Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Iodine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Iodide + Iodine = I3-

By formula: I- + I2 = I3-

Quantity Value Units Method Reference Comment
Deltar136. ± 10.kJ/molN/ATaylor, Asmis, et al., 1999gas phase; B
Deltar126. ± 5.9kJ/molCIDTDo, Klein, et al., 1997gas phase; B
Deltar356.1kJ/molTherFinch, Gates, et al., 1977gas phase; This value is far more bound than expected from other studies; B
Deltar136.4kJ/molN/ACheck, Faust, et al., 2001gas phase; FeF3-(t); ; «DELTA»S(EA)=2.8; B
Quantity Value Units Method Reference Comment
Deltar94.14kJ/molN/ACheck, Faust, et al., 2001gas phase; FeF3-(t); ; «DELTA»S(EA)=2.8; B

Dimanganese decacarbonyl (cr) + Iodine (cr) = 2Manganese, pentacarbonyliodo- (cr)

By formula: C10Mn2O10 (cr) + I2 (cr) = 2C5IMnO5 (cr)

Quantity Value Units Method Reference Comment
Deltar-185.0 ± 8.7kJ/molPCHarel and Adamson, 1986The reaction enthalpy was calculated from the enthalpy of the same reaction in cyclohexane, -187.9 ± 8.4 kJ/mol Harel and Adamson, 1986, and from the solution enthalpies of Mn2(CO)10(cr), 36.0 ± 2.1 kJ/mol, I2(cr), 20.5 ± 0.4 kJ/mol, and Mn(CO)5(I)(cr), 26.8 ± 0.5 kJ/mol Harel and Adamson, 1986. The latter value refers to the solution in benzene and is therefore taken as an approximation; MS

Dirhenium decacarbonyl (cr) + Iodine (cr) = 2Rhenium, pentacarbonyliodo- (cr)

By formula: C10O10Re2 (cr) + I2 (cr) = 2C5IO5Re (cr)

Quantity Value Units Method Reference Comment
Deltar-172. ± 18.kJ/molPCHarel and Adamson, 1986The reaction enthalpy was calculated from the enthalpy of the same reaction in cyclohexane, -157. ± 16. kJ/mol, and from the solution enthalpies of Re2(CO)10(cr), 34.3 ± 2.1 kJ/mol, I2(cr), 20.5 ± 0.4 kJ/mol, and Re(CO)5(I)(cr), 34.7 ± 4.2 kJ/mol Harel and Adamson, 1986; MS

Hydrogen iodide + 1-Propene, 3-iodo- = Propene + Iodine

By formula: HI + C3H5I = C3H6 + I2

Quantity Value Units Method Reference Comment
Deltar-33.3 ± 1.4kJ/molEqkRodgers, Golden, et al., 1966gas phase; ALS
Deltar-39.7 ± 4.2kJ/molEqkRodgers, Golden, et al., 1966gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -34.9 ± 0.96 kJ/mol; At 527 K; ALS

Hydrogen iodide + Methane, iodo- = Methane + Iodine

By formula: HI + CH3I = CH4 + I2

Quantity Value Units Method Reference Comment
Deltar-52.55 ± 0.54kJ/molEqkGolden, Walsh, et al., 1965gas phase; ALS
Deltar-53.0 ± 0.2kJ/molEqkGoy and Pritchard, 1965gas phase; ALS
Deltar-46.2 ± 5.6kJ/molCmNichol and Ubbelohde, 1952gas phase; ALS

C12H16Nb (cr) + 2Iodine (cr) = C10H10I2Nb (cr) + 2Methane, iodo- (l)

By formula: C12H16Nb (cr) + 2I2 (cr) = C10H10I2Nb (cr) + 2CH3I (l)

Quantity Value Units Method Reference Comment
Deltar-242.3 ± 2.4kJ/molRSCDiogo, Simoni, et al., 1993The difference between the enthalpies of formation of Nb(Cp)2(I)2 and Nb(Cp)2(Me)2 is calculated as -215.1 ± 2.6 kJ/mol; MS

C20H26CoN5O4 (solution) + Iodine (solution) = C13H19CoIN5O4 (solution) + Benzene, (iodomethyl)- (solution)

By formula: C20H26CoN5O4 (solution) + I2 (solution) = C13H19CoIN5O4 (solution) + C7H7I (solution)

