Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

NOTICE: Due to scheduled maintenance at our Gaithersburg campus, this site will not be available from 5:00 pm EDT (21:00 UTC) on Friday October 25 until 5:00 pm (21:00 UTC) on Sunday October 27. We apologize for any inconvenience this outage may cause.

Fluorene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C13H9- + Hydrogen cation = Fluorene

By formula: C13H9- + H+ = C13H10

Quantity Value Units Method Reference Comment
Deltar1466. ± 8.4kJ/molD-EARömer, Janaway, et al., 1997gas phase; B
Deltar1472. ± 8.8kJ/molG+TSTaft and Bordwell, 1988gas phase; B
Deltar1478. ± 11.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Quantity Value Units Method Reference Comment
Deltar1434. ± 8.8kJ/molH-TSRömer, Janaway, et al., 1997gas phase; B
Deltar1439. ± 8.4kJ/molIMRETaft and Bordwell, 1988gas phase; B
Deltar1446. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

C10H8+ + Fluorene = (C10H8+ bullet Fluorene)

By formula: C10H8+ + C13H10 = (C10H8+ bullet C13H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Deltar61.1kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar120.J/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
25.307.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C12H8+ + Fluorene = (C12H8+ bullet Fluorene)

By formula: C12H8+ + C13H10 = (C12H8+ bullet C13H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Deltar55.6kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar120.J/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
23.283.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C13H10+ + Fluorene = (C13H10+ bullet Fluorene)

By formula: C13H10+ + C13H10 = (C13H10+ bullet C13H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Deltar69.0kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar120.J/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
30.331.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C13H11+ + Fluorene = (C13H11+ bullet Fluorene)

By formula: C13H11+ + C13H10 = (C13H11+ bullet C13H10)

Quantity Value Units Method Reference Comment
Deltar60.2kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar120.J/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar26.kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

3Hydrogen + Fluorene = Fluorene, 1,2,3,4,4a,9a-hexahydro-, cis-

By formula: 3H2 + C13H10 = C13H16

Quantity Value Units Method Reference Comment
Deltar-180.kJ/molEqkFrye and Weitkamp, 1969gas phase; ALS

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Römer, Janaway, et al., 1997
Römer, B.; Janaway, G.; Brauman, J.I., Cyclopentadienyl, Indenyl, and Fluorenyl Anions: Gas-Phase and Solvation Energy Contributions to Electron Detachment Energies, J. Am. Chem. Soc., 1997, 119, 9, 2249, https://doi.org/10.1021/ja961947x . [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M., Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization, J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012 . [all data]

Frye and Weitkamp, 1969
Frye, C.G.; Weitkamp, A.W., Equilibrium hydrogenations of multi-ring aromatics, J. Chem. Eng. Data, 1969, 14, 372-376. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References