Hydrogen cation


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 301 to 350

C6H2Cl3- + Hydrogen cation = Benzene, 1,2,3-trichloro-

By formula: C6H2Cl3- + H+ = C6H3Cl3

Quantity Value Units Method Reference Comment
Δr1569. ± 8.8kJ/molG+TSSchlosser, Marzi, et al., 2001gas phase; Acid: 1,2,3-trichlorobenzene. Anion assigned based on ab initio calculations.
Quantity Value Units Method Reference Comment
Δr1535. ± 8.4kJ/molIMRESchlosser, Marzi, et al., 2001gas phase; Acid: 1,2,3-trichlorobenzene. Anion assigned based on ab initio calculations.

C6H7- + Hydrogen cation = 1,3-Cyclohexadiene

By formula: C6H7- + H+ = C6H8

Quantity Value Units Method Reference Comment
Δr1561. ± 17.kJ/molG+TSLee and Squires, 1986gas phase; Between SiH4, tBuOH; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1531. ± 17.kJ/molIMRBLee and Squires, 1986gas phase; Between SiH4, tBuOH; value altered from reference due to change in acidity scale

C4H- + Hydrogen cation = 1,3-Butadiyne

By formula: C4H- + H+ = C4H2

Quantity Value Units Method Reference Comment
Δr1507. ± 13.kJ/molD-EAPino, Tulej, et al., 2002gas phase
Δr1508. ± 12.kJ/molEndoShi and Ervin, 2000gas phase
Quantity Value Units Method Reference Comment
Δr1473. ± 14.kJ/molH-TSPino, Tulej, et al., 2002gas phase
Δr1474. ± 13.kJ/molH-TSShi and Ervin, 2000gas phase

C5H7- + Hydrogen cation = 1,3-Pentadiene, (E)-

By formula: C5H7- + H+ = C5H8

Quantity Value Units Method Reference Comment
Δr1545. ± 5.0kJ/molD-EAZimmerman, Gygax, et al., 1978gas phase; Acid: 1,4-pentadiene. (Z)-1,3-pentadiene is 7.0 kcal/mol more stable(weaker acid)
Quantity Value Units Method Reference Comment
Δr1525. ± 7.9kJ/molH-TSZimmerman, Gygax, et al., 1978gas phase; Acid: 1,4-pentadiene. (Z)-1,3-pentadiene is 7.0 kcal/mol more stable(weaker acid)

HS2- + Hydrogen cation = Dihydrogen disulfide

By formula: HS2- + H+ = H2S2

Quantity Value Units Method Reference Comment
Δr1447. ± 15.kJ/molD-EAEntfellner and Boesl, 2009gas phase
Δr1448. ± 13.kJ/molG+TSOhair, Depuy, et al., 1993gas phase
Quantity Value Units Method Reference Comment
Δr1418. ± 15.kJ/molH-TSEntfellner and Boesl, 2009gas phase
Δr1418. ± 13.kJ/molIMRBOhair, Depuy, et al., 1993gas phase

C8H11- + Hydrogen cation = 1,3-Cyclooctadiene

By formula: C8H11- + H+ = C8H12

Quantity Value Units Method Reference Comment
Δr1576. ± 13.kJ/molG+TSLee and Squires, 1986gas phase; Between EtOH, nPrOH; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1548. ± 13.kJ/molIMRBLee and Squires, 1986gas phase; Between EtOH, nPrOH; value altered from reference due to change in acidity scale

C2F5- + Hydrogen cation = Ethane, pentafluoro-

By formula: C2F5- + H+ = C2HF5

Quantity Value Units Method Reference Comment
Δr1567. ± 14.kJ/molG+TSSullivan and Beauchamp, 1976gas phase; Between tBuOH and HF; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1535. ± 13.kJ/molIMRBSullivan and Beauchamp, 1976gas phase; Between tBuOH and HF; value altered from reference due to change in acidity scale

cyclobutene-1-ide anion + Hydrogen cation = Cyclobutene

By formula: C4H5- + H+ = C4H6

Quantity Value Units Method Reference Comment
Δr1693. ± 6.3kJ/molCIDCTian, Fattahi, et al., 2006gas phase
Δr1661. ± 21.kJ/molG+TSKass, Filley, et al., 1986gas phase
Quantity Value Units Method Reference Comment
Δr1659. ± 6.7kJ/molH-TSTian, Fattahi, et al., 2006gas phase
Δr1628. ± 21.kJ/molIMRBKass, Filley, et al., 1986gas phase

C4H7O- + Hydrogen cation = Butanal

By formula: C4H7O- + H+ = C4H8O

Quantity Value Units Method Reference Comment
Δr1526. ± 8.8kJ/molD-EAAlconcel, Deyerl, et al., 2001gas phase
Δr1523. ± 9.6kJ/molD-EAZimmerman, Reed, et al., 1977gas phase
Quantity Value Units Method Reference Comment
Δr1499. ± 9.6kJ/molH-TSAlconcel, Deyerl, et al., 2001gas phase
Δr1496. ± 10.kJ/molH-TSZimmerman, Reed, et al., 1977gas phase

C4H5O- + Hydrogen cation = 2-Butenal

By formula: C4H5O- + H+ = C4H6O

Quantity Value Units Method Reference Comment
Δr1484. ± 8.8kJ/molG+TSBartmess and Kiplinger, 1986gas phase; Acid: CH3CH=CHCHO; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1456. ± 8.4kJ/molIMREBartmess and Kiplinger, 1986gas phase; Acid: CH3CH=CHCHO; value altered from reference due to change in acidity scale

BF2O- + Hydrogen cation = Difluorohydroxyborane

By formula: BF2O- + H+ = HBF2O

Quantity Value Units Method Reference Comment
Δr1579. ± 35.kJ/molAcidLarson and McMahon, 1987gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.