Quantity Value Units Method Reference Comment
Deltar-63.2 ± 3.8kJ/molRSCToscano, Seligson, et al., 1989solvent: Bromoform; The enthalpy of solution of Co(py)(dmg)2(Bz)(cr) was measured as 11.3 kJ/mol Toscano, Seligson, et al., 1989; MS

C14H22CoN5O4 (solution) + Iodine (solution) = C13H19CoIN5O4 (solution) + Methane, iodo- (solution)

By formula: C14H22CoN5O4 (solution) + I2 (solution) = C13H19CoIN5O4 (solution) + CH3I (solution)

Quantity Value Units Method Reference Comment
Deltar-92.9 ± 2.5kJ/molRSCToscano, Seligson, et al., 1989solvent: Bromoform; The enthalpy of solution of Co(py)(dmg)2(Me)(cr) was measured as 10.9 kJ/mol Toscano, Seligson, et al., 1989; MS

Hydromanganese pentacarbonyl (l) + Iodine (cr) = Hydrogen iodide (g) + Manganese, pentacarbonyliodo- (cr)

By formula: C5HMnO5 (l) + I2 (cr) = HI (g) + C5IMnO5 (cr)

Quantity Value Units Method Reference Comment
Deltar-108. ± 8.kJ/molRSCConnor, Zafarani-Moattar, et al., 1982The reaction enthalpy relies on -25. ± 5. kJ/mol for the enthalpy of solution of HI(g) in benzene Connor, Zafarani-Moattar, et al., 1982.; MS

Ethylene + Iodine = Ethane, 1,2-diiodo-

By formula: C2H4 + I2 = C2H4I2

Quantity Value Units Method Reference Comment
Deltar-48.1 ± 0.8kJ/molEqkAbrams and Davis, 1954gas phase; ALS
Deltar-56. ± 2.kJ/molEqkCutherbertson and Kistiakowsky, 1935gas phase; Heat of dissociation; ALS

Iodine + Chlorotrifluoromethane = Methane, trifluoroiodo- + Iodine monochloride

By formula: I2 + CClF3 = CF3I + ClI

Quantity Value Units Method Reference Comment
Deltar72.3 ± 1.1kJ/molEqkLord, Goy, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 71.55 ± 0.71 kJ/mol; ALS

Hydrogen iodide + Cyclohexane, iodo- = Cyclohexane + Iodine

By formula: HI + C6H11I = C6H12 + I2

Quantity Value Units Method Reference Comment
Deltar-32.6 ± 8.4kJ/molCmBrennan and Ubbelohde, 1956gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28. ± 4.2 kJ/mol; ALS

Ethane, 1,1,1-trifluoro- + Iodine = Hydrogen iodide + 1,1,1-Trifluoro-2-iodoethane

By formula: C2H3F3 + I2 = HI + C2H2F3I

Quantity Value Units Method Reference Comment
Deltar-64. ± 2.kJ/molEqkWu and Rodgers, 1974gas phase; Heat of formation Unpublished results by B.J. Zwolinski; ALS

2-Bromo-1,1,1-trifluoroethane + Iodine = 1,1,1-Trifluoro-2-iodoethane + iodine bromide

By formula: C2H2BrF3 + I2 = C2H2F3I + BrI

Quantity Value Units Method Reference Comment
Deltar28. ± 2.kJ/molEqkBuckley, Ford, et al., 1980gas phase; GLC;hf298_gas[kcal/mol]=-166.8±1.1; Kolesov and Papina, 1983; ALS

Mercury, dimethyl- (l) + 2Iodine (cr) = 2Methane, iodo- (l) + Mercury diiodide (cr)

By formula: C2H6Hg (l) + 2I2 (cr) = 2CH3I (l) + HgI2 (cr)

Quantity Value Units Method Reference Comment
Deltar-184.5 ± 0.8kJ/molRSCHartley, Pritchard, et al., 1950Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

Dirhenium decacarbonyl (solution) + Iodine (solution) = 2Rhenium, pentacarbonyliodo- (solution)

By formula: C10O10Re2 (solution) + I2 (solution) = 2C5IO5Re (solution)

Quantity Value Units Method Reference Comment
Deltar-157. ± 16.kJ/molPCHarel and Adamson, 1986solvent: Cyclohexane; Please also see Adamson, Vogler, et al., 1978.; MS

Gallium trimethyl (l) + 3Iodine (cr) = GaI3 (cr) + 3Methane, iodo- (l)

