liquid phase; Heat of hydrolysis; ALS |
ΔrH° | -96.48 | kJ/mol | Cm | Carson and Skinner, 1949 | liquid phase; ALS |
By formula: H2 + C3H7Br = HBr + C3H8
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -45.40 ± 0.92 | kJ/mol | Chyd | Davies, Lacher, et al., 1965 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -45.06 kJ/mol; ALS |
By formula: HBr + C7H7Br = C7H8 + Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.9 ± 4.2 | kJ/mol | Eqk | Benson and Buss, 1957 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 33. ± 4. kJ/mol; ALS |
By formula: C3H6Br2 = HBr + C3H5Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.9 | kJ/mol | Eqk | Levanova, Rodova, et al., 1983 | liquid phase; Flow reactor; ALS |
ΔrH° | 69.9 ± 0.8 | kJ/mol | Eqk | Sharonov and Rozhnov, 1971 | gas phase; ALS |
+ 218.5 + 11.25 + = + 13 + 1.5
By formula: CBrN3O6 + 218.5H2O + 11.25O2 + C12H14O4 = HBr + 13CO2 + 1.5N2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -6350.2 ± 1.0 | kJ/mol | Ccr | Carpenter, Zimmer, et al., 1970 | liquid phase; The HBr is in 225H2O; ALS |
By formula: C2H5Br = HBr + C2H4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 80.3 ± 2.1 | kJ/mol | Eqk | Lane, Linnett, et al., 1953 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 79.9 kJ/mol; ALS |
C8H6MoO3 (cr) + 2 (solution) = C7H5Br3MoO2 (solution) + (solution) + (solution)
By formula: C8H6MoO3 (cr) + 2Br2 (solution) = C7H5Br3MoO2 (solution) + HBr (solution) + CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -254.0 ± 8.4 | kJ/mol | RSC | Nolan, López de la Vega, et al., 1986 | solvent: Carbon tetrachloride; MS |
By formula: C3H4O4 + Br2 = HBr + C3H3BrO4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -66.0 ± 2.9 | kJ/mol | Cm | Koros, Orban, et al., 1979 | liquid phase; solvent: Sulfuric acid (1M); Bromination; ALS |
By formula: C7H9NO + C7H5BrO = HBr + C14H13NO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -172. ± 0.8 | kJ/mol | Cac | Kiselev, Khuzyasheva, et al., 1979 | liquid phase; solvent: Benzene; ALS |
By formula: C7H9N + C7H5BrO = HBr + C14H13NO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -170. ± 0.8 | kJ/mol | Cac | Kiselev, Khuzyasheva, et al., 1979 | liquid phase; solvent: Benzene; ALS |
By formula: HBr + C3H5BrO = C3H6O + Br2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.1 ± 8.4 | kJ/mol | Eqk | King, Golden, et al., 1971 | gas phase; Heat of bromination at 516-618 K; ALS |
By formula: HBr + C2F4 = C2HBrF4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -137.75 ± 0.75 | kJ/mol | Cm | Lacher, Lea, et al., 1950 | gas phase; Heat of hydrobromination at 367°K; ALS |
By formula: C7H5BrO + C6H7N = HBr + C13H11NO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -162. ± 0.8 | kJ/mol | Cac | Kiselev, Khuzyasheva, et al., 1979 | liquid phase; solvent: Benzene; ALS |
By formula: HBr + C2ClF3 = C2HBrClF3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -109.09 ± 0.95 | kJ/mol | Cm | Lacher, Lea, et al., 1950 | gas phase; Heat of hydrobromination at 367°K; ALS |
By formula: CBr2O + H2O = 2HBr + CO2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -205.3 ± 0.67 | kJ/mol | Cm | Anthoney, Finch, et al., 1970 | liquid phase; Heat of hydrolysis; ALS |
By formula: C2H4BrCl = HBr + C2H3Cl
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 83.3 ± 0.8 | kJ/mol | Eqk | Busheva, Levanova, et al., 1980 | gas phase; Dehydrohalogenation; ALS |
(g) + C2H3BrMg (solution) = (solution) + Br2Mg (solution)
By formula: HBr (g) + C2H3BrMg (solution) = C2H4 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -294.1 ± 2.2 | kJ/mol | RSC | Holm, 1981 | solvent: Tetrahydrofuran; MS |
C4H9BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C4H9BrMg (solution) + HBr (g) = C4H10 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -292.5 ± 2.2 | kJ/mol | RSC | Holm, 1981 | solvent: Diethyl ether; MS |
