Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Methane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - D.R. Burgess
ALS - H.Y. Afeefy, J.F. Liebman, and S.E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Deltafgas-74.87kJ/molReviewChase, 1998Data last reviewed in March, 1961
Deltafgas-74.6 ± 0.3kJ/molReviewManion, 2002adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Deltafgas-74.5 ± 0.4kJ/molCcbPittam and Pilcher, 1972ALS
Deltafgas-74.85 ± 0.31kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; ALS
Deltafgas-73.4 ± 1.1kJ/molCcbRoth and Banse, 1932Reanalyzed by Cox and Pilcher, 1970, Original value = -75.19 kJ/mol; ALS
Quantity Value Units Method Reference Comment
Deltacgas-890.7 ± 0.4kJ/molCcbPittam and Pilcher, 1972Corresponding «DELTA»fgas = -74.48 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacgas-890.35 ± 0.30kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; Corresponding «DELTA»fgas = -74.822 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacgas-891.8 ± 1.1kJ/molCcbRoth and Banse, 1932Reanalyzed by Cox and Pilcher, 1970, Original value = -887.3 ± 1.0 kJ/mol; Corresponding «DELTA»fgas = -73.39 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacgas-890.16 ± 0.30kJ/molCmRossini, 1931Corresponding «DELTA»fgas = -75.010 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
gas188.66 ± 0.42J/mol*KN/AColwell J.H., 1963The calorimetric value is significantly higher than the statistically calculated entropy, 186.26 J/mol*K, which remains the best value for use in thermodynamic calculations [ Vogt G.J., 1976, Friend D.G., 1989, Gurvich, Veyts, et al., 1989]. Earlier the value of 185.3 J/mol*K was calculated from experimental data [ Giauque W.F., 1931]. The value of S(298.15 K)=185.94 J/mol*K was obtained by high accuracy ab initio calculation [ East A.L.L., 1997].; GT
Quantity Value Units Method Reference Comment
gas,1 bar186.25J/mol*KReviewChase, 1998Data last reviewed in March, 1961

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.92 ± 0.25279.Halford J.O., 1957GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
33.28100.Gurvich, Veyts, et al., 1989p=1 bar. Because of more precise method of calculation, the recommended values are more accurate, especially at high temperatures, than those obtained by [ McDowell R.S., 1963] and often regarded as reference data [ Friend D.G., 1989].; GT
33.51200.
35.69298.15
35.76300.
40.63400.
46.63500.
52.74600.
58.60700.
64.08800.
69.14900.
73.751000.
77.921100.
81.681200.
85.071300.
88.111400.
90.861500.
93.331600.
95.581700.
97.631800.
99.511900.
101.242000.
102.832100.
104.312200.
105.702300.
107.002400.
108.232500.
109.392600.
110.502700.
111.562800.
112.572900.
113.553000.

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 1300.1300. - 6000.
A -0.70302985.81217
B 108.477311.26467
C -42.52157-2.114146
D 5.8627880.138190
E 0.678565-26.42221
F -76.84376-153.5327
G 158.7163224.4143
H -74.87310-74.87310
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in March, 1961 Data last reviewed in March, 1961

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, M. Frenkel director
DH - E.S. Domalski and E.D. Hearing
AC - W.E. Acree, Jr., J.S. Chickos

Quantity Value Units Method Reference Comment
Tboil111. ± 2.KAVGN/AAverage of 13 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus85.7KN/AStreng, 1971Uncertainty assigned by TRC = 0.2 K; TRC
Tfus90.6KN/AVan't Zelfde, Omar, et al., 1968Uncertainty assigned by TRC = 0.3 K; TRC
Tfus91.2KN/ATimmermans, 1935Uncertainty assigned by TRC = 2. K; TRC
Tfus90.6KN/AClusius, 1929Uncertainty assigned by TRC = 0.2 K; TRC
Tfus90.5KN/AEucken and Karwat, 1924Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Ttriple90.67 ± 0.03KAVGN/AAverage of 25 out of 32 values; Individual data points
Quantity Value Units Method Reference Comment
Ptriple0.1169 ± 0.0006barAVGN/AAverage of 20 out of 23 values; Individual data points
Quantity Value Units Method Reference Comment
Tc190.6 ± 0.3KAVGN/AAverage of 19 out of 23 values; Individual data points
Quantity Value Units Method Reference Comment
Pc46.1 ± 0.3barAVGN/AAverage of 16 out of 21 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.09860l/molN/AAmbrose and Tsonopoulos, 1995 
Vc0.09852l/molN/AYounglove and Ely, 1987TRC
Vc0.100l/molN/ATerry, Lynch, et al., 1969Uncertainty assigned by TRC = 0.001 l/mol; TRC
Quantity Value Units Method Reference Comment
rhoc10.1 ± 0.2mol/lAVGN/AAverage of 16 out of 17 values; Individual data points

