1H-Pyrrole-2-carboxaldehyde


Gas Chromatography

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-51009.Deport, Ratel, et al., 200660. m/0.32 mm/1. μm, He, 40. C @ 5. min, 3. K/min, 230. C @ 5. min

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5MS1015.Andriamaharavo, 201430. m/0.25 mm/0.25 μm, He; Program: 60C (1 min) => 5 C/min => 210C => 10 C/min => 280C (15 min)
CapillaryDB-5MS1030.Varlet V., Knockaert C., et al., 200630. m/0.32 mm/0.5 μm, He; Program: 70C(1min) => 3C/min => 80C(1min) => 5C/min => 150C => 10C/min => 280C (4min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax2028.Lopez-Galilea I., Fournier N., et al., 200630. m/0.32 mm/0.5 μm, He, 5. K/min, 240. C @ 10. min; Tstart: 40. C
CapillaryHP-Innowax2048.Adamiec, Rossner, et al., 200130. m/0.25 mm/0.25 μm, N2, 5. K/min; Tstart: 60. C; Tend: 220. C
CapillarySupelcowax-102032.Chung, 200060. m/0.25 mm/0.25 μm, He, 2. K/min, 195. C @ 90. min; Tstart: 35. C
CapillarySupelcowax-102032.Chung, 199960. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryPEG-20M2030.Shimoda, Nakada, et al., 199760. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C
CapillaryDB-Wax2030.Shimoda, Shiratsuchi, et al., 199660. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryStabilwax2044.Natali N., Chinnici F., et al., 200630. m/0.25 mm/0.25 μm, He; Program: 40C => 3C/min => 100C => 5C/min => 240C(10min)

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS1018.Jerkovic and Marijanovic, 201030. m/0.25 mm/0.25 μm, Helium, 70. C @ 2. min, 3. K/min, 200. C @ 18. min
CapillaryHP-5 MS1008.Kim and Chung, 200930. m/0.25 mm/0.25 μm, Helium, 35. C @ 5. min, 2. K/min, 195. C @ 30. min
CapillaryUltra-1971.Du, Clery, et al., 200850. m/0.20 mm/0.33 μm, Helium, 2. K/min, 280. C @ 20. min; Tstart: 50. C
CapillaryHP-51008.Du, Clery, et al., 200850. m/0.20 mm/0.33 μm, Helium, 10. K/min, 280. C @ 8.5 min; Tstart: 50. C
CapillaryRTX-51047.Setkova, Risticevic, et al., 200710. m/0.18 mm/0.2 μm, He, 40. C @ 0.5 min, 50. K/min, 275. C @ 0.5 min
CapillaryHP-5MS1013.Kim, Abd El-Aty, et al., 200630. m/0.25 mm/0.25 μm, He, 50. C @ 4. min, 5. K/min, 280. C @ 10. min
CapillaryDB-1983.Chen and Ho, 199960. m/0.32 mm/1. μm, He, 2. K/min; Tstart: 40. C; Tend: 260. C
CapillaryHP-51013.Boylston and Viniyard, 199850. m/0.32 mm/0.52 μm, 35. C @ 15. min, 2. K/min, 250. C @ 45. min
CapillaryDB-1989.Chen and Ho, 199860. m/0.32 mm/1.0 μm, He, 2. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-1997.Buttery, Ling, et al., 199730. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryDB-51031.Georgilopoulos and Gallois, 198830. m/0.35 mm/1.0 μm, Hydrogen, 2. K/min; Tstart: 45. C; Tend: 220. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane with 5 % Ph groups1030.Robinson, Adams, et al., 2012Program: not specified
CapillaryPolydimethyl siloxane with 5 % Ph groups1030.Robinson, Adams, et al., 2012Program: not specified
CapillaryVF-51012.Shivashankar, Roy, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: 50 0C (2 min) 3 0C/min -> 200 0C (3 min) 10 0C/min -> 220 0C (8 min)
CapillaryVF-5988.Shivashankar, Roy, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryZB-51009.de Simon, Estruelas, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 45 0C 3 0C/min -> 230 0C (10 min) 10 0C/min -> 270 0C (21 min)
CapillarySLB-5MS1043.Risticevic, Carasek, et al., 200810. m/0.18 mm/0.18 μm, Helium; Program: not specified
CapillaryHP-51016.Zhao, Li, et al., 200830. m/0.25 mm/0.25 μm; Program: 40 0C (2 min) 5 0C/min -> 80 0C 7 oC/min -> 160 0C 9 0C/min -> 200 0C 20 0C/min -> 280 0C (10 min)
CapillarySE-301005.Vinogradov, 2004Program: not specified
CapillaryCP Sil 5 CB986.Counet, Callemien, et al., 200250. m/0.32 mm/1.2 μm; Program: 36C => 20C/min => 85C => 1C/min => 145C=3C/min => 250C(30min)