C4H9BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C4H9BrMg (solution) + HBr (g) = C4H10 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -305.9 ± 2.2 | kJ/mol | RSC | Holm, 1981 | solvent: Diethyl ether; MS |
C5H11BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C5H11BrMg (solution) + HBr (g) = C5H12 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -306.3 ± 2.2 | kJ/mol | RSC | Holm, 1981 | solvent: Diethyl ether; MS |
C19H15BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C19H15BrMg (solution) + HBr (g) = C19H16 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -231.0 ± 2.2 | kJ/mol | RSC | Holm, 1981 | solvent: Diethyl ether; MS |
By formula: C3H5Br + H2O = HBr + C3H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -15. | kJ/mol | Cm | Gellner and Skinner, 1949 | liquid phase; Heat of hydrolysis; ALS |
By formula: C7H7Br + H2O = HBr + C7H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -7.9 | kJ/mol | Cm | Gellner and Skinner, 1949 | liquid phase; Heat of hydrloysis; ALS |
C3H7BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C3H7BrMg (solution) + HBr (g) = C3H8 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -305.9 ± 2.2 | kJ/mol | RSC | Holm, 1981 | solvent: Diethyl ether; MS |
By formula: C7H5BrO + H2O = HBr + C7H6O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -113.1 | kJ/mol | Cm | Carson, Pritchard, et al., 1950 | liquid phase; Heat of hydrolysis; ALS |
(g) + C2H5BrMg (solution) = (solution) + Br2Mg (solution)
By formula: HBr (g) + C2H5BrMg (solution) = C2H6 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -299.2 ± 2.2 | kJ/mol | RSC | Holm, 1981 | solvent: Diethyl ether; MS |
= + C10H15N
By formula: C10H16N.Br = HBr + C10H15N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -88. ± 4. | kJ/mol | Cm | Arnett and Wernett, 1993 | liquid phase; solvent: DMSO; ALS |
By formula: HBr + C9H10 = C9H11Br
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -63.6 ± 5.4 | kJ/mol | Cm | Nesterova, Kovzel, et al., 1977 | liquid phase; Hydrobromination; ALS |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.72 | 6100. | C | N/A | missing citation refer to missing citation and missing citation but this value cannot be found there. |
25. | 650. | Q | N/A | Only the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical. |
1.3×10+9/KA | 10000. | T | N/A | For strong acids, the solubility is often expressed as kH = ([H+] * [A-]) / p(HA). To obtain the physical solubility of HA, the value has to be divided by the acidity constant KA. missing citation corrects erroneous data from missing citation. |
7.1×10+8/KA | 10000. | T | N/A |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Coblentz Society, Inc.
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View scan of original (hardcopy) spectrum.
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | COBLENTZ SOCIETY Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | DOW CHEMICAL COMPANY |
Source reference | COBLENTZ NO. 8757 |
Date | 1964 |
State | GAS (600 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2) |
Instrument | DOW KBr FOREPRISM |
Instrument parameters | GRATING CHANGED AT 5.0, 7.5, 15.0 MICRON |
Path length | 5 CM |
Resolution | 4 |
Sampling procedure | TRANSMISSION |
Data processing | DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS) |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Chemical Concepts |
NIST MS number | 157480 |
Constants of diatomic molecules
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through December, 1976
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Numerous absorption bands above 11400 cm-1, tentatively assigned to higher members of two Rydberg series starting with L and M and converging to A 2Σ+ of Hbr+; I.P.[A 2Σ+, v=0]=123373 cm-1 (15.2964 eV). | ||||||||||||