By formula: C3H9Ga (l) + 3I2 (cr) = GaI3 (cr) + 3CH3I (l)

Quantity Value Units Method Reference Comment
Deltar-200.0 ± 8.4kJ/molRSCFowell and Mortimer, 1958Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

Gallium trimethyl (l) + 2Iodine (cr) = CH3GaI2 (cr) + 2Methane, iodo- (l)

By formula: C3H9Ga (l) + 2I2 (cr) = CH3GaI2 (cr) + 2CH3I (l)

Quantity Value Units Method Reference Comment
Deltar-158.6 ± 4.2kJ/molRSCFowell and Mortimer, 1958Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

Hexamethylditin (l) + Iodine (cr) = 2C3H9ISn (l)

By formula: C6H18Sn2 (l) + I2 (cr) = 2C3H9ISn (l)

Quantity Value Units Method Reference Comment
Deltar-184.1 ± 2.9kJ/molRSCPedley, Skinner, et al., 1957Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

1,2-Diiodobutane = 1-Butene + Iodine

By formula: C4H8I2 = C4H8 + I2

Quantity Value Units Method Reference Comment
Deltar50.2 ± 6.3kJ/molCmCline and Kistiakowsky, 1937gas phase; Heat of formation derived by Cox and Pilcher, 1970; ALS

Tungsten, tricarbonyl(η5-2,4-cyclopentadien-1-yl)hydro- (cr) + Iodine (solution) = Hydrogen iodide (solution) + C8H5IO3W (solution)

By formula: C8H6O3W (cr) + I2 (solution) = HI (solution) + C8H5IO3W (solution)

Quantity Value Units Method Reference Comment
Deltar-67.4 ± 3.8kJ/molRSCLandrum and Hoff, 1985solvent: Dichloromethane; MS

C15H12MoO3 (solution) + Iodine (solution) = C8H5IMoO3 (solution) + Benzene, (iodomethyl)- (solution)

By formula: C15H12MoO3 (solution) + I2 (solution) = C8H5IMoO3 (solution) + C7H7I (solution)

Quantity Value Units Method Reference Comment
Deltar-120.5 ± 4.2kJ/molRSCNolan, de la Vega, et al., 1988solvent: Tetrahydrofuran; MS

C8H6MoO3 (cr) + Iodine (solution) = C8H5IMoO3 (solution) + Hydrogen iodide (solution)

By formula: C8H6MoO3 (cr) + I2 (solution) = C8H5IMoO3 (solution) + HI (solution)

Quantity Value Units Method Reference Comment
Deltar-75.3 ± 2.5kJ/molRSCLandrum and Hoff, 1985solvent: Dichloromethane; MS

C10MnO10Re (solution) + Iodine (solution) = Rhenium, pentacarbonyliodo- (solution) + Manganese, pentacarbonyliodo- (solution)

By formula: C10MnO10Re (solution) + I2 (solution) = C5IO5Re (solution) + C5IMnO5 (solution)

Quantity Value Units Method Reference Comment
Deltar-233. ± 13.kJ/molPCHarel and Adamson, 1986solvent: Cyclohexane; MS

C8H5MoNaO3 (solution) + Iodine (cr) = C8H5IMoO3 (solution) + Sodium iodide (cr)

By formula: C8H5MoNaO3 (solution) + I2 (cr) = C8H5IMoO3 (solution) + INa (cr)

Quantity Value Units Method Reference Comment
Deltar-133.1 ± 5.4kJ/molRSCNolan, López de la Vega, et al., 1986solvent: Tetrahydrofuran; MS

1,2-Diiodotetrafluoroethane = Ethene, tetrafluoro- + Iodine

By formula: C2F4I2 = C2F4 + I2

Quantity Value Units Method Reference Comment
Deltar69. ± 2.kJ/molEqkWu, Pickard, et al., 1975gas phase; Spectrophotometery at 298.15°K; ALS

2Propyl mercaptan + Iodine = 2Hydrogen iodide + Disulfide, dipropyl

By formula: 2C3H8S + I2 = 2HI + C6H14S2

Quantity Value Units Method Reference Comment
Deltar-124.9kJ/molCmSunner, 1955liquid phase; solvent: Ethanol/water(90/10); ALS