C3H8B- + Hydrogen cation = Borane, trimethyl-

By formula: C3H8B- + H+ = C3H9B

Quantity Value Units Method Reference Comment
Δr1532. ± 26.kJ/molG+TSMurphy and Beauchamp, 1976gas phase; Between AsH3,PH3; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1502. ± 25.kJ/molIMRBMurphy and Beauchamp, 1976gas phase; Between AsH3,PH3; value altered from reference due to change in acidity scale

C9H4N3O2- + Hydrogen cation = C9H5N3O2

By formula: C9H4N3O2- + H+ = C9H5N3O2

Quantity Value Units Method Reference Comment
Δr1292. ± 9.6kJ/molG+TSKoppel, Taft, et al., 1994gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by up to 1.3 kcal/mol.
Quantity Value Units Method Reference Comment
Δr1268. ± 8.4kJ/molIMREKoppel, Taft, et al., 1994gas phase; Per Leito, Raamat, et al., 2009, dGacid is likely too weak by up to 1.3 kcal/mol.

C5H9O- + Hydrogen cation = 2-Butanone, 3-methyl-

By formula: C5H9O- + H+ = C5H10O

Quantity Value Units Method Reference Comment
Δr1545. ± 11.kJ/molG+TSChyall, Brickhouse, et al., 1994gas phase; By equilibration, more substituted site is less acidic than Me by 2.3 kcal/mol
Quantity Value Units Method Reference Comment
Δr1518. ± 10.kJ/molIMREChyall, Brickhouse, et al., 1994gas phase; By equilibration, more substituted site is less acidic than Me by 2.3 kcal/mol

C4H10NO- + Hydrogen cation = Diethylhydroxylamine

By formula: C4H10NO- + H+ = C4H11NO

Quantity Value Units Method Reference Comment
Δr1551. ± 8.8kJ/molG+TSBartmess, Basso, et al., 1983gas phase; See also Mahoney, Mendenhall, et al., 1973, Bordwell and Liu, 1996 for supporting DH values
Quantity Value Units Method Reference Comment
Δr1523. ± 8.4kJ/molIMREBartmess, Basso, et al., 1983gas phase; See also Mahoney, Mendenhall, et al., 1973, Bordwell and Liu, 1996 for supporting DH values

CH3O2Si- + Hydrogen cation = CH4O2Si

By formula: CH3O2Si- + H+ = CH4O2Si

Quantity Value Units Method Reference Comment
Δr1512. ± 26.kJ/molG+TSDamrauer and Krempp, 1990gas phase; Between EtCHO,(Me3Si)2NH. Value revised, based on data in Grimm and Bartmess, 1992.
Quantity Value Units Method Reference Comment
Δr1481. ± 25.kJ/molIMRBDamrauer and Krempp, 1990gas phase; Between EtCHO,(Me3Si)2NH. Value revised, based on data in Grimm and Bartmess, 1992.

C4H4F3O2S- + Hydrogen cation = C4H5F3O2S

By formula: C4H4F3O2S- + H+ = C4H5F3O2S

Quantity Value Units Method Reference Comment
Δr1436. ± 8.8kJ/molG+TSTaft, 1987gas phase; Acid = CF3SO2CH2CH=CH2; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1407. ± 8.4kJ/molIMRETaft, 1987gas phase; Acid = CF3SO2CH2CH=CH2; value altered from reference due to change in acidity scale

C6H3Cl2- + Hydrogen cation = Benzene, 1,3-dichloro-

By formula: C6H3Cl2- + H+ = C6H4Cl2

Quantity Value Units Method Reference Comment
Δr1565. ± 8.8kJ/molG+TSSchlosser, Marzi, et al., 2001gas phase; Acid: m-dichlorobenzene. Anion assigned based on ab initio calculations.
Quantity Value Units Method Reference Comment
Δr1533. ± 8.4kJ/molIMRESchlosser, Marzi, et al., 2001gas phase; Acid: m-dichlorobenzene. Anion assigned based on ab initio calculations.