M (1Σ+) | (109473) | [1308] 1 | M ← X | 108814 | ||||||||
↳missing citation | ||||||||||||
L (1Σ+, 1Π) | (104201) | [1262] 2 | L ← X | 103519 | ||||||||
↳missing citation | ||||||||||||
3 | ||||||||||||
↳Barrow and Stamper, 1961; Stamper, 1962 | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
K 6 1 | (83902) | (2518) 4 | [8.195] | [22.0E-4] | [1.4375] | K ← X R | 83847.9 5 Z | |||||
↳Stamper, 1962 | ||||||||||||
J 6 1 | (81243) | (2502) 4 | [8.027] 7 | [3.61E-4] | [1.453] | J ← X R | 81180.7 8 Z | |||||
↳missing citation | ||||||||||||
I 6 1 | 80436 | (2525) 4 | [8.169] 9 | [10.4E-4] | [1.440] | I ← X R | 80385.6 10 Z | |||||
↳missing citation | ||||||||||||
g (3Σ-)0+ | (79253.2) 11 | [7.63] 12 | -17E-4 | [1.49] | g ← X R | 77940.0 Z | ||||||
↳missing citation; missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
F 1Δ | (78322.3) 11 | [8.20] | [1.437] | F ← X R | 77009.1 Z | |||||||
↳missing citation | ||||||||||||
f1 3Δ1 | (76814) 11 | [2299.7] Z | 8.027 | 0.213 | 1.453 | f1 ← X R | 76650.9 Z | |||||
↳Barrow and Stamper, 1961; missing citation | ||||||||||||
D 1Π | (76310) 13 | [2405.5] Z | 8.125 | 0.21 | 1.444 | D ← X R | 76199.4 Z | |||||
↳missing citation; missing citation | ||||||||||||
d0 3Π0 | (76193) | [2418.5] Z | [7.624] 14 | (0.32) | [1.4904] | d0 ← X R | 76088.8 Z | |||||
↳Barrow and Stamper, 1961; missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
E (3Σ+)0+ | (76691) 11 | [7.34] 15 | [1.519] | E ← X R | 75378 | |||||||
↳Ginter and Tilford, 1971 | ||||||||||||
V 1Σ+ | (75800) 16 | (790) 17 | V ↔ X 18 R | (74900) | ||||||||
↳Stamper and Barrow, 1961; missing citation | ||||||||||||
f2 3Δ2 | [75533.8] 11 | [8.675] 19 | [16.5E-4] 19 | [1.397] 5 | f2 ← X R | 74220.6 Z | ||||||
↳Barrow and Stamper, 1961; missing citation | ||||||||||||
f3 3Δ3 | [75403.1] 11 20 | [7.41] | [-7.6E-4] | [1.512] 5 | f3 ← X R | 74089.9 Z | ||||||
↳missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
e 3Σ+ | [75053] 11 21 | e ← X R | 73740 | |||||||||
↳Ginter and Tilford, 1971 | ||||||||||||
d1 3Π1 | [74855] 13 22 | d1 ← X R | 73542 | |||||||||
↳Barrow and Stamper, 1961; Ginter and Tilford, 1971 | ||||||||||||
d2 3Π2 | [74753] 13 22 | d2 ← X R | 73440 | |||||||||
↳Barrow and Stamper, 1961; Ginter and Tilford, 1971 | ||||||||||||
C 1Π | 70578 23 | 2552 Z | 52 | 7.89 | 0.30 | 1.465 | C ← X 24 R | 70527.6 Z | ||||
↳Barrow and Stamper, 1961; missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
b0 3Π0 0+ | (68998) 23 | [2452] | [7.996] 25 | [1.455] | b0 ← X R | 68911.2 Z | ||||||
↳Barrow and Stamper, 1961; missing citation | ||||||||||||
b0 3Π0 0- | b0 ← X R | 68904 26 H | ||||||||||
↳Barrow and Stamper, 1961; missing citation | ||||||||||||
b1 3Π1 | (67180) 23 | [2444.2] Z | 8.148 25 | 0.292 | 1.442 | b1 ← X R | 67088.4 Z | |||||
↳missing citation; missing citation | ||||||||||||
b2 3Π2 | [67663.0] 23 | [7.805] 25 | [1.473] | b2 ← X R | 66349.8 Z | |||||||
↳Barrow and Stamper, 1961; missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
A (1Π) 28 | 27 | A ← X | ||||||||||
↳Bates, Halford, et al., 1935; Goodeve and Taylor, 1935; Datta and Chakravarty, 1941; Romand, 1949; Huebert and Martin, 1968 | ||||||||||||
X 1Σ+ | 0 | 2648.975 29 Z | 45.2175 30 | -0.0029 | 8.464884 X | 0.23328 31 | 3.4575E-4 32 | 1.414435 33 | ||||
↳Rank, Fink, et al., 1965 | ||||||||||||
Rotation spectrum 34 35 | ||||||||||||
↳Hansler and Oetjen, 1953; Jones and Gordy, 1964; Van Dijk and Dymanus, 1969 | ||||||||||||
Raman sp. 36 | ||||||||||||
↳Cherlow, Hyatt, et al., 1975 | ||||||||||||
Mol. beam el. reson. 37 | ||||||||||||
↳Dabbousi, Meerts, et al., 1973 |
Notes
1 | v=0...4 observed. Assigned as 4pσ4pπ4 6sσ. 40 |
2 | v=0...3 observed. Assigned as 4pσ4pπ4 5pσ and/or 5pπ. 40 |