21-Pentanethiol + Iodine = 2Hydrogen iodide + Disulfide, dipentyl

By formula: 2C5H12S + I2 = 2HI + C10H22S2

Quantity Value Units Method Reference Comment
Deltar-124.9kJ/molCmSunner, 1955liquid phase; solvent: Ethanol/water(90/10); ALS

1,4-Butanedithiol + Iodine = 2Hydrogen iodide + 1,2-Dithiane

By formula: C4H10S2 + I2 = 2HI + C4H8S2

Quantity Value Units Method Reference Comment
Deltar-123.2kJ/molCmSunner, 1955liquid phase; solvent: Ethanol/water(90/10); ALS

Octanoic acid, 6,8-dimercapto- + Iodine = 2Hydrogen iodide + Thioctic acid

By formula: C8H16O2S2 + I2 = 2HI + C8H14O2S2

Quantity Value Units Method Reference Comment
Deltar-109.6kJ/molCmSunner, 1955liquid phase; solvent: Ethanol/water(90/10); ALS

C22H36Zr (solution) + 2Iodine (solution) = C20H30I2Zr (solution) + 2Methane, iodo- (solution)

By formula: C22H36Zr (solution) + 2I2 (solution) = C20H30I2Zr (solution) + 2CH3I (solution)

Quantity Value Units Method Reference Comment
Deltar-292.9 ± 2.5kJ/molRSCSchock and Marks, 1988solvent: Toluene; MS

1,3-Propanedithiol + Iodine = 2Hydrogen iodide + 1,2-Dithiolane

By formula: C3H8S2 + I2 = 2HI + C3H6S2

Quantity Value Units Method Reference Comment
Deltar-107.7kJ/molCmSunner, 1955liquid phase; solvent: Ethanol/water(90/10); ALS

C12H16Zr (solution) + 2Iodine (solution) = C10H10I2Zr (solution) + 2Methane, iodo- (solution)

By formula: C12H16Zr (solution) + 2I2 (solution) = C10H10I2Zr (solution) + 2CH3I (solution)

Quantity Value Units Method Reference Comment
Deltar-291.2 ± 2.5kJ/molRSCSchock and Marks, 1988solvent: Toluene; MS

C22H30O2Zr (solution) + Iodine (solution) = C20H30I2Zr (solution) + 2Carbon monoxide (solution)

By formula: C22H30O2Zr (solution) + I2 (solution) = C20H30I2Zr (solution) + 2CO (solution)

Quantity Value Units Method Reference Comment
Deltar-191.6 ± 1.7kJ/molRSCSchock and Marks, 1988solvent: Toluene; MS

C22H36Hf (solution) + 2Iodine (solution) = C20H30HfI2 (solution) + 2Methane, iodo- (solution)

By formula: C22H36Hf (solution) + 2I2 (solution) = C20H30HfI2 (solution) + 2CH3I (solution)

Quantity Value Units Method Reference Comment
Deltar-265.3 ± 3.3kJ/molRSCSchock and Marks, 1988solvent: Toluene; MS

C37H30ClIrO3P2S (solution) + Iodine (solution) = C37H30ClI2IrOP2 (solution) + Sulfur dioxide (solution)

By formula: C37H30ClIrO3P2S (solution) + I2 (solution) = C37H30ClI2IrOP2 (solution) + O2S (solution)

Quantity Value Units Method Reference Comment
Deltar-102.9 ± 0.4kJ/molRSCDrago, Nozari, et al., 1979solvent: Benzene; MS

Hydrogen iodide + Benzene, (iodomethyl)- = Toluene + Iodine

By formula: HI + C7H7I = C7H8 + I2

Quantity Value Units Method Reference Comment
Deltar-33. ± 4.6kJ/molCmGraham, Nichol, et al., 1955liquid phase; solvent: p-Xylene; ALS

Hydrogen + 2Methane, iodo- = 2Methane + Iodine

By formula: H2 + 2CH3I = 2CH4 + I2

Quantity Value Units Method Reference Comment
Deltar-126. ± 3.kJ/molChydCarson, Carter, et al., 1961liquid phase; solvent: Ether; ALS

C20H32Zr (solution) + Iodine (solution) = C20H30I2Zr (solution) + Hydrogen (g)

By formula: C20H32Zr (solution) + I2 (solution) = C20H30I2Zr (solution) + H2 (g)

Quantity Value Units Method Reference Comment
Deltar-309.2 ± 3.3kJ/molRSCSchock and Marks, 1988solvent: Toluene; MS

