W(CO)5


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Tungsten hexacarbonyl (solution) = C5O5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) = C5O5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr39.9 ± 1.6kcal/molKinSGraham and Angelici, 1967solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of W(CO)6(solution) with PBu3(solution).
Δr39.01kcal/molKinSWerner and Prinz, 1966solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of W(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.

Tungsten hexacarbonyl (g) = C5O5W (g) + Carbon monoxide (g)

By formula: C6O6W (g) = C5O5W (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr46.0 ± 3.0kcal/molLPHPLewis, Golden, et al., 1984The reaction enthalpy at 298 K relies on an activation energy of 44.50 kcal/mol and assumes a negligible activation barrier for product recombination. The enthalpy of formation relies on -211.3 ± 0.65 kcal/mol for the enthalpy of formation of W(CO)6(g)
Δr39.79kcal/molKinGCetini and Gambino, 1963Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of W(CO)6(g) with CO(g) Cetini and Gambino, 1963. The results were quoted from Graham and Angelici, 1967.

C12H16O5W (solution) = C5O5W (solution) + Heptane (solution)

By formula: C12H16O5W (solution) = C5O5W (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molN/AMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of W-CO bond in W(CO)6, 46.01 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction W(CO)6(solution) + n-C7H16(solution) = W(CO)5(n-C7H16)(solution) + CO(solution), 32.60 kcal/mol Morse, Parker, et al., 1989

C5O5WXe (solution) = C5O5W (solution) + Xenon (solution)

By formula: C5O5WXe (solution) = C5O5W (solution) + Xe (solution)

Quantity Value Units Method Reference Comment
Δr8.4 ± 0.2kcal/molKinSWeiller, 1992solvent: Liquid Xenon; Temperature range: 173-198 K

C5O5WXe (g) = C5O5W (g) + Xenon (g)

By formula: C5O5WXe (g) = C5O5W (g) + Xe (g)

Quantity Value Units Method Reference Comment
Δr8.2 ± 1.0kcal/molKinGWells and Weitz, 1992The reaction enthalpy relies on 7.6 ± 1.0 kcal/mol for the activation energy and on the assumption of a negligible barrier for product recombination Wells and Weitz, 1992

C5O5W (g) = C4O4W (g) + Carbon monoxide (g)

By formula: C5O5W (g) = C4O4W (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr36.1 to 39.0kcal/molKinGRayner, Ishikawa, et al., 1991 
Δr40. ± 15.kcal/molMBPSVenkataraman, Hou, et al., 1990The enthalpy of formation relies on -138.8 ± 3.1 kcal/mol for the enthalpy of formation of W(CO)5(g)

C5O5W (g) + Ethane (g) = C7H6O5W (g)

By formula: C5O5W (g) + C2H6 (g) = C7H6O5W (g)

Quantity Value Units Method Reference Comment
Δr-7.4 ± 2.0kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K
Δr-9.7 ± 3.0kcal/molEqGIshikawa, Brown, et al., 1988Temperature range: 298-363 K

C5N2O6W (g) = C5O5W (g) + Nitrous oxide (g)

By formula: C5N2O6W (g) = C5O5W (g) + N2O (g)

Quantity Value Units Method Reference Comment
Δr14.6 ± 0.50kcal/molKinGWeitz, 1994 
Δr22. ± 2.kcal/molESTBogdan, Wells, et al., 1991 

C5O5W (g) + Butane (g) = C9H10O5W (g)

By formula: C5O5W (g) + C4H10 (g) = C9H10O5W (g)

Quantity Value Units Method Reference Comment
Δr-9.1 ± 3.0kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K

C5O5W (g) + Pentane (g) = C10H12O5W (g)

By formula: C5O5W (g) + C5H12 (g) = C10H12O5W (g)

Quantity Value Units Method Reference Comment
Δr-10.6 ± 3.0kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K

C5O5W (g) + n-Hexane (g) = C11H14O5W (g)

By formula: C5O5W (g) + C6H14 (g) = C11H14O5W (g)

Quantity Value Units Method Reference Comment
Δr-10.8 ± 3.0kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K

C5O5W (g) + Methyl fluoride (g) = C6H3FO5W (g)

By formula: C5O5W (g) + CH3F (g) = C6H3FO5W (g)

Quantity Value Units Method Reference Comment
Δr-11.2 ± 3.0kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K

C5O5W (g) + Propane (g) = C8H8O5W (g)

By formula: C5O5W (g) + C3H8 (g) = C8H8O5W (g)

Quantity Value Units Method Reference Comment
Δr-8.1 ± 2.0kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K

C5O5W (g) + Methane (g) = C6H4O5W (g)

By formula: C5O5W (g) + CH4 (g) = C6H4O5W (g)

Quantity Value Units Method Reference Comment
Δr<-5.00kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K

C5O5W (g) + Difluoromethane (g) = C6H2F2O5W (g)

By formula: C5O5W (g) + CH2F2 (g) = C6H2F2O5W (g)

Quantity Value Units Method Reference Comment
Δr>-5.00kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K

C5O5W (g) + Fluoroform (g) = C6HF3O5W (g)

By formula: C5O5W (g) + CHF3 (g) = C6HF3O5W (g)

Quantity Value Units Method Reference Comment
Δr<-5.00kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K

C5O5W (g) + Tetrafluoromethane (g) = C6F4O5W (g)

By formula: C5O5W (g) + CF4 (g) = C6F4O5W (g)

Quantity Value Units Method Reference Comment
Δr<-5.00kcal/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K

C5H2O5W (g) = C5O5W (g) + Hydrogen (g)

By formula: C5H2O5W (g) = C5O5W (g) + H2 (g)

Quantity Value Units Method Reference Comment
Δr>16.kcal/molKG/ESTIshikawa, Weersink, et al., 1987 

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J., Inorg. Chem., 1967, 6, 2082. [all data]

Werner and Prinz, 1966
Werner, H.; Prinz, R., Chem. Ber., 1966, 99, 3582. [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Cetini and Gambino, 1963
Cetini, G.; Gambino, O., Atti Accad. Sci. Torino, Classe Sci. Fis. Mat. Nat., 1963, 97, 1197. [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Weiller, 1992
Weiller, B.H., J. Am. Chem. Soc., 1992, 114, 10910. [all data]

Wells and Weitz, 1992
Wells, J.R.; Weitz, E., J. Am. Chem. Soc., 1992, 114, 2783. [all data]

Rayner, Ishikawa, et al., 1991
Rayner, D.M.; Ishikawa, Y.; Brown, C.E.; Hackett, P.A., J. Chem. Phys., 1991, 94, 5471. [all data]

Venkataraman, Hou, et al., 1990
Venkataraman, B.; Hou, H.; Zhang, Z.; Chen, S.; Bandukwalla, G.; Vernon, M., J. Chem. Phys., 1990, 92, 5338. [all data]

Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M., J. Am. Chem. Soc., 1990, 112, 2530. [all data]

Ishikawa, Brown, et al., 1988
Ishikawa, Y.; Brown, C.E.; Hackett, P.A.; Rayner, D.M., Chem. Phys. Lett., 1988, 150, 506. [all data]

Weitz, 1994
Weitz, E., J. Phys. Chem., 1994, 98, 11256. [all data]

Bogdan, Wells, et al., 1991
Bogdan, P.L.; Wells, J.R.; Weitz, E., J. Am. Chem. Soc., 1991, 113, 1294. [all data]

Ishikawa, Weersink, et al., 1987
Ishikawa, Y.; Weersink, R.A.; Hackett, P.A.; Rayner, D.M., Chem. Phys. Lett., 1987, 142, 271. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References