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-FFAP2067.Wanakhachornkrai and Lertsiri, 999925. m/0.32 mm/0.50 μm, Helium, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryDB-Wax2059.Moon and Shibamoto, 200960. m/0.25 mm/0.50 μm, Helium, 40. C @ 5. min, 2. K/min, 210. C @ 70. min
CapillaryHP-Innowax2010.Du, Clery, et al., 200850. m/0.20 mm/0.33 μm, Helium, 10. K/min, 250. C @ 6. min; Tstart: 50. C
CapillaryHP-Innowax2035.Soria, Sanz, et al., 200850. m/0.20 mm/0.20 μm, Helium, 45. C @ 2. min, 4. K/min, 190. C @ 50. min
CapillaryRTX-Wax2023.Prososki, Etzel, et al., 200730. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 10. K/min, 220. C @ 10. min
CapillaryTC-Wax2044.Ishikawa, Ito, et al., 200460. m/0.25 mm/0.5 μm, He, 40. C @ 8. min, 3. K/min; Tend: 230. C
CapillaryDB-Wax2036.Yanagimoto, Ochi, et al., 200430. m/0.25 mm/0.25 μm, He, 3. K/min, 180. C @ 40. min; Tstart: 50. C
CapillaryHP-FFAP2067.Wanakhachornkrai and Lertsiri, 200325. m/0.32 mm/0.5 μm, He, 15. K/min; Tstart: 45. C; Tend: 220. C
CapillaryDB-Wax2009.Wei, Mura, et al., 200160. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 200. C
CapillaryDB-Wax2006.Buttery, Orts, et al., 199930. C @ 4. min, 2. K/min, 170. C @ 60. min; Column length: 60. m; Column diameter: 0.32 mm
CapillaryCarbowax 20M1978.Kawakami and Kobayashi, 1991He, 60. C @ 4. min, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tend: 180. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax2032.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax2038.Welke, Manfroi, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryStabilwax2044.Chinnici, Guerrero, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 35 0C 3 0C/min -> 100 0C 5 0C/min -> 240 0C (10 min)
CapillarySupelcowax-101990.de Simon, Estruelas, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 45 0C 3 0C/min -> 230 0C (10 min) 10 0C/min -> 270 0C (21 min)
CapillaryDB-Wax2013.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: 44 0C 3 0C/min -> 170 0C 8 0C/min -> 250 0C
CapillaryDB-Wax2019.Tian, Zhang, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 50 0C (2 min) 6 0C/min -> 150 0C 8 0C/min -> 230 0C (15 min)
CapillaryDB-Wax1997.Krings, Zelena, et al., 200630. m/0.32 mm/0.25 μm, He; Program: 45C(5min) => 5C/min => 150C => 10C/min => 240C (10min)
CapillaryInnowax2039.Ito and Mori, 200430. m/0.25 mm/0.50 μm, Helium; Program: 40 0C (2 min) 10 0C/min -> 100 0C 3 0C/min -> 160 0C 5 0C/min -> 260 0C (10 min)
CapillaryCarbowax 20M1976.Vinogradov, 2004Program: not specified

References

Go To: Top, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Deport, Ratel, et al., 2006
Deport, C.; Ratel, J.; Berdagué, J.-L.; Engel, E., Comprehensive combinatory standard correction: A calibration method for handling instrumental drifts of gas chromatography-mass spectrometry systems, J. Chromatogr. A, 2006, 1116, 1-2, 248-258, https://doi.org/10.1016/j.chroma.2006.03.092 . [all data]

Andriamaharavo, 2014
Andriamaharavo, N.R., Retention Data. NIST Mass Spectrometry Data Center., NIST Mass Spectrometry Data Center, 2014. [all data]