3 | Further absorption bands of doubtful assignment between 75200 and 83600 cm-1. |
4 | From the observed HBr-DBr isotope shift assuming that the observed bands are 0-0 bands. |
5 | Band [37] of Stamper, 1962. |
6 | I, J, K correspond to absorption bands with clear analogues in DBr. |
7 | Ω-type doubling, Δνef = +0.142J(J+1)- ...; B and D represent average values. |
8 | Band [28] of Barrow and Stamper, 1961. Sharp P, Q, R branches; the Q levels appear to be predissociated for J«gte»14. |
9 | missing note |
10 | Band [26] of Barrow and Stamper, 1961. |
11 | Configuration ... σ2π3 5pπ. |
12 | Perturbed at high J. |
13 | Configuration ... σ2π3 5pσ. |
14 | Slightly diffuse lines. |
15 | Perturbed. |
16 | Derived from H+ + Br-; configuration ... σπ4σ*. |
17 | Bands in emission above 46500 cm-1, in absorption above 75700. Incomplete analysis. |
18 | Heavily perturbed extensive band system. Absorption lines above 75923 cm-1 are diffuse. B' varies irregularly between 3.4 and 4.5 cm-1. |
19 | Average values for the two Ω-type doubling components. |
20 | Weak transition. |
21 | Very diffuse, unresolved band. |
22 | Diffuse band, rotational structure unresolved. |
23 | Configuration ... σ2π3 5sσ. |
24 | Very strong absorption, lines are diffuse. |
25 | Diffuse rotational structure. |
26 | Diffuse Q head. |
27 | Continous absorption statring at ~35000 with maximum at 56400 cm-1. |
28 | Configuration ... σ2π3 σ*. |
29 | These are Y10 and Y01 values; applying Dunham corrections Rank, Fink, et al., 1965 obtain we = 2649.215, Be = 8.465065. Additional corrections (adiabatic, non-adiabatic) are discussed by Bunker, 1972. The microwave B0 values of Jones and Gordy, 1964 was included in the evaluation of Be. See also 42 37 |
30 | missing note |
31 | +0.0008735(v+1/2)2 - 0.000120(v+1/2)3. |
32 | -0.0397E-4(v+1/2) + 0.0038(v+1/2)2; Hv = 7.63E-9 - 0.55E-9(v+1/2). |
33 | Rot.-vibr. Sp. 42 35 |
34 | Absolute intensities have been measured by Chamberlain and Gebbie, 1965. |
35 | For observations and measurements of pressure-induced bands and pure rotation lines (ΔJ=2) see Atwood, Vu, et al., 1967, Weiss and Cole, 1967. The pressure broadening of the lines has been studied by Babrov, 1964, Pourcin, Bachet, et al., 1967. |
36 | Raman cross sections in gaseous HBr. |
37 | The following constants (as well as corresponding values for H79Br) are given in Dabbousi, Meerts, et al., 1973: -μel(v=0,J=1) = 0.8265 D [in a later paper van Dijk and Dymanus, 1974 derive 0.8282 D from Stark effect of rotation spectrum]; -quadrupole and other hyperfine coupling constants; -gJ = 0.3712. These constants supersede earlier values of Schurin and Rollefson, 1957, Jones and Gordy, 1964, Tokuhiro, 1967, Van Dijk and Dymanus, 1969, van Dijk and Dymanus, 1970. |
38 | From D00(H2), D00(Br2), and ΔHf0 (HBr;from gaseous H2,Br2). |
39 | Average value from photoionization Watanabe, 1957 and photoelectron spectra Frost, McDowell, et al., 1967, Lempka, Passmore, et al., 1968; refers to X 2Π3/2 of the ion. A more recent paper Delwiche, Natalis, et al., 1972 gives 11.645 eV. |
40 | Strongly broadened by preionization; estimated lifetime against preionization 9.5E-15 s Terwilliger and Smith, 1975. |
41 | From R, P branches. Δνef = -0.04lJ(J+1). |
42 | In absorption the 1-0, 2-0, 3-0, 3-1, 4-0, 5-0, 6-0 bands have been studied Naude and Verleger, 1950, Thompson, Williams, et al., 1952, Plyler, 1960, Rank, Fink, et al., 1965, Bernage, Niay, et al., 1973; in emission 1-0, 2-1, 3-2, 4-3 Mould, Price, et al., 1960, James and Thibault, 1965. The constants in the table are from Rank, Fink, et al., 1965, those of James and Thibault, 1965, Bernage, Niay, et al., 1973 are very similar and of comparable accuracy. See also Ogilvie and Koo, 1976. Absolute intensities have been measured Babrov, 1964, Babrov, Shabott, et al., 1965, Rao and Lindquist, 1968, Gustafson and Rao, 1970 and the dipole moment function has been calculated; Urquhart, Clark, et al., 1972 give for H79Br[D, ]: μel(r) = +0.788 + 0.315(r-re) + 0.575(r-re)2; see also Jacobi, 1967, Tipping and Herman, 1970, Rao, 1971. |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Dreisbach, 1955