C8H9- + Hydrogen cation = Bicyclo[3.2.1]octa-2,6-diene

By formula: C8H9- + H+ = C8H10

Quantity Value Units Method Reference Comment
Δr1588. ± 8.8kJ/molG+TSLee and Squires, 1986gas phase; 1.4 kcal > MeOH; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1559. ± 8.4kJ/molIMRELee and Squires, 1986gas phase; 1.4 kcal > MeOH; value altered from reference due to change in acidity scale

CH5Ge- + Hydrogen cation = CH6Ge

By formula: CH5Ge- + H+ = CH6Ge

Quantity Value Units Method Reference Comment
Δr1537. ± 8.8kJ/molG+TSDecouzon, Gal, et al., 1993gas phase
Δr1534. ± 8.8kJ/molG+TSGal, Decouzon, et al., 2001gas phase
Quantity Value Units Method Reference Comment
Δr1503. ± 8.4kJ/molIMREDecouzon, Gal, et al., 1993gas phase
Δr1501. ± 8.4kJ/molIMREGal, Decouzon, et al., 2001gas phase

C6H3Cl2- + Hydrogen cation = Benzene, 1,2-dichloro-

By formula: C6H3Cl2- + H+ = C6H4Cl2

Quantity Value Units Method Reference Comment
Δr1578. ± 8.8kJ/molG+TSSchlosser, Marzi, et al., 2001gas phase; Acid: o-dichlorobenzene. Anion assigned based on ab initio calculations.
Quantity Value Units Method Reference Comment
Δr1543. ± 8.4kJ/molIMRESchlosser, Marzi, et al., 2001gas phase; Acid: o-dichlorobenzene. Anion assigned based on ab initio calculations.

C9H11- + Hydrogen cation = 1,3,5-Cycloheptatriene, 7-ethyl-

By formula: C9H11- + H+ = C9H12

Quantity Value Units Method Reference Comment
Δr1549. ± 10.kJ/molG+TSMishima, Kinoshita, et al., 2002gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB
Quantity Value Units Method Reference Comment
Δr1517. ± 8.4kJ/molIMREMishima, Kinoshita, et al., 2002gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB

C10H13- + Hydrogen cation = C10H14

By formula: C10H13- + H+ = C10H14

Quantity Value Units Method Reference Comment
Δr1546. ± 10.kJ/molG+TSMishima, Kinoshita, et al., 2002gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB
Quantity Value Units Method Reference Comment
Δr1513. ± 8.4kJ/molIMREMishima, Kinoshita, et al., 2002gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB

C10H13- + Hydrogen cation = C10H14

By formula: C10H13- + H+ = C10H14

Quantity Value Units Method Reference Comment
Δr1544. ± 10.kJ/molG+TSMishima, Kinoshita, et al., 2002gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB
Quantity Value Units Method Reference Comment
Δr1512. ± 8.4kJ/molIMREMishima, Kinoshita, et al., 2002gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB

C11H15- + Hydrogen cation = C11H16

By formula: C11H15- + H+ = C11H16

Quantity Value Units Method Reference Comment
Δr1543. ± 10.kJ/molG+TSMishima, Kinoshita, et al., 2002gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB
Quantity Value Units Method Reference Comment
Δr1510. ± 8.4kJ/molIMREMishima, Kinoshita, et al., 2002gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB

V- + Hydrogen cation = HV

By formula: V- + H+ = HV

Quantity Value Units Method Reference Comment
Δr1421. ± 14.kJ/molG+TSSallans, Lane, et al., 1985gas phase
Δr1426. ± 15.kJ/molAcidFeigerle, Corderman, et al., 1981gas phase
Quantity Value Units Method Reference Comment
Δr1389. ± 13.kJ/molIMRBSallans, Lane, et al., 1985gas phase
Δr1394. ± 22.kJ/molH-TSFeigerle, Corderman, et al., 1981gas phase

C8H9- + Hydrogen cation = 7-Methylcycloheptatriene

By formula: C8H9- + H+ = C8H10

Quantity Value Units Method Reference Comment
Δr1552. ± 10.kJ/molG+TSMishima, Kinoshita, et al., 2002gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB
Quantity Value Units Method Reference Comment
Δr1520. ± 8.4kJ/molIMREMishima, Kinoshita, et al., 2002gas phase; Reprotonation likely to be on C-1, giving 1-alkyl-cycloheptatriene - JEB

C2H6BO3- + Hydrogen cation = C2H7BO3

By formula: C2H6BO3- + H+ = C2H7BO3

Quantity Value Units Method Reference Comment
Δr1507. ± 19.kJ/molG+TSKiplinger, Crowder, et al., 1994gas phase; between tBuCH=NOH, pyrrole. Stein, Rikkers, et al. is wrong on GpAd for (MeO)2BOH
Quantity Value Units Method Reference Comment
Δr1479. ± 19.kJ/molIMRBKiplinger, Crowder, et al., 1994gas phase; between tBuCH=NOH, pyrrole. Stein, Rikkers, et al. is wrong on GpAd for (MeO)2BOH

C3H5- + Hydrogen cation = Propene

By formula: C3H5- + H+ = C3H6

Quantity Value Units Method Reference Comment
Δr1698. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase
Δr>1693.5 ± 2.5kJ/molG+TSFroelicher, Freiser, et al., 1986gas phase
Quantity Value Units Method Reference Comment
Δr1665. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase

C4H6NO4S- + Hydrogen cation = C4H7NO4S

By formula: C4H6NO4S- + H+ = C4H7NO4S

Quantity Value Units Method Reference Comment
Δr1381. ± 8.8kJ/molG+TSBouchoux, Jaudon, et al., 1991gas phase; AM1 implies oximate anion (authors), may be carbanion by struct/react.-JEB
Quantity Value Units Method Reference Comment
Δr1353. ± 8.4kJ/molIMREBouchoux, Jaudon, et al., 1991gas phase; AM1 implies oximate anion (authors), may be carbanion by struct/react.-JEB

H2NOSi- + Hydrogen cation = H3NOSi

By formula: H2NOSi- + H+ = H3NOSi

Quantity Value Units Method Reference Comment
Δr1504. ± 18.kJ/molG+TSHankin, Krempp, et al., 1995gas phase; Between CF3CH2OH,MeSH, but poor thresholds due to competeting reactions.
Quantity Value Units Method Reference Comment
Δr1474. ± 17.kJ/molIMRBHankin, Krempp, et al., 1995gas phase; Between CF3CH2OH,MeSH, but poor thresholds due to competeting reactions.