Varlet V., Knockaert C., et al., 2006
Varlet V.; Knockaert C.; Prost C.; Serot T., Comparison of odor-active volatile compounds of fresh and smoked salmon, J. Agric. Food Chem., 2006, 54, 9, 3391-3401, https://doi.org/10.1021/jf053001p . [all data]

Lopez-Galilea I., Fournier N., et al., 2006
Lopez-Galilea I.; Fournier N.; Cid C.; Guichard E., Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure, J. Agric. Food Chem., 2006, 54, 22, 8560-8566, https://doi.org/10.1021/jf061178t . [all data]

Adamiec, Rossner, et al., 2001
Adamiec, J.; Rossner, J.; Velisek, J.; Cejpek, K.; Savel, J., Minor Strecker degradation products of phenylalanine and phenylglycine, Eur. Food Res. Technol., 2001, 212, 2, 135-140, https://doi.org/10.1007/s002170000234 . [all data]

Chung, 2000
Chung, H.Y., Volatile flavor components in red fermented soybean (Glycine max) curds, J. Agric. Food Chem., 2000, 48, 5, 1803-1809, https://doi.org/10.1021/jf991272s . [all data]

Chung, 1999
Chung, H.Y., Volatile components in fermented soybean (Glycine max) curds, J. Agric. Food Chem., 1999, 47, 7, 2690-2696, https://doi.org/10.1021/jf981166a . [all data]

Shimoda, Nakada, et al., 1997
Shimoda, M.; Nakada, Y.; Nakashima, M.; Osajima, Y., Quantitative comparison of volatile flavor compounds in deep-roasted and light-roasted sesame seed oil, J. Agric. Food Chem., 1997, 45, 8, 3193-3196, https://doi.org/10.1021/jf970172o . [all data]

Shimoda, Shiratsuchi, et al., 1996
Shimoda, M.; Shiratsuchi, H.; Nakada, Y.; Wu, Y.; Osajima, Y., Identification and sensory characterization of volatile flavor compounds in sesame seed oil, J. Agric. Food Chem., 1996, 44, 12, 3909-3912, https://doi.org/10.1021/jf960115f . [all data]

Natali N., Chinnici F., et al., 2006
Natali N.; Chinnici F.; Riponi C., Characterization of volatiles in extracts from oak chips obtained by accelerated solvent extraction (ASE), J. Agric. Food Chem., 2006, 54, 21, 8190-8198, https://doi.org/10.1021/jf0614387 . [all data]

Jerkovic and Marijanovic, 2010
Jerkovic, I.; Marijanovic, Z., Oak (Quercus frainetto Ten.) honeydaw honey - approach to screening of volatile organic composition and antioxidant capacity (DPPH and FRAP assay), Molecules, 2010, 15, 5, 3744-3756, https://doi.org/10.3390/molecules15053744 . [all data]

Kim and Chung, 2009
Kim, J.-S.; Chung, H.Y., GC-MS analysis of the volatile components in dried boxthorn (Lycium chimensis) Fruit, J. Korean Soc. Appl. Biol. Chem., 2009, 52, 5, 516-524, https://doi.org/10.3839/jksabc.2009.088 . [all data]

Du, Clery, et al., 2008
Du, Z.; Clery, R.; Hammond, C.J., Volatile organic nitrogen-containing constituents in ambrette seed Abelmoschus moschatus Medik (Malvaceae), J. Agric. Food Chem., 2008, 56, 16, 7388-7392, https://doi.org/10.1021/jf800958d . [all data]

Setkova, Risticevic, et al., 2007
Setkova, L.; Risticevic, S.; Pawliszyn, J., Rapid headspace solid-phase microextraction-gas chromatographic?time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction II: Classification of Canadian and Czech ice wines using statistical evaluation of the data, J. Chromatogr. A, 2007, 1147, 2, 224-240, https://doi.org/10.1016/j.chroma.2007.02.052 . [all data]

Kim, Abd El-Aty, et al., 2006
Kim, M.R.; Abd El-Aty, A.M.; Kim, I.S.; Shim, J.H., Determination of volatile flavor components in danggui cultivars by solvent free injection and hydrodistillation followed by gas chromatographic-mass spectrometric analysis, J. Chromatogr. A, 2006, 1116, 1-2, 259-264, https://doi.org/10.1016/j.chroma.2006.03.060 . [all data]