Enthalpy of vaporization

DeltavapH (kJ/mol) Temperature (K) Method Reference Comment
8.51999.54N/AVogt and Pitzer, 1976P = 2.81 kPa Data from Frank and Clusius, 1937 and 39FRA/CLU.; DH
8.6101.N/AStock, Henning, et al., 2006Based on data from 92. - 110. K. See also Boublik, Fried, et al., 1984.; AC
8.6105.AStephenson and Malanowski, 1987Based on data from 90. - 120. K.; AC
8.4134.AStephenson and Malanowski, 1987Based on data from 115. - 149. K.; AC
8.7174.AStephenson and Malanowski, 1987Based on data from 148. - 189. K.; AC
8.17111.7N/AMajer and Svoboda, 1985 
8.6112.N/AOtt, Goates, et al., 1972Based on data from 91. - 127. K. See also Boublik, Fried, et al., 1984.; AC
8.5175.N/AOtt, Goates, et al., 1972Based on data from 91. - 190. K.; AC
8.1137.N/AReid, 1972AC
8.6175.N/AAmbrose, Counsell, et al., 1970Based on data from 100. - 190. K.; AC
8.2112.CHestermans and White, 1961AC
7.5130.CHestermans and White, 1961AC
5.9160.CHestermans and White, 1961AC
4.0180.CHestermans and White, 1961AC
8.5149.N/AHestermans and White, 1961Based on data from 109. - 189. K.; AC
8.5 ± 0.199.N/AFrank and Clusius, 1939AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 112. - 180.
A (kJ/mol) 10.11
alpha -0.22
beta 0.388
Tc (K) 190.6
ReferenceMajer and Svoboda, 1985

Entropy of vaporization

DeltavapS (J/mol*K) Temperature (K) Reference Comment
85.5899.54Vogt and Pitzer, 1976P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
90.99 - 189.993.9895443.028-0.49Prydz and Goodwin, 1972Coefficents calculated by NIST from author's data.
96.89 - 110.192.00253125.819-48.823Regnier, 1972Coefficents calculated by NIST from author's data.
93.04 - 107.843.80235403.106-5.479Cutler and Morrison, 1965Coefficents calculated by NIST from author's data.
110.00 - 190.54.22061516.68911.223Hestermans and White, 1961Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

DeltasubH (kJ/mol) Temperature (K) Method Reference Comment
9.772.N/AStephenson and Malanowski, 1987Based on data from 53. - 91. K.; AC
9.272.N/ABondi, 1963Based on data from 54. - 90. K. See also Armstrong, Brickwedde, et al., 1955.; AC
10.084.N/AJones, 1960Based on data from 79. - 89. K.; AC
9.763.A,MSTickner and Lossing, 1951Based on data from 48. - 78. K.; AC
9.6277.AStull, 1947Based on data from 67. - 88. K.; AC

Enthalpy of phase transition

DeltaHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.0935520.53crystaline, IIcrystaline, IVogt and Pitzer, 1976Lambda transition.; DH
0.939290.67crystaline, IliquidVogt and Pitzer, 1976DH

Entropy of phase transition

DeltaStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
4.55720.53crystaline, IIcrystaline, IVogt and Pitzer, 1976Lambda; DH
10.3690.67crystaline, IliquidVogt and Pitzer, 1976DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - J.E. Bartmess
M - M. M. Meot-Ner (Mautner) and S. G. Lias
MS - J.A. Martinho Simões
ALS - H.Y. Afeefy, J.F. Liebman, and S.E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

CH3- + Hydrogen cation = Methane

By formula: CH3- + H+ = CH4

Quantity Value Units Method Reference Comment
Deltar1743.6 ± 2.9kJ/molD-EAEllison, Engelking, et al., 1978gas phase; B
Deltar1749. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase; B
Deltar>1691.1 ± 0.42kJ/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; B
Deltar1735.5kJ/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; «DELTA»S(EA)=9.3; B
Quantity Value Units Method Reference Comment
Deltar1709.8 ± 3.3kJ/molH-TSEllison, Engelking, et al., 1978gas phase; B
Deltar1715. ± 15.kJ/molH-TSGraul and Squires, 1990gas phase; B
Deltar>1657.3kJ/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; B
Deltar1704.1kJ/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; «DELTA»S(EA)=9.3; B

(CH5+ bullet Methane) + Methane = (CH5+ bullet 2Methane)