C20H32Hf (solution) + Iodine (solution) = C20H30HfI2 (solution) + Hydrogen (g)

By formula: C20H32Hf (solution) + I2 (solution) = C20H30HfI2 (solution) + H2 (g)

Quantity Value Units Method Reference Comment
Deltar-296.6 ± 2.9kJ/molRSCSchock and Marks, 1988solvent: Toluene; MS

C16H10O6W2 (cr) + Iodine (solution) = 2C8H5IO3W (solution)

By formula: C16H10O6W2 (cr) + I2 (solution) = 2C8H5IO3W (solution)

Quantity Value Units Method Reference Comment
Deltar-146.4 ± 3.8kJ/molRSCLandrum and Hoff, 1985solvent: Dichloromethane; MS

C16H10Mo2O6 (cr) + Iodine (solution) = 2C8H5IMoO3 (solution)

By formula: C16H10Mo2O6 (cr) + I2 (solution) = 2C8H5IMoO3 (solution)

Quantity Value Units Method Reference Comment
Deltar-133.1 ± 4.2kJ/molRSCLandrum and Hoff, 1985solvent: Dichloromethane; MS

Dimanganese decacarbonyl (solution) + Iodine (solution) = 2Manganese, pentacarbonyliodo- (solution)

By formula: C10Mn2O10 (solution) + I2 (solution) = 2C5IMnO5 (solution)

Quantity Value Units Method Reference Comment
Deltar-187.9 ± 8.4kJ/molPCHarel and Adamson, 1986solvent: Cyclohexane; MS

Iodide + Iodine = (Iodide bullet Iodine)

By formula: I- + I2 = (I- bullet I2)

Quantity Value Units Method Reference Comment
Deltar100.kJ/molN/ADowns and Adams, 1973gas phase; from «DELTA»rH(f); M

Hydrogen + 2Ethane, iodo- = 2Ethane + Iodine

By formula: H2 + 2C2H5I = 2C2H6 + I2

Quantity Value Units Method Reference Comment
Deltar-88.7 ± 3.3kJ/molChydAshcroft, Carson, et al., 1965liquid phase; ALS

2Propane, 2-iodo- + Mercury diiodide = C6H14Hg + 2Iodine

By formula: 2C3H7I + HgI2 = C6H14Hg + 2I2

Quantity Value Units Method Reference Comment
Deltar242.3 ± 1.9kJ/molCmMortimer, Pritchard, et al., 1952liquid phase; ALS

2Propane, 1-iodo- + Mercury diiodide = C6H14Hg + 2Iodine

By formula: 2C3H7I + HgI2 = C6H14Hg + 2I2

Quantity Value Units Method Reference Comment
Deltar215.7 ± 2.4kJ/molCmMortimer, Pritchard, et al., 1952liquid phase; ALS

Hydrogen iodide + Methylsulfenyliodide = Methanethiol + Iodine

By formula: HI + CH3IS = CH4S + I2

Quantity Value Units Method Reference Comment
Deltar-12.0 ± 2.3kJ/molEqkShum and Benson, 1983gas phase; ALS

Acetone + Iodine = Hydrogen iodide + 1-iodoacetone

By formula: C3H6O + I2 = HI + C3H5IO

Quantity Value Units Method Reference Comment
Deltar50.6 ± 5.0kJ/molEqkSolly, Golden, et al., 1970gas phase; ALS

Iodine + Bromotrifluoromethane = Methane, trifluoroiodo- + iodine bromide

By formula: I2 + CBrF3 = CF3I + BrI

Quantity Value Units Method Reference Comment
Deltar40.0 ± 0.1kJ/molEqkLord, Goy, et al., 1967gas phase; ALS

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Taylor, Asmis, et al., 1999
Taylor, T.R.; Asmis, K.R.; Zanni, M.T.; Neumark, D.M., Characterization of the I-3 radical by anion photoelectron spectroscopy, J. Chem. Phys., 1999, 110, 16, 7607-7609, https://doi.org/10.1063/1.478672 . [all data]

Do, Klein, et al., 1997
Do, K.; Klein, T.P.; Pommerening, C.A.; Sunderlin, L.S., A New Flowing Afterglow-Guided Ion Beam Tandem Mass Spectrometer. Applications to the Thermochemistry of Polyiodide Ions, J. Am. Soc. Mass Spectrom., 1997, 8, 7, 688, https://doi.org/10.1016/S1044-0305(97)00116-5 . [all data]