Dreisbach, R.R.,
Physical Properties of Chemical Compounds, Advances in Chemistry Series No. 15, Am. Chem. Soc.: Washington, D. C., 1955. [all data]
Maass and Russell, 1918
Maass, O.; Russell, J.,
Unsaturation and molecular compound formation,
J. Am. Chem. Soc., 1918, 40, 1561-1573. [all data]
Beckmann and Waentig, 1910
Beckmann, E.; Waentig, P.,
Cryoscopic Measurements at Low Temperatures,
Z. Anorg. Chem., 1910, 67, 17. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Caldwell and Kebarle, 1985
Caldwell, G.; Kebarle, P.,
The hydrogen bond energies of the bihalide ions XHX- and YHX-,
Can. J. Chem., 1985, 63, 1399. [all data]
Davidson, Fehsenfeld, et al., 1977
Davidson, J.A.; Fehsenfeld, F.C.; Howard, C.J.,
The heats of formation of NO3- and NO3- association complexes with HNO3 and HBr,
Int. J. Chem. Kinet., 1977, 9, 17. [all data]
Blondel, Cacciani, et al., 1989
Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R.,
High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams,
Phys. Rev. A, 1989, 40, 7, 3698, https://doi.org/10.1103/PhysRevA.40.3698
. [all data]
Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G.,
Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase,
Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005
. [all data]
Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S.,
Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements,
J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l
. [all data]
Nolan, López de la Vega, et al., 1986
Nolan, S.P.; López de la Vega, R.; Hoff, C.D.,
J. Organometal. Chem., 1986, 315, 187. [all data]
Lacher, Kianpour, et al., 1957
Lacher, J.R.; Kianpour, A.; Park, J.D.,
Reaction heats of organic halogen compounds. X. Vapor phase heats of hydrobromination of cyclopropane and propylene,
J. Phys. Chem., 1957, 61, 1124-1125. [all data]
Lacher, Lea, et al., 1950
Lacher, J.R.; Lea, K.R.; Walden, C.H.; Olson, G.G.; Park, J.D.,
Reaction heats of organic fluorine compounds. III. The vapor phase heats of hydrobromination of some simple fluoroolefins,
J. Am. Chem. Soc., 1950, 72, 3231-3234. [all data]
Lacher, Walden, et al., 1950
Lacher, J.R.; Walden, C.H.; Lea, K.R.; Park, J.D.,
Vapor phase heats of hydrobromination of cyclopropane and propylene,
J. Am. Chem. Soc., 1950, 72, 331-333. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Holm, 1981
Holm, T.,
J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]
Pedley, 1994
Pedley, J.B.,
Thermodynamic Data and Structures of Organic Compounds; Thermodynamics Research Center Data Series, Vol I, Thermodynamics Research Center, College Station, 1994. [all data]
Howard and Skinner, 1966
Howard, P.B.; Skinner, H.A.,
Thermochemistry of some reactions of aqueous hydrazine with halogens, hydrogen halides and N-halogenosuccinimides,
J. Chem. Soc. A, 1966, 1536-1540. [all data]
Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P.,
Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]
McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P.,
Methyl Cation Affinities,
J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002
. [all data]
Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L.,
Photoionization mass spectrometry of trans-azomethane,
Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]
Holm, 1974
Holm, T.,
J. Organometal. Chem., 1974, 77, 27. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W.,
In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]
Lacher, Billings, et al., 1952
Lacher, J.R.; Billings, T.J.; Campion, D.E.,