By formula: (CH5+ bullet CH4) + CH4 = (CH5+ bullet 2CH4)

Quantity Value Units Method Reference Comment
Deltar22. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Deltar25.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Deltar6.3kJ/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Deltar104.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Deltar102.J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M
Deltar30.J/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

CH5+ + Methane = (CH5+ bullet Methane)

By formula: CH5+ + CH4 = (CH5+ bullet CH4)

Quantity Value Units Method Reference Comment
Deltar29. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Deltar31.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Deltar17.kJ/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Deltar92.5J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Deltar87.0J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M
Deltar51.9J/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

C2H5+ + Methane = (C2H5+ bullet Methane)

By formula: C2H5+ + CH4 = (C2H5+ bullet CH4)

Quantity Value Units Method Reference Comment
Deltar23.0kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Deltar28.kJ/molPHPMSHiroka and Kebarle, 1975gas phase; M
Deltar10.kJ/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Deltar92.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M
Deltar97.9J/mol*KPHPMSHiroka and Kebarle, 1975gas phase; M
Deltar36.J/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

(Cobalt ion (1+) bullet 2Methane) + Methane = (Cobalt ion (1+) bullet 3Methane)

By formula: (Co+ bullet 2CH4) + CH4 = (Co+ bullet 3CH4)

Quantity Value Units Method Reference Comment
Deltar46.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar84.J/mol*KN/AKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M

Enthalpy of reaction

DeltarH° (kJ/mol) T (K) Method Reference Comment
41. (+5.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
3.477.SIDTKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M

Cobalt ion (1+) + Methane = (Cobalt ion (1+) bullet Methane)

By formula: Co+ + CH4 = (Co+ bullet CH4)

Quantity Value Units Method Reference Comment
Deltar82.8J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; «DELTA»rS(530 K); M

Enthalpy of reaction

DeltarH° (kJ/mol) T (K) Method Reference Comment
90.0 (+6.7,-0.) CIDHaynes and Armentrout, 1996gas phase; guided ion beam CID; M
90.0 (+5.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
94. (+2.,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; «DELTA»rS(530 K); M

(Cobalt ion (1+) bullet Methane) + Hydrogen = (Cobalt ion (1+) bullet Hydrogen bullet Methane)

By formula: (Co+ bullet CH4) + H2 = (Co+ bullet H2 bullet CH4)

Quantity Value Units Method Reference Comment
Deltar95.8J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2H2, «DELTA»rS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Enthalpy of reaction

DeltarH° (kJ/mol) T (K) Method Reference Comment
73. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2H2, «DELTA»rS(440 K); Kemper, Bushnell, et al., 1993, 2; M

(Cobalt ion (1+) bullet Hydrogen) + Methane = (Cobalt ion (1+) bullet Methane bullet Hydrogen)

By formula: (Co+ bullet H2) + CH4 = (Co+ bullet CH4 bullet H2)

Quantity Value Units Method Reference Comment
Deltar91.2J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)2H2, «DELTA»rS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Enthalpy of reaction

DeltarH° (kJ/mol) T (K) Method Reference Comment
94.6 (+5.0,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)2H2, «DELTA»rS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Manganese, pentacarbonylmethyl- (g) = C5MnO5 (g) + Methane (g)

By formula: C6H3MnO5 (g) = C5MnO5 (g) + CH4 (g)

Quantity Value Units Method Reference Comment
Deltar192. ± 15.kJ/molPIMSMartinho Simões and Beauchamp, 1990The reaction enthalpy was derived from the appearance energy of Mn(CO)5(+), 940.7 ± 4.8 kJ/mol, using Mn(CO)5(Me) as the neutral precursor, together with the adiabatic ionization energy of Mn(CO)5 radical, 749. ± 14. kJ/mol Martinho Simões and Beauchamp, 1990; MS

(Cobalt ion (1+) bullet Methane) + Methane = (Cobalt ion (1+) bullet 2Methane)

By formula: (Co+ bullet CH4) + CH4 = (Co+ bullet 2CH4)

Quantity Value Units Method Reference Comment
Deltar109.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; «DELTA»rS(500 K); M

Enthalpy of reaction

DeltarH° (kJ/mol) T (K) Method Reference Comment
95.8 (+5.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
104. (+4.2,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; «DELTA»rS(500 K); M

(CH5+ bullet 2Methane) + Methane = (CH5+ bullet 3Methane)

By formula: (CH5+ bullet 2CH4) + CH4 = (CH5+ bullet 3CH4)

Quantity Value Units Method Reference Comment
Deltar13.1 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Deltar17.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Deltar93.7J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Deltar109.J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