Finch, Gates, et al., 1977
Finch, A.; Gates, P.N.; Peake, S.J., Thermochemistry of polyhalides. III. Cesium and rubidium tetrachloroiodates, J. Inorg. Nucl. Chem., 1977, 39, 2135. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Harel and Adamson, 1986
Harel, Y.; Adamson, A.W., J. Phys. Chem., 1986, 90, 6693. [all data]

Rodgers, Golden, et al., 1966
Rodgers, A.S.; Golden, D.M.; Benson, S.W., The thermochemistry of the gas phase equilibrium I2 + C3H6 = C3H5I + HI, J. Am. Chem. Soc., 1966, 88, 3194-3196. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W., The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical, J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]

Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O., Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide, J. Phys. Chem., 1965, 69, 3040-3041. [all data]

Nichol and Ubbelohde, 1952
Nichol, R.J.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. part II. Bond strengths based on the reaction CH3I + HI = CH4 + I2, J. Am. Chem. Soc., 1952, 415-421. [all data]

Diogo, Simoni, et al., 1993
Diogo, H.P.; Simoni, J.A.; Minas da Piedade, M.E.; Dias, A.R.; Martinho Simões, J.A., J. Am. Chem. Soc., 1993, 115, 2764. [all data]

Toscano, Seligson, et al., 1989
Toscano, P.J.; Seligson, A.L.; Curran, M.T.; Skrobutt, A.T.; Sonnenberger, D.C., Inorg. Chem., 1989, 28, 166; ibid. 1989. [all data]

Connor, Zafarani-Moattar, et al., 1982
Connor, J.A.; Zafarani-Moattar, M.T.; Bickerton, J.; El-Saied, N.I.; Suradi, S.; Carson, R.; Al Takkhin, G.; Skinner, H.A., Organomet., 1982, 1, 1166. [all data]

Abrams and Davis, 1954
Abrams, A.; Davis, T.W., Use of radioactive iodine to determine equilibrium constants in ethylene-iodine-1,2-diiodoethane systems, J. Am. Chem. Soc., 1954, 76, 5993-59. [all data]

Cutherbertson and Kistiakowsky, 1935
Cutherbertson, G.R.; Kistiakowsky, G.B., The thermal equilibrium between ethylene iodide, ethylene and iodine, J. Chem. Phys., 1935, 3, 631-634. [all data]

Lord, Goy, et al., 1967
Lord, A.; Goy, C.A.; Pritchard, H.O., The heats of formation of trifluoromethyl chloride and bromide, J. Phys. Chem., 1967, 71, 2705-2707. [all data]

Brennan and Ubbelohde, 1956
Brennan, D.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. Part IV. Bond-strength differences based on the reaction: RI + HI = RH + I2, where R = p-methoxyphenyl and cyclohexyl, J. Chem. Soc., 1956, 3011-3016. [all data]

Wu and Rodgers, 1974
Wu, E.; Rodgers, A.S., Thermochemistry of gas-phase equilibrium CF3CH3 + I2 = CF3CH2I + HI. The carbon-hydrogen bond dissociation energy in 1,1,1-trifluoroethane and the heat of formation of the 2,2,2-trifluoroethyl radical, J. Phys. Chem., 1974, 78, 2315-2317. [all data]

Buckley, Ford, et al., 1980
Buckley, G.S.; Ford, W.G.F.; Rodgers, A.S., The thermochemistry of the gas phase reaction: CF3CH2Br + I2 = CF3CH2I + IBr. Polarity effects in thermochemistry, Thermochim. Acta, 1980, 42, 349-355. [all data]

Kolesov and Papina, 1983
Kolesov, V.P.; Papina, T.S., Thermochemistry of Haloethanes, Russ. Chem. Rev., 1983, 52, 425. [all data]

Hartley, Pritchard, et al., 1950
Hartley, K.; Pritchard, H.O.; Skinner, H.A., Thermochemistry of metallic alkyls. III.?mercury dimethyl and mercury methyl halides, Trans. Faraday Soc., 1950, 46, 1019, https://doi.org/10.1039/tf9504601019 . [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Adamson, Vogler, et al., 1978
Adamson, A.W.; Vogler, A.; Kunkely, H.; Wachter, R., J. Am. Chem. Soc., 1978, 100, 1298. [all data]