C7H19Si2- + Hydrogen cation = Silane, methylenebis[trimethyl-

By formula: C7H19Si2- + H+ = C7H20Si2

Quantity Value Units Method Reference Comment
Δr1563. ± 9.2kJ/molG+TSRomer, Gatev, et al., 1998gas phase
Δr1563. ± 17.kJ/molD-EABrinkman, Berger, et al., 1994gas phase
Quantity Value Units Method Reference Comment
Δr1531. ± 8.4kJ/molIMRERomer, Gatev, et al., 1998gas phase
Δr1531. ± 17.kJ/molH-TSBrinkman, Berger, et al., 1994gas phase

C4H7O2- + Hydrogen cation = Ethyl Acetate

By formula: C4H7O2- + H+ = C4H8O2

Quantity Value Units Method Reference Comment
Δr1555. ± 17.kJ/molG+TSHaas, Giblin, et al., 1998gas phase; From transesterification equilibria
Δr1543. ± 5.0kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase
Quantity Value Units Method Reference Comment
Δr1527. ± 17.kJ/molIMREHaas, Giblin, et al., 1998gas phase; From transesterification equilibria

C3H6NO2- + Hydrogen cation = Alanine

By formula: C3H6NO2- + H+ = C3H7NO2

Quantity Value Units Method Reference Comment
Δr1430. ± 7.9kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1425. ± 8.8kJ/molG+TSLocke and McIver, 1983gas phase
Quantity Value Units Method Reference Comment
Δr1401. ± 8.4kJ/molH-TSJones, Bernier, et al., 2007gas phase
Δr1396. ± 8.4kJ/molIMRELocke and McIver, 1983gas phase

CH4N- + Hydrogen cation = Methylamine

By formula: CH4N- + H+ = CH5N

Quantity Value Units Method Reference Comment
Δr1682. ± 11.kJ/molD-EARadisic, Xu, et al., 2002gas phase
Δr1687.0 ± 3.4kJ/molG+TSMacKay, Hemsworth, et al., 1976gas phase
Quantity Value Units Method Reference Comment
Δr1651. ± 11.kJ/molH-TSRadisic, Xu, et al., 2002gas phase
Δr1655.6 ± 2.9kJ/molIMREMacKay, Hemsworth, et al., 1976gas phase

C4F9O- + Hydrogen cation = 1,1,1,3,3,3-Hexafluoro-2-(trifluoromethyl)-2-propanol

By formula: C4F9O- + H+ = C4HF9O

Quantity Value Units Method Reference Comment
Δr1387. ± 9.2kJ/molG+TSTaft, Koppel, et al., 1990gas phase
Quantity Value Units Method Reference Comment
Δr1356. ± 8.4kJ/molIMRETaft, Koppel, et al., 1990gas phase
Δr1352. ± 21.kJ/molIMRBKoppel, Pikver, et al., 1981gas phase
Δr1345. ± 21.kJ/molIMRBClair and McMahon, 1980gas phase

C9H5N2- + Hydrogen cation = Malononitrile, phenyl-

By formula: C9H5N2- + H+ = C9H6N2

Quantity Value Units Method Reference Comment
Δr1340. ± 8.8kJ/molG+TSKoppel, Taft, et al., 1994gas phase
Δr1342. ± 8.8kJ/molG+TSTaft and Bordwell, 1988gas phase
Quantity Value Units Method Reference Comment
Δr1315. ± 8.4kJ/molIMREKoppel, Taft, et al., 1994gas phase
Δr1317. ± 8.4kJ/molIMRETaft and Bordwell, 1988gas phase

C2HO- + Hydrogen cation = Ketene

By formula: C2HO- + H+ = C2H2O

Quantity Value Units Method Reference Comment
Δr1526. ± 8.8kJ/molG+TSOakes, Jones, et al., 1983gas phase; Acid: ketene; value altered from reference due to change in acidity scale
Quantity Value Units Method Reference Comment
Δr1497. ± 8.4kJ/molIMRBOakes, Jones, et al., 1983gas phase; Acid: ketene; value altered from reference due to change in acidity scale

C5H9O2- + Hydrogen cation = Pentanoic acid

By formula: C5H9O2- + H+ = C5H10O2

Quantity Value Units Method Reference Comment
Δr1449. ± 8.8kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Δr1448. ± 10.kJ/molG+TSMcLuckey, Cameron, et al., 1981gas phase
Quantity Value Units Method Reference Comment
Δr1419. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase
Δr1419. ± 9.6kJ/molCIDCMcLuckey, Cameron, et al., 1981gas phase

C4H7- + Hydrogen cation = Cyclobutane

By formula: C4H7- + H+ = C4H8

Quantity Value Units Method Reference Comment
Δr1746. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase
Δr1757. ± 8.4kJ/molBranPeerboom, Rademaker, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1709. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase
Δr1719. ± 8.8kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase

C5H9- + Hydrogen cation = Cyclopentane

By formula: C5H9- + H+ = C5H10

Quantity Value Units Method Reference Comment
Δr1741. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase
Δr1750. ± 8.4kJ/molBranPeerboom, Rademaker, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1705. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase
Δr1714. ± 8.8kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase

C4H7- + Hydrogen cation = 1-Butene

By formula: C4H7- + H+ = C4H8

Quantity Value Units Method Reference Comment
Δr1724. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase
Δr1729. ± 20.kJ/molBranPeerboom, Rademaker, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1690. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase
Δr1695. ± 21.kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase

C6H11O2- + Hydrogen cation = Hexanoic acid

By formula: C6H11O2- + H+ = C6H12O2

Quantity Value Units Method Reference Comment
Δr1448. ± 8.8kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Δr1447. ± 10.kJ/molG+TSMcLuckey, Cameron, et al., 1981gas phase
Quantity Value Units Method Reference Comment
Δr1419. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase
Δr1418. ± 9.6kJ/molCIDCMcLuckey, Cameron, et al., 1981gas phase

C2H5S- + Hydrogen cation = Dimethyl sulfide

By formula: C2H5S- + H+ = C2H6S

Quantity Value Units Method Reference Comment
Δr1633. ± 6.3kJ/molD-EAMoran and Ellison, 1988gas phase
Δr1645. ± 8.8kJ/molG+TSIngemann and Nibbering, 1985gas phase
Quantity Value Units Method Reference Comment
Δr1602. ± 7.1kJ/molH-TSMoran and Ellison, 1988gas phase
Δr1615. ± 8.4kJ/molIMREIngemann and Nibbering, 1985gas phase

C4H9- + Hydrogen cation = Isobutane

By formula: C4H9- + H+ = C4H10

Quantity Value Units Method Reference Comment
Δr1728. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase
Δr1735. ± 20.kJ/molBranPeerboom, Rademaker, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1692. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase
Δr1699. ± 21.kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase

C4H7N2O3- + Hydrogen cation = L-Asparagine

By formula: C4H7N2O3- + H+ = C4H8N2O3

Quantity Value Units Method Reference Comment
Δr1385. ± 9.2kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1387. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1356. ± 9.6kJ/molH-TSJones, Bernier, et al., 2007gas phase
Δr1359. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C6H13N4O2- + Hydrogen cation = Arginine

By formula: C6H13N4O2- + H+ = C6H14N4O2

Quantity Value Units Method Reference Comment
Δr1381. ± 9.2kJ/molCIDCJones, Bernier, et al., 2007gas phase
Δr1388. ± 13.kJ/molG+TSO'Hair, Bowie, et al., 1992gas phase
Quantity Value Units Method Reference Comment
Δr1352. ± 9.6kJ/molH-TSJones, Bernier, et al., 2007gas phase
Δr1359. ± 13.kJ/molCIDCO'Hair, Bowie, et al., 1992gas phase

C6H11- + Hydrogen cation = Cyclohexane

By formula: C6H11- + H+ = C6H12

Quantity Value Units Method Reference Comment
Δr1750. ± 8.4kJ/molBranPeerboom, Rademaker, et al., 1992gas phase
Δr1702.1 ± 3.8kJ/molG+TSBohme, Lee-Ruff, et al., 1972gas phase
Quantity Value Units Method Reference Comment
Δr1713. ± 9.2kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase
Δr>1665.2kJ/molIMRBBohme, Lee-Ruff, et al., 1972gas phase

MeOCH2CO2 anion + Hydrogen cation = Acetic acid, methoxy-

By formula: C3H5O3- + H+ = C3H6O3

Quantity Value Units Method Reference Comment
Δr1431. ± 8.8kJ/molG+TSCaldwell, Renneboog, et al., 1989gas phase
Δr1433. ± 8.8kJ/molG+TSTaft and Topsom, 1987gas phase
Quantity Value Units Method Reference Comment
Δr1403. ± 8.4kJ/molIMRECaldwell, Renneboog, et al., 1989gas phase
Δr1406. ± 8.4kJ/molIMRETaft and Topsom, 1987gas phase

C5H9O- + Hydrogen cation = 2-Butanone, 3-methyl-

By formula: C5H9O- + H+ = C5H10O

Quantity Value Units Method Reference Comment
Δr1537. ± 9.2kJ/molG+TSCumming and Kebarle, 1978gas phase; Structure assignment revised to less-substituted site: Chyall, Brickhouse, et al., 1994
Quantity Value Units Method Reference Comment
Δr1508. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; Structure assignment revised to less-substituted site: Chyall, Brickhouse, et al., 1994

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Schlosser, Marzi, et al., 2001
Schlosser, M.; Marzi, E.; Cottet, F.; Buker, H.H.; Nibbering, N.M.M., The acidity of chloro-substituted benzenes: A comparison of gas phase, ab initio, and kinetic data, Chem. Eur. J., 2001, 7, 16, 3511-3516, https://doi.org/10.1002/1521-3765(20010817)7:16<3511::AID-CHEM3511>3.0.CO;2-U . [all data]