Vapor phase heats of hydrobromination of the isomeric butenes,
J. Am. Chem. Soc., 1952, 74, 5291-52. [all data]
Devore and O'Neal, 1969
Devore, J.A.; O'Neal, H.E.,
Heats of formation of the acetyl halides and of the acetyl radical,
J. Phys. Chem., 1969, 73, 2644-2648. [all data]
Carson and Skinner, 1949
Carson, A.S.; Skinner, H.A.,
201. Carbon-halogen bond energies in the acetyl halides,
J. Chem. Soc., 1949, 936-939. [all data]
Davies, Lacher, et al., 1965
Davies, J.; Lacher, J.R.; Park, J.D.,
Reaction heats of organic compounds. Part 4.-Heats of hydrogenation of n- and iso-Propyl bromides and chlorides,
Trans. Faraday Soc., 1965, 61, 2413-2416. [all data]
Benson and Buss, 1957
Benson, S.W.; Buss, J.H.,
The thermodynamics of bromination of toluene and the heat of formation of the benzyl radical,
J. Phys. Chem., 1957, 61, 104-109. [all data]
Levanova, Rodova, et al., 1983
Levanova, S.V.; Rodova, R.M.; Tereshkina, T.P.; Zabrodina, T.I.,
Thermocatalytic reactions of bromochloropropanes,
Russ. J. Phys. Chem. (Engl. Transl.), 1983, 57, 1142-1146. [all data]
Sharonov and Rozhnov, 1971
Sharonov, K.G.; Rozhnov, A.M.,
Dehydrobromination of 2,2-dibromopropane,
Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1971, 14, 389-393. [all data]
Carpenter, Zimmer, et al., 1970
Carpenter, G.A.; Zimmer, M.F.; Baroody, E.E.; Robb, R.A.,
Enthalpy of formation of bromotrinitromethane,
J. Chem. Eng. Data, 1970, 15, 553-556. [all data]
Lane, Linnett, et al., 1953
Lane, M.R.; Linnett, J.W.; Oswin, H.G.,
A study of the C2H4+HCl=C2H5Cl and C2H4+Hbr=C2H5Br equilibria,
Proc. Roy. Soc. London A, 1953, 216, 361-374. [all data]
Koros, Orban, et al., 1979
Koros, E.; Orban, M.; Nagy, Z.,
Calorimetric studies on the Belousov-Zhabotinsky oscillatory chemical reaction,
Acta Chim. Acad. Sci. Hung., 1979, 100, 449-461. [all data]
Kiselev, Khuzyasheva, et al., 1979
Kiselev, V.D.; Khuzyasheva, d.G.; Konovalov, A.I.,
Thermochemical study of the acylation of para-substituted anilines,
J. Gen. Chem. USSR, 1979, 49, 2273-2276. [all data]
King, Golden, et al., 1971
King, K.D.; Golden, D.M.; Benson, S.W.,
Thermochemistry of the gas-phase equilibrium CH3COCH3 + Br2 = CH3COCH2Br + HBr. The enthalpy of formation of bromoacetone,
J. Chem. Thermodyn., 1971, 3, 129-134. [all data]
Anthoney, Finch, et al., 1970
Anthoney, M.E.; Finch, A.; Gardner, P.J.,
The enthalpy of hydrolysis and thermodynamic properties of carbonyl bromide,
J. Chem. Thermodyn., 1970, 2, 697-700. [all data]
Busheva, Levanova, et al., 1980
Busheva, L.I.; Levanova, S.V.; Rodova, R.M.; Rozhnov, A.M.,
Thermocatalytic reactions of 1,1-bromochloroethane,
Russ. J. Phys. Chem. (Engl. Transl.), 1980, 54, 1403-1404. [all data]
Gellner and Skinner, 1949
Gellner, O.H.; Skinner, H.A.,
Dissociation energies of carbon-halogen bonds. The bond strengths allyl-X and benzyl-X,
J. Chem. Soc., 1949, 1145-1148. [all data]
Carson, Pritchard, et al., 1950
Carson, A.S.; Pritchard, H.O.; Skinner, H.A.,
The heats of hydrolysis of the benzoyl halides,
J. Chem. Soc., 1950, 656-659. [all data]
Arnett and Wernett, 1993
Arnett, E.M.; Wernett, P.C.,
Energetics of P, S, and N ylide formation and reaction in solution,
J. Org. Chem., 1993, 58, 301-303. [all data]
Nesterova, Kovzel, et al., 1977
Nesterova, T.N.; Kovzel, E.N.; Karaseva, S.Ya.; Rozhnov, A.M.,
Heats of reaction of the hydrohalogenation of styrene and α-methylstyrene,
Vses. Konf. Kalorim. Rasshir. Tezisy Dokl. 7th, 1977, 1, 132. [all data]
Barrow and Stamper, 1961
Barrow, R.F.; Stamper, J.G.,
The absorption spectrum of gaseous hydrogen bromide in the Schumann region. I. Rotational analysis,
Proc. R. Soc. London A, 1961, 263, 259. [all data]
Stamper, 1962
Stamper, J.G.,
The absorption spectrum of DBr in the vacuum ultraviolet region,
Can. J. Phys., 1962, 40, 1279. [all data]