Chen and Ho, 1999
Chen, J.; Ho, C.-T., Comparison of volatile generation in serine/threonine/glutamine-ribose/glucose/fructose model systems, J. Agric. Food Chem., 1999, 47, 2, 643-647, https://doi.org/10.1021/jf980771a . [all data]

Boylston and Viniyard, 1998
Boylston, T.D.; Viniyard, B.T., Isolation of volatile flavor compounds from peanut butter using purge-and-trap technique in Instrumental Methods in Food and Beverage Analysis, D. Wetzel and G. Charalambous, ed(s)., 1998, 225-243. [all data]

Chen and Ho, 1998
Chen, J.; Ho, C.-T., Volatile compounds generated in serine-monosaccharide model systems, J. Agric. Food Chem., 1998, 46, 4, 1518-1522, https://doi.org/10.1021/jf970934f . [all data]

Buttery, Ling, et al., 1997
Buttery, R.G.; Ling, L.C.; Stern, D.J., Studies on popcorn aroma and flavor volatiles, J. Agric. Food Chem., 1997, 45, 3, 837-843, https://doi.org/10.1021/jf9604807 . [all data]

Georgilopoulos and Gallois, 1988
Georgilopoulos, D.N.; Gallois, A.N., Flavour compounds of a commercial concentrated blackberry juice, Food Chem., 1988, 28, 2, 141-148, https://doi.org/10.1016/0308-8146(88)90143-4 . [all data]

Robinson, Adams, et al., 2012
Robinson, A.L.; Adams, D.O.; Boss, P.K.; Heymann, H.; Solomon, P.S.; Trengove, R.D., Influence of geographic origine on the sensory characteristics and wine composition of Vitus viniferas cv. Cabernet Sauvignon wines from Australia (Supplemental data), Am. J. Enol. Vitic., 2012, 64, 4, 467-476, https://doi.org/10.5344/ajev.2012.12023 . [all data]

Shivashankar, Roy, et al., 2012
Shivashankar, S.; Roy, T.K.; Moorthy, P.N.R., Headspace solid phase micro extraction and GC/MS analysis of the volatile components in seed and cake of Azadirachta indica A. juss, Chem. Bull. of Politechnika Univ. Timisoara, Romania, 2012, 57(71), 1, 1-6. [all data]

de Simon, Estruelas, et al., 2009
de Simon, B.F.; Estruelas, E.; Munoz, A.M.; Cadahia, E.; Sanz, M., Volatile compounds in acacia, chestnut, cherry, ash, and oak woods, with a view to their use in cooperage, J. Agric. Food Chem., 2009, 57, 8, 3217-3227, https://doi.org/10.1021/jf803463h . [all data]

Risticevic, Carasek, et al., 2008
Risticevic, S.; Carasek, E.; Pawliszyn, J., Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee, Anal. Chim. Acta, 2008, 617, 1-2, 72-84, https://doi.org/10.1016/j.aca.2008.04.009 . [all data]

Zhao, Li, et al., 2008
Zhao, Y.; Li, J.; Xu, Y.; Duan, H.; Fan, W.; Zhao, G., EXtraction, preparation and identification of volatile compounds in Changyu XO brandy, Chinese J. Chromatogr., 2008, 26, 2, 212-222, https://doi.org/10.1016/S1872-2059(08)60014-0 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Counet, Callemien, et al., 2002
Counet, C.; Callemien, D.; Ouwerx, C.; Collin, S., Use of gas chromatography-olfactometry to identify key odorant compounds in dark chocolate. Comparison of samples before and after conching, J. Agric. Food Chem., 2002, 50, 8, 2385-2391, https://doi.org/10.1021/jf0114177 . [all data]

Wanakhachornkrai and Lertsiri, 9999
Wanakhachornkrai, P.; Lertsiri, S., Comparison of determination method for volatile compounds in Thai soy sauce, Analytical, Nutritional and Clinical Methods, 9999, 1-11. [all data]

Moon and Shibamoto, 2009
Moon, J.-K.; Shibamoto, T., Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans, J. Agric. Food Chem., 2009, 57, 13, 5823-5831, https://doi.org/10.1021/jf901136e . [all data]

Soria, Sanz, et al., 2008
Soria, A.C.; Sanz, J.; Martinez-Castro, I., SPME followed by GC-MS: a powerful technique for qualitative analysis of honey volatiles, Eur. Food Res. Technol., 2008, 1-12. [all data]