Lee and Squires, 1986
Lee, R.E.; Squires, R.R., Anionic homoaromaticity: A gas phase experimental study, J. Am. Chem. Soc., 1986, 105, 5078. [all data]

Pino, Tulej, et al., 2002
Pino, T.; Tulej, M.; Guthe, F.; Pachkov, M.; Maier, J.P., Photodetachment spectroscopy of the C2nH- (n=2-4) anions in the vicinity of their electron detachment threshold, J. Chem. Phys., 2002, 116, 14, 6126-6131, https://doi.org/10.1063/1.1451248 . [all data]

Shi and Ervin, 2000
Shi, Y.; Ervin, K.M., Gas-phase acidity and C-H bond energy of diacetylene, Chem. Phys. Lett., 2000, 318, 1-3, 149-154, https://doi.org/10.1016/S0009-2614(00)00023-3 . [all data]

Zimmerman, Gygax, et al., 1978
Zimmerman, A.H.; Gygax, R.; Brauman, J.I., Electron photodetachment spectroscopy of polyene anions. Electron affinities of pentadienyl and heptatrienyl radicals, J. Am. Chem. Soc., 1978, 100, 5595. [all data]

Entfellner and Boesl, 2009
Entfellner, M.; Boesl, U., Photodetachment-photoelectron spectroscopy of disulfanide: the ground and first excited electronic state of HS2 and DS2, Phys. Chem. Chem. Phys., 2009, 11, 15, 2657-2662, https://doi.org/10.1039/b820174a . [all data]

Ohair, Depuy, et al., 1993
Ohair, R.A.J.; Depuy, C.H.; Bierbaum, V.M., Gas-Phase Chemistry and Thermochemistry of the Hydroxysulfide Anion, HOS-, J. Phys. Chem., 1993, 97, 30, 7955, https://doi.org/10.1021/j100132a026 . [all data]

Sullivan and Beauchamp, 1976
Sullivan, S.A.; Beauchamp, J.L., Competition between proton transfer and elimination in the reactions of strong bases with fluoroethanes in the gas phase. Influence of base strength on reactivity, J. Am. Chem. Soc., 1976, 98, 1160. [all data]

Tian, Fattahi, et al., 2006
Tian, Z.X.; Fattahi, A.; Lis, L.; Kass, S.R., Cycloalkane and cycloalkene C-H bond dissociation energies, J. Am. Chem. Soc., 2006, 128, 51, 17087-17092, https://doi.org/10.1021/ja065348u . [all data]

Kass, Filley, et al., 1986
Kass, S.R.; Filley, J.; Van Doren, J.M.; DePuy, C.H., Nitrous oxide in gas-phase ion-molecule chemistry: A versatile reagent for the determination of carbanion structure, J. Am. Chem. Soc., 1986, 108, 2849. [all data]

Alconcel, Deyerl, et al., 2001
Alconcel, L.S.; Deyerl, H.J.; Continetti, R.E., Effects of alkyl substitution on the energetics of enolate anions and radicals, J. Am. Chem. Soc., 2001, 123, 50, 12675-12681, https://doi.org/10.1021/ja0120431 . [all data]

Zimmerman, Reed, et al., 1977
Zimmerman, A.H.; Reed, K.J.; Brauman, J.I., Photodetachment of electrons from enolate anions. Gas phase electron affinities of enolate radicals, J. Am. Chem. Soc., 1977, 99, 7203. [all data]

Bartmess and Kiplinger, 1986
Bartmess, J.E.; Kiplinger, J.P., 'Kinetic' vs. thermodynamic acidities of enones in the gas phase, J. Org. Chem., 1986, 51, 2173. [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Trends in Gas Phase Fluoride Ion Affinities of the Main Group Oxyfluorides and Fluoride Sulfides. Fluoride Adducts of FAsO, FPO, FPO2, F2SiO, F4SO, FBO, F2SiS, FPS, FAsS, F2S2, and S2O., Inorg. Chem., 1987, 26, 24, 4018, https://doi.org/10.1021/ic00271a011 . [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Murphy and Beauchamp, 1976
Murphy, M.K.; Beauchamp, J.L., Acid-base properties and gas-phase ion chemistry of (CH3)3B, J. Am. Chem. Soc., 1976, 98, 1433. [all data]

Koppel, Taft, et al., 1994
Koppel, I.A.; Taft, R.W.; Anvia, F.; Zhu, S.Z.; Hu, L.Q.; Sung, K.S.; Desmarteau, D.D.; Yagupolskii, L.M., The Gas-Phase Acidities of Very Strong Neutral Bronsted Acids, J. Am. Chem. Soc., 1994, 116, 7, 3047, https://doi.org/10.1021/ja00086a038 . [all data]

Leito, Raamat, et al., 2009
Leito, I.; Raamat, E.; Kutt, A.; Saame, J.; Kipper, K.; Koppel, I.A.; Koppel, I.; Zhang, M.; Mishima, M.; Yagupolskii, L.M.; Garlyauskayte, R.Y.; Filatov, A.A., Revision of the Gas-Phase Acidity Scale below 300 kcal mol(-1), J. Phys. Chem. A, 2009, 113, 29, 8421-8424, https://doi.org/10.1021/jp903780k . [all data]