Ginter and Tilford, 1971
Ginter, M.L.; Tilford, S.G.,
Electronic spectra and structure of the hydrogen halides. States associated with the (σ2π3)cπ and (σ2π3) cσ configurations of HBr and DBr,
J. Mol. Spectrosc., 1971, 37, 159. [all data]
Stamper and Barrow, 1961
Stamper, J.G.; Barrow, R.F.,
The V(1Σ+)-N(1Σ+) transition of hydrogen bromide,
J. Phys. Chem., 1961, 65, 250. [all data]
Bates, Halford, et al., 1935
Bates, J.R.; Halford, J.O.; Anderson, L.C.,
A comparison of some physical properties of hydrogen and deuterium bromides,
J. Chem. Phys., 1935, 3, 531. [all data]
Goodeve and Taylor, 1935
Goodeve, C.F.; Taylor, A.W.C.,
The continuous absorption spectrum of hydrogen bromide,
Proc. R. Soc. London A, 1935, 152, 221. [all data]
Datta and Chakravarty, 1941
Datta, S.; Chakravarty, B.,
The continuous absorption spectra of the hydrogen-halides. Part I - HBr,
Proc. Natl. Inst. Sci. India, 1941, 7, 297. [all data]
Romand, 1949
Romand, J.,
Absorption ultraviolette dans la region de Schumann etude de: ClH, BrH et lH gazeux,
Ann. Phys. (Paris), 1949, 4, 527. [all data]
Huebert and Martin, 1968
Huebert, B.J.; Martin, R.M.,
Gas-phase far-ultraviolet absorption spectrum of hydrogen bromide and hydrogen iodide,
J. Phys. Chem., 1968, 72, 3046. [all data]
Rank, Fink, et al., 1965
Rank, D.H.; Fink, U.; Wiggins, T.A.,
High resolution measurements on the infrared absorption spectrum of HBr,
J. Mol. Spectrosc., 1965, 18, 170. [all data]
Hansler and Oetjen, 1953
Hansler, R.L.; Oetjen, R.A.,
The infrared spectra of HCl, DCl, HBr, and NH3 in the region from 40 to 140 microns,
J. Chem. Phys., 1953, 21, 1340. [all data]
Jones and Gordy, 1964
Jones, G.; Gordy, W.,
Submillimeter-wave spectra of HCl and HBr,
Phys. Rev., 1964, 136, 1229. [all data]
Van Dijk and Dymanus, 1969
Van Dijk, F.A.; Dymanus, A.,
Hyperfine structure of the rotational spectrum of HBr and in the submillimeter wave region,
Chem. Phys. Lett., 1969, 4, 170. [all data]
Cherlow, Hyatt, et al., 1975
Cherlow, J.M.; Hyatt, H.A.; Porto, S.P.S.,
Raman scattering in hydrogen halide gases,
J. Chem. Phys., 1975, 63, 3996. [all data]
Dabbousi, Meerts, et al., 1973
Dabbousi, O.B.; Meerts, W.L.; de Leeuw, F.H.; Dymanus, A.,
Stark-Zeeman hyperfine structure of H79Br and H81Br by molecular-beam electric-resonance spectroscopy,
Chem. Phys., 1973, 2, 473. [all data]
Bunker, 1972
Bunker, P.R.,
On the breakdown of the Born-Oppenheimer approximation for a diatomic molecule,
J. Mol. Spectrosc., 1972, 5, 478. [all data]
Chamberlain and Gebbie, 1965
Chamberlain, J.E.; Gebbie, H.A.,
Sub-millimetre dispersion and rotational line strengths of the hydrogen halides,
Nature (London), 1965, 208, 480. [all data]
Atwood, Vu, et al., 1967
Atwood, M.R.; Vu, H.; Vodar, B.,
Forme et structures fines de la bande induite par la pression dans la bande fondamentale de vibration-rotation des molecules HF, HCl et HBr,
Spectrochim. Acta, 1967, 23, 553. [all data]
Weiss and Cole, 1967
Weiss, S.; Cole, R.H.,
Pressure-induced rotational quadrupole spectra of HCl and HBr,
J. Chem. Phys., 1967, 46, 644. [all data]
Babrov, 1964
Babrov, H.J.,
Strengths and self-broadened widths of the lines of the hydrogen bromide fundamental band,
J. Chem. Phys., 1964, 40, 831. [all data]
Pourcin, Bachet, et al., 1967
Pourcin, J.; Bachet, G.; Coulon, R.,
Possibilite d'une absorption non resonnante induite dans le spectre de rotation pure de HBr gazeux perturbe par des gaz comprimes,
C.R. Acad. Sci. Paris, Ser. B, 1967, 264, 975. [all data]
van Dijk and Dymanus, 1974
van Dijk, F.A.; Dymanus, A.,
Hyperfine and Stark spectrum of DBr in the millimeter-wave region,
Chem. Phys., 1974, 6, 474. [all data]
Schurin and Rollefson, 1957
Schurin, B.; Rollefson, R.,
Infrared dispersion of hydrogen bromide,
J. Chem. Phys., 1957, 26, 1089. [all data]
Tokuhiro, 1967