Prososki, Etzel, et al., 2007
Prososki, R.A.; Etzel, M.R.; Rankin, S.A., Solvent type affects the number, distribution, and relative quantities of volatile compounds found in sweet whey powder, J. Dairy Sci., 2007, 90, 2, 523-531, https://doi.org/10.3168/jds.S0022-0302(07)71535-7 . [all data]

Ishikawa, Ito, et al., 2004
Ishikawa, M.; Ito, O.; Ishizaki, S.; Kurobayashi, Y.; Fujita, A., Solid-phase aroma concentrate extraction (SPACE ): a new headspace technique for more sensitive analysis of volatiles, Flavour Fragr. J., 2004, 19, 3, 183-187, https://doi.org/10.1002/ffj.1322 . [all data]

Yanagimoto, Ochi, et al., 2004
Yanagimoto, K.; Ochi, H.; Lee, K.-G.; Shibamoto, T., Antioxidative activities of fractions obtained from brewed coffee, J. Agric. Food Chem., 2004, 52, 3, 592-596, https://doi.org/10.1021/jf030317t . [all data]

Wanakhachornkrai and Lertsiri, 2003
Wanakhachornkrai, P.; Lertsiri, S., Analytical, nutritional, and clinical methods. Comparison of determination method for volatile compounds in Thai soy sauce, Food Chem., 2003, 83, 4, 619-629, https://doi.org/10.1016/S0308-8146(03)00256-5 . [all data]

Wei, Mura, et al., 2001
Wei, A.; Mura, K.; Shibamoto, T., Antioxidative activity of volatile chemicals extracted from beer, J. Agric. Food Chem., 2001, 49, 8, 4097-4101, https://doi.org/10.1021/jf010325e . [all data]

Buttery, Orts, et al., 1999
Buttery, R.G.; Orts, W.J.; Takeoka, G.R.; Nam, Y., Volatile flavor components of rice cakes, J. Agric. Food Chem., 1999, 47, 10, 4353-4356, https://doi.org/10.1021/jf990140w . [all data]

Kawakami and Kobayashi, 1991
Kawakami, M.; Kobayashi, A., Volatitle constituents of greem mate and roasted mate, J. Agric. Food Chem., 1991, 39, 7, 1275-1279, https://doi.org/10.1021/jf00007a016 . [all data]

Welke, Manfroi, et al., 2012
Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A., Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection, J. Chromatogr. A, 2012, 1226, 124-139, https://doi.org/10.1016/j.chroma.2012.01.002 . [all data]

Chinnici, Guerrero, et al., 2009
Chinnici, F.; Guerrero, E.D.; Sonni, F.; Natali, N.; Marin, R.N.; Riponi, C., Gas chromatography - mass spectrometry (GC-MS) characterization of volatile compounds in quality vinegars with protected Europian geographical indication, J. Agric. Food Chem., 2009, 57, 11, 4784-4792, https://doi.org/10.1021/jf804005w . [all data]

Gonzalez-Rios, Suarez-Quiroz, et al., 2007
Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.-P.; Schorr-Galindo, S., Impact of ecological post-harvest processing of coffee aroma: II Roasted coffee., J. Food Composition Analysis, 2007, 20, 3-4, 297-307, https://doi.org/10.1016/j.jfca.2006.12.004 . [all data]

Tian, Zhang, et al., 2007
Tian, Y.; Zhang, X.; Huang, T.; Zou, K.; Zhou, J., Research advances on the essential oils from leaves of Eucalyptus, Food Fermentation Ind. (Chinese), 2007, 33, 10, 143-147. [all data]

Krings, Zelena, et al., 2006
Krings, U.; Zelena, K.; Wu, S.; Berger, R.G., Thin-layer high-vacuum distillation to isolate volatile flavour compounds of cocoa powder, Eur. Food Res. Technol., 2006, 223, 5, 675-681, https://doi.org/10.1007/s00217-006-0252-x . [all data]

Ito and Mori, 2004
Ito, K.; Mori, M., Formation of pyrazines in aqueous maltose/glucose/fructose-glutamide model systems upon heating at below 100 0C, Food Sci. Technol. Res., 2004, 10, 2, 199-204, https://doi.org/10.3136/fstr.10.199 . [all data]


Notes

Go To: Top, Gas Chromatography, References