Chyall, Brickhouse, et al., 1994
Chyall, L.J.; Brickhouse, M.D.; Schnute, M.E.; Squires, R.R., Kinetic versus thermodynamic control in the deprotonation of unsymmetrical ketones in the gas phase, J. Am. Chem. Soc., 1994, 116, 19, 8681, https://doi.org/10.1021/ja00098a031 . [all data]

Bartmess, Basso, et al., 1983
Bartmess, J.E.; Basso, T.; eorgiadis, R.M., The electron affinity of a nitroxide radical, J. Phys. Chem., 1983, 87, 912. [all data]

Mahoney, Mendenhall, et al., 1973
Mahoney, L.R.; Mendenhall, G.D.; Ingold, K.U., Calorimetric and Equilibrium Studies on Some Stable Nitroxide and Iminoxy Radicals. Approximate O-H BDEs in Hydroxylamines and Oximes., J. Am. Chem. Soc., 1973, 95, 26, 8610, https://doi.org/10.1021/ja00807a018 . [all data]

Bordwell and Liu, 1996
Bordwell, F.G.; Liu, W.-Z., Solvent Effects on Homolytic Bond Dissociation Energies of Hydroxylic Acids, J. Am. Chem. Soc., 1996, 118, 44, 10819-10823, https://doi.org/10.1021/ja961469q . [all data]

Damrauer and Krempp, 1990
Damrauer, R.; Krempp, M., Gas Phase Ion-Molecule Chemistry of Methoxy-Substituted Silanes: Collision Induced Decomposition of Siloxide Ions Leading to Anions of Silaacetaldehyde and Methyl Silaformate, Organomet., 1990, 9, 4, 999, https://doi.org/10.1021/om00118a015 . [all data]

Grimm and Bartmess, 1992
Grimm, D.T.; Bartmess, J.E., The Intrinsic (Gas Phase) Basicity of some Anions Commonly Used in Condensed-Phase Synthesis, J. Am. Chem. Soc., 1992, 114, 4, 1227, https://doi.org/10.1021/ja00030a016 . [all data]

Taft, 1987
Taft, R.W., The Nature and Analysis of Substitutent Electronic Effects, Personal communication. See also Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Decouzon, Gal, et al., 1993
Decouzon, M.; Gal, J.F.; Gayraud, J.; Maria, P.C.; Vaglio, G.A.; Volpe, P., Fourier Transform-Ion Cyclotron Resonance Study of the Gas-Phase Acidities of Germane and Methylgermane - Bond Dissociation Energy of German, J. Am. Soc. Mass Spectrom., 1993, 4, 1, 54, https://doi.org/10.1016/1044-0305(93)85042-V . [all data]

Gal, Decouzon, et al., 2001
Gal, J.F.; Decouzon, M.; Maria, P.C.; Gonzalez, A.I.; Mo, O.; Yanez, M.; El Chaouch, S.; Guillemin, J.C., Acidity trends in alpha,beta-unsaturated alkanes, silanes, germanes, and stannanes, J. Am. Chem. Soc., 2001, 123, 26, 6353-6359, https://doi.org/10.1021/ja004079j . [all data]

Mishima, Kinoshita, et al., 2002
Mishima, M.; Kinoshita, T.; Hattori, Y.; Takeuchi, K., Gas-phase acidities of cycloheptatrienes: effects of alkyl groups on the stability of carbanions, Eur. J. Mass Spectrom., 2002, 8, 1, 359-366, https://doi.org/10.1255/ejms.499 . [all data]

Sallans, Lane, et al., 1985
Sallans, L.; Lane, K.R.; Squires, R.R.; Freiser, B.S., Generation and reactions of atomic metal anions in the gas phase. Determination of the heterolytic and homolytic bond energies of VH, VrH, FeH, CoH, and MoH, J. Am. Chem. Soc., 1985, 107, 4379. [all data]

Feigerle, Corderman, et al., 1981
Feigerle, C.S.; Corderman, R.R.; Bobashev, S.V.; Lineberger, W.C., Binding Energies and Structure of Transition Metal Negative Ions, J. Chem. Phys., 1981, 74, 3, 1580, https://doi.org/10.1063/1.441289 . [all data]

Kiplinger, Crowder, et al., 1994
Kiplinger, J.P.; Crowder, C.A.; Sorensen, D.N.; Bartmess, J.E., Gas-Phase Ion-Molecule Chemistry of Borate and Boronate Esters, J. Am. Soc. Mass Spectrom., 1994, 5, 3, 169, https://doi.org/10.1016/1044-0305(94)85030-5 . [all data]

Stein, Rikkers, et al.
Stein, S.E.; Rikkers, J.M.; Brown, R.L., NIST Structure anmd Properties Database and Estimation Program, Ver. 1.1, NIST Standard Reference Database 25. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R., The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase, J. Am. Chem. Soc., 1986, 108, 2853. [all data]

Bouchoux, Jaudon, et al., 1991
Bouchoux, G.; Jaudon, P.; Decouzon, M.; Gal, J.-F.; Maria, P.-C., Gas-Phase Acidity of Some alpha-keto Aldoximes: Experiment and Theory, J. Phys. Org. Chem., 1991, 4, 5, 285, https://doi.org/10.1002/poc.610040505 . [all data]