Fowell and Mortimer, 1958
Fowell, P.A.; Mortimer, C.T., J. Chem. Soc., 1958, 3734.. [all data]

Pedley, Skinner, et al., 1957
Pedley, J.B.; Skinner, H.A.; Chernick, C.L., Thermochemistry of metallic alkyls. Part 8.?Tin tetramethyl, and hexamethyl distannane, Trans. Faraday Soc., 1957, 53, 1612, https://doi.org/10.1039/tf9575301612 . [all data]

Cline and Kistiakowsky, 1937
Cline, J.E.; Kistiakowsky, G.B., The gaseous equilibrium of 1,2-diiodobutane, butene-1 and iodine, J. Chem. Phys., 1937, 5, 990. [all data]

Landrum and Hoff, 1985
Landrum, J.T.; Hoff, C.D., J. Organometal. Chem., 1985, 282, 215. [all data]

Nolan, de la Vega, et al., 1988
Nolan, S.P.; de la Vega, R.L.; Mukerjee, S.L.; Gonzalez, A.A.; Zhang, K.; Hoff, C., Polyhedron, 1988, 7, 1491. [all data]

Nolan, López de la Vega, et al., 1986
Nolan, S.P.; López de la Vega, R.; Hoff, C.D., J. Organometal. Chem., 1986, 315, 187. [all data]

Wu, Pickard, et al., 1975
Wu, E.C.; Pickard, J.M.; Rodgers, A.S., Thermochemistry of the gas-phase reaction tetrafluoroethylene + iodine = 1,2-diiodoperfluoroethane. Heat of formation of 1,2-diiodoperfluoroethane and of iodoperfluoroethane, J. Phys. Chem., 1975, 79, 1078-1081. [all data]

Sunner, 1955
Sunner, S., Strain in 6,8-thioctic acid, Nature (London), 1955, 176, 217. [all data]

Schock and Marks, 1988
Schock, L.E.; Marks, T.J., J. Am. Chem. Soc., 1988, 110, 7701. [all data]

Drago, Nozari, et al., 1979
Drago, R.S.; Nozari, M.S.; Klinger, R.J.; Chamberlain, C.S., Inorg. Chem., 1979, 18, 1254. [all data]

Graham, Nichol, et al., 1955
Graham, W.S.; Nichol, R.J.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. Part III. Bond strengths based on the reactions: (a) Ph·CH2I + HI=Ph·CH3 + I2 and (b) PhI + HI=PhH + I2, J. Chem. Soc., 1955, 115-121. [all data]

Carson, Carter, et al., 1961
Carson, A.S.; Carter, W.; Pedley, J.B., The thermochemistry of reductions caused by lithium aluminium hydride I. The C-I bond dissociation energy in CH3I, Proc. Roy. Soc. London A, 1961, 260, 550-557. [all data]

Downs and Adams, 1973
Downs, A.J.; Adams, G.J., Comprehensive Inorganic Chemistry, J. C. Bailar, H. J. Emeleus, R. Nyholm and A. F. Trotman - Dickerson, ed(s)., Pergamon Press, New York, 1973, 1543. [all data]

Ashcroft, Carson, et al., 1965
Ashcroft, S.J.; Carson, A.S.; Carter, W.; Laye, P.G., Thermochemistry of reductions caused by lithium aluminium hydride. Part 3.- The C-halogen bond dissociation energies in ethyl iodine and ethyl bromide, Trans. Faraday Soc., 1965, 61, 225-229. [all data]

Mortimer, Pritchard, et al., 1952
Mortimer, C.T.; Pritchard, H.O.; Skinner, H.A., Thermochemistry of metallic alkyls. Part V - Mercury di-propyl and mercury di-isopropyl, Trans. Faraday Soc., 1952, 48, 220-229. [all data]

Shum and Benson, 1983
Shum, L.G.S.; Benson, S.W., Thermochemnistry and kinetics of the reaction of methyl mercaptan with iodine, Int. J. Chem. Kinet., 1983, 15, 433-453. [all data]

Solly, Golden, et al., 1970
Solly, R.K.; Golden, D.M.; Benson, S.W., Thermochemical properties of iodoacetone. Intramolecular electrostatic interactions in polar molecules, J. Am. Chem. Soc., 1970, 92, 4653-4656. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References