Isobaric Properties for 1,1,1,3,3-Pentafluoropropane (R245fa)

Fluid Data

Isobaric Data for P = 1.0000 bar

Notice: Plotting data requires a browser which supports JavaScript and HTML 5 canvas.

Auxiliary Data

Reference States, Normal Boiling Point Convention

Additional fluid properties

References and Notes

Equation of state

Akasaka, R.; Zhou, Y.; Lemmon, E.W., A Fundamental Equation of State for 1,1,1,3,3-Pentafluoropropane (R-245fa), J. Phys. Chem. Ref. Data, 2015, 44, 1, 013104, https://doi.org/10.1063/1.4913493 . [all data]

The estimated uncertainties are 0.1 % for vapor pressures, 0.1 % for saturated liquid densities, 0.1 % for liquid densities below 70 MPa, 0.2 % for densities at higher pressures, 0.3 % for vapor densities, 0.3 % for liquid sound speeds, and 0.1 % for vapor sound speeds. The uncertainties in the critical region are higher for all properties except vapor pressures.

Auxillary model, Cp0

Akasaka, R., Zhou, Y., and Lemmon, E.W., 2015.

Auxillary model, PX0

Akasaka, R., Zhou, Y., and Lemmon, E.W., 2015.

Auxillary model, PH0

Akasaka, R., Zhou, Y., and Lemmon, E.W., 2015.

Viscosity

Perkins, R.A.; Huber, M.L.; Assael, M.J., Measurements of the Thermal Conductivity of 1,1,1,3,3-Pentafluoropropane (R245fa) and Correlations for the Viscosity and Thermal Conductivity Surfaces, J. Chem. Eng. Data, 2016, 61, 9, 3286-3294, https://doi.org/10.1021/acs.jced.6b00350 . [all data]

The estimated uncertainty for the dilute gas region is 2%, for the liquid phase at pressures to 40 MPa is 3%.

Auxillary model, the collision integral

Perkins et al., 2016.

Thermal conductivity

Perkins, R.A.; Huber, M.L.; Assael, M.J., Measurements of the Thermal Conductivity of 1,1,1,3,3-Pentafluoropropane (R245fa) and Correlations for the Viscosity and Thermal Conductivity Surfaces, J. Chem. Eng. Data, 2016, 61, 9, 3286-3294, https://doi.org/10.1021/acs.jced.6b00350 . [all data]

The estimated uncertainty is 2 % for the liquid phase at pressures to 70 MPa, and 2 % for the vapor phase.

Auxillary model, the thermal conductivity critical enhancement

Perkins, R.A.; Sengers, J.V.; Abdulagatov, I.M.; Huber, M.L., Simplified Model for the Critical Thermal-Conductivity Enhancement in Molecular Fluids, Int. J. Thermophys., 2013, 34, 2, 191-212, https://doi.org/10.1007/s10765-013-1409-z . [all data]

Surface tension

Mulero, A.; Cachadiña, I.; Parra, M.I., Recommended Correlations for the Surface Tension of Common Fluids, J. Phys. Chem. Ref. Data, 2012, 41, 4, 043105, https://doi.org/10.1063/1.4768782 . [all data]

Vapor pressure

Gao, K., 2017.

Functional Form: P=Pc*EXP[SUM(Ni*Theta^ti)*Tc/T] where Theta=1-T/Tc, Tc and Pc are the reducing parameters below, which are followed by rows containing Ni and ti.

Saturated liquid density

Akasaka et al., 2015.

Functional Form: D=Dc*[1+SUM(Ni*Theta^ti)] where Theta=1-T/Tc, Tc and Dc are the reducing parameters below, which are followed by rows containing Ni and ti.

Saturated liquid volume

Gao, K., 2017.

Functional Form: D=Dc*EXP[SUM(Ni*Theta^ti)] where Theta=1-T/Tc, Tc and Dc are the reducing parameters below, which are followed by rows containing Ni and ti.

The fluid data above is also available from the NIST Reference Fluid Thermodynamic and Transport Properties Database. This product includes additional features not available from this web site.

Notes