Hankin, Krempp, et al., 1995
Hankin, J.A.; Krempp, M.; Damrauer, R., Gas-phase Chemistry of the Silaformamide Ion, Organomet., 1995, 14, 6, 2652, https://doi.org/10.1021/om00006a011 . [all data]

Romer, Gatev, et al., 1998
Romer, B.; Gatev, G.G.; Zhong, M.; Brauman, J.I., Alpha-Stabilization by Silyl and Phosphino Substitution, J. Am. Chem. Soc., 1998, 120, 12, 2919, https://doi.org/10.1021/ja970279s . [all data]

Brinkman, Berger, et al., 1994
Brinkman, E.A.; Berger, S.; Brauman, J.I., alpha-Silyl-substituent stabilization of carbanions and silyl anions, J. Am. Chem. Soc., 1994, 116, 18, 8304, https://doi.org/10.1021/ja00097a042 . [all data]

Haas, Giblin, et al., 1998
Haas, G.W.; Giblin, D.E.; Gross, M.L., The Mechanism and Thermodynamics of Transesterification of Acetate-Ester Enolates in the Gas Phase, Int. J. Mass Spectrom. Ion Proc., 1998, 172, 1-2, 25, https://doi.org/10.1016/S0168-1176(97)83245-4 . [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Jones, Bernier, et al., 2007
Jones, C.M.; Bernier, M.; Carson, E.; Colyer, K.E.; Metz, R.; Pawlow, A.; Wischow, E.D.; Webb, I.; Andriole, E.J.; Poutsma, J.C., Gas-phase Acities of the 20 Protein Amino Acids, Int. J. Mass Spectrom., 2007, 267, 1-3, 54-62, https://doi.org/10.1016/j.ijms.2007.02.018 . [all data]

Locke and McIver, 1983
Locke, M.J.; McIver, R.T., Jr., Effect of Solvation on the Acid/Base Properties of Glycine, J. Am. Chem. Soc., 1983, 105, 4226. [all data]

Radisic, Xu, et al., 2002
Radisic, D.; Xu, S.J.; Bowen, K.H., Photoelectron spectroscopy of the anions, CH3NH- and (CH3)(2)N- and the anion complexes, H-(CH3NH2) and (CH3)(2)N-[(CH3)(2)NH), Chem. Phys. Lett., 2002, 354, 1-2, 9-13, https://doi.org/10.1016/S0009-2614(01)01470-1 . [all data]

MacKay, Hemsworth, et al., 1976
MacKay, G.J.; Hemsworth, R.S.; Bohme, D.K., Absolute gas-phase acidities of CH3NH2, C2H5NH2, (CH3)2NH, and (CH3)3N, Can. J. Chem., 1976, 54, 1624. [all data]

Taft, Koppel, et al., 1990
Taft, R.W.; Koppel, I.J.; Topsom, R.D.; Anvia, F., Acidities of OH Compounds, including Alcohols, Phenols, Carboxylic Acids, and Mineral Acids, J. Am. Chem. Soc., 1990, 112, 6, 2047, https://doi.org/10.1021/ja00162a001 . [all data]

Koppel, Pikver, et al., 1981
Koppel, I.; Pikver, R.; Sugis, A.; Suurmaa, E.; Lippmaa, E., FTICR Study of Structure and Solvent Effects on Basicity of Some Anions in the Gas Phase, Org. Reac., 1981, 18, 3. [all data]

Clair and McMahon, 1980
Clair, R.L.; McMahon, T.B., An ion cyclotron resonance study of base-induced elimination reactions of fluorinated alcohols and unimolecular loss of HF from chemically activated fluoroalkoxide ions, Int. J. Mass Spectrom. Ion Phys., 1980, 33, 21. [all data]

Taft and Bordwell, 1988
Taft, R.W.; Bordwell, F.G., Structural and Solvent Effects Evaluated from Acidities Measured in Dimethyl Sulfoxide and in the Gas Phase, Acc. Chem. Res., 1988, 21, 12, 463, https://doi.org/10.1021/ar00156a005 . [all data]

Oakes, Jones, et al., 1983
Oakes, J.M.; Jones, M.E.; Bierbaum, V.M.; Ellison, G.B., Photoelectron spectroscopy of CCO- and HCCO-, J. Phys. Chem., 1983, 87, 4810. [all data]

Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P., Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria, Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092 . [all data]

McLuckey, Cameron, et al., 1981
McLuckey, S.A.; Cameron, D.; Cooks, R.G., Proton affinities from the dissociation of proton bound dimers, J. Am. Chem. Soc., 1981, 103, 1313. [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Moran and Ellison, 1988
Moran, S.; Ellison, G.B., Photoelectron Spectroscopy of Sulfur Ions, J. Phys. Chem., 1988, 92, 7, 1794, https://doi.org/10.1021/j100318a021 . [all data]

Ingemann and Nibbering, 1985
Ingemann, S.; Nibbering, N.M.M., Gas phase chemistry of alpha-thio carbanions, Can. J. Chem., 1985, 62, 2273. [all data]

O'Hair, Bowie, et al., 1992
O'Hair, R.J.; Bowie, J.H.; Gronert, S., Gas Phase Acidity of the alpha-Amino Acids, Int. J. Mass Spectrom. Ion Proc., 1992, 117, 23, https://doi.org/10.1016/0168-1176(92)80083-D . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D., The Nature and Analysis of Substituent Effects, Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References