Tokuhiro, T.,
Vibrational and rotational effects on the nuclear quadrupole coupling constants in hydrogen, deuterium, and tritium halides,
J. Chem. Phys., 1967, 47, 109. [all data]
van Dijk and Dymanus, 1970
van Dijk, F.A.; Dymanus, A.,
The electric dipole moment of HI and HBr,
Chem. Phys. Lett., 1970, 5, 387. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Frost, McDowell, et al., 1967
Frost, D.C.; McDowell, C.A.; Vroom, D.A.,
Photoelectron spectra of the halogens and the hydrogen halides,
J. Chem. Phys., 1967, 46, 4255. [all data]
Lempka, Passmore, et al., 1968
Lempka, H.J.; Passmore, T.R.; Price, W.C.,
The photoelectron spectra and ionized states of the halogen acids,
Proc. Roy. Soc. (London), 1968, A304, 53. [all data]
Delwiche, Natalis, et al., 1972
Delwiche, J.; Natalis, P.; Momigny, J.; Collin, J.E.,
On the photoelectron spectra of HBr and DBr,
J. Electron Spectrosc. Relat. Phenom., 1972, 1, 219. [all data]
Terwilliger and Smith, 1975
Terwilliger, D.T.; Smith, A.L.,
Autoionization in diatomics: measured line shape parameters and predicted photoelectron spectra for some autoionizing states of the hydrogen halides,
J. Chem. Phys., 1975, 63, 1008. [all data]
Naude and Verleger, 1950
Naude, S.M.; Verleger, H.,
The vibration-rotation bands of the hydrogen halides HF, H35Cl, H37Cl, H79Br, H81Br and H127I,
Proc. Phys. Soc. London Sect. A, 1950, 63, 470. [all data]
Thompson, Williams, et al., 1952
Thompson, H.W.; Williams, R.L.; Callomon, H.J.,
The fundamental vibration band of hydrogen bromide,
Spectrochim. Acta, 1952, 5, 313. [all data]
Plyler, 1960
Plyler, E.K.,
Infrared spectrum of hydrobromic aid,
J. Res. Nat. Bur. Stand. Sect. A, 1960, 64, 377. [all data]
Bernage, Niay, et al., 1973
Bernage, P.; Niay, P.; Bocquet, H.; Houdart, R.,
Etude des bandes d'absorption infrarouges v0-3, v0-4, v0-5 de l'acide bromhydrique gazeux a l'aide d'un spectrometre sisam,
Rev. Phys. Appl., 1973, 8, 333. [all data]
Mould, Price, et al., 1960
Mould, H.M.; Price, W.C.; Wilkinson, G.R.,
Infra-red emission from gases excited by a radio-frequency discharge,
Spectrochim. Acta, 1960, 16, 479. [all data]
James and Thibault, 1965
James, T.C.; Thibault, R.J.,
Infrared-emission spectrum of HBr excited in an electric discharge. Determination of molecular constants,
J. Chem. Phys., 1965, 42, 1450. [all data]
Ogilvie and Koo, 1976
Ogilvie, J.F.; Koo, D.,
Dunham potential energy coefficients of the hydrogen halides and carbon monoxide,
J. Mol. Spectrosc., 1976, 61, 332-336. [all data]
Babrov, Shabott, et al., 1965
Babrov, H.J.; Shabott, A.L.; Rao, B.S.,
Matrix elements for vibration-rotation transitions in the HBr overtone and hot bands,
J. Chem. Phys., 1965, 42, 4124. [all data]
Rao and Lindquist, 1968
Rao, B.S.; Lindquist, L.H.,
Dipole matrix elements for vibration-rotation lines in the 2-0 band of the hydrogen bromide molecule,
Can. J. Phys., 1968, 46, 2739. [all data]
Gustafson and Rao, 1970
Gustafson, B.P.; Rao, B.S.,
Dipole matrix elements for vibration-rotation lines in the fundamental band of the hydrogen bromide molecule,
Can. J. Phys., 1970, 48, 330. [all data]
Urquhart, Clark, et al., 1972
Urquhart, D.N.; Clark, T.D.; Rao, B.S.,
The dipole moment function of H79Br molecule,
Z. Naturforsch. A, 1972, 27, 1563. [all data]
Jacobi, 1967
Jacobi, N.,
Electrical anharmonicities of diatomic molecules,
J. Mol. Spectrosc., 1967, 22, 76. [all data]
Tipping and Herman, 1970
Tipping, R.H.; Herman, R.M.,
Line intensities in HBr vibration-rotation spectra,
J. Mol. Spectrosc., 1970, 36, 404. [all data]
Rao, 1971
Rao, B.S.,
Vibration-rotation band strengths and dipole moment function of the H79Br molecule,
J. Phys. B:, 1971, 4, 791. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature Tfus Fusion (melting) point d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.