(CH5+ bullet 3Methane) + Methane = (CH5+ bullet 4Methane)

By formula: (CH5+ bullet 3CH4) + CH4 = (CH5+ bullet 4CH4)

Quantity Value Units Method Reference Comment
Deltar12.6 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Deltar16.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Deltar99.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Deltar111.J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

Hydrogen bromide (g) + CH3BrMg (solution) = Methane (solution) + Br2Mg (solution)

By formula: HBr (g) + CH3BrMg (solution) = CH4 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Deltar-274.5 ± 2.2kJ/molRSCHolm, 1981solvent: Diethyl ether; The enthalpy of formation was calculated using the assumptions and the auxiliary data in Holm, 1981, except for the organic compound, whose enthalpy of formation was quoted from Pedley, 1994; MS

(Cobalt ion (1+) bullet Methane) + Ethane = (Cobalt ion (1+) bullet Ethane bullet Methane)

By formula: (Co+ bullet CH4) + C2H6 = (Co+ bullet C2H6 bullet CH4)

Quantity Value Units Method Reference Comment
Deltar108.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, «DELTA»rS(480 K); M

Enthalpy of reaction

DeltarH° (kJ/mol) T (K) Method Reference Comment
119. (+5.4,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, «DELTA»rS(480 K); M

C63H91CoN13O14P (solution) = Cyanocobalamin (solution) + Methane (solution)

By formula: C63H91CoN13O14P (solution) = C63H88CoN14O14P (solution) + CH4 (solution)

Quantity Value Units Method Reference Comment
Deltar155. ± 13.kJ/molKinSMartin and Finke, 1990solvent: Ethylene glycol; Please also see Martin and Finke, 1992. The reaction enthalpy relies on 172. ± 13. kJ/mol for the reaction activation enthalpy. The reaction refers to "base-on" cobalamine.; MS

C3H7+ + Methane = (C3H7+ bullet Methane)

By formula: C3H7+ + CH4 = (C3H7+ bullet CH4)

Quantity Value Units Method Reference Comment
Deltar10.8kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Deltar14.kJ/molPHPMSHiraoka and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.8J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M
Deltar84.J/mol*KPHPMSHiraoka and Kebarle, 1976gas phase; M

Hydrogen iodide + Methane, iodo- = Methane + Iodine

By formula: HI + CH3I = CH4 + I2

Quantity Value Units Method Reference Comment
Deltar-52.55 ± 0.54kJ/molEqkGolden, Walsh, et al., 1965gas phase; ALS
Deltar-53.0 ± 0.2kJ/molEqkGoy and Pritchard, 1965gas phase; ALS
Deltar-46.2 ± 5.6kJ/molCmNichol and Ubbelohde, 1952gas phase; ALS

(C2H5+ bullet 9Methane) + Methane = (C2H5+ bullet 10Methane)

By formula: (C2H5+ bullet 9CH4) + CH4 = (C2H5+ bullet 10CH4)

Quantity Value Units Method Reference Comment
Deltar7.99kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar92.J/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(C3H7+ bullet 7Methane) + Methane = (C3H7+ bullet 8Methane)

By formula: (C3H7+ bullet 7CH4) + CH4 = (C3H7+ bullet 8CH4)

Quantity Value Units Method Reference Comment
Deltar8.28kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar92.J/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(C4H9+ bullet 8Methane) + Methane = (C4H9+ bullet 9Methane)

By formula: (C4H9+ bullet 8CH4) + CH4 = (C4H9+ bullet 9CH4)

Quantity Value Units Method Reference Comment
Deltar7.78kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar84.J/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(CH5+ bullet 8Methane) + Methane = (CH5+ bullet 9Methane)

By formula: (CH5+ bullet 8CH4) + CH4 = (CH5+ bullet 9CH4)

Quantity Value Units Method Reference Comment
Deltar6.44kJ/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar84.J/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

(Cobalt ion (1+) bullet Water) + Methane = (Cobalt ion (1+) bullet Methane bullet Water)

By formula: (Co+ bullet H2O) + CH4 = (Co+ bullet CH4 bullet H2O)

Quantity Value Units Method Reference Comment
Deltar113.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; «DELTA»rS(525 K); M

Enthalpy of reaction

DeltarH° (kJ/mol) T (K) Method Reference Comment
108. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; «DELTA»rS(525 K); M

(Hydronium cation bullet Methane) + Methane = (Hydronium cation bullet 2Methane)

By formula: (H3O+ bullet CH4) + CH4 = (H3O+ bullet 2CH4)

Quantity Value Units Method Reference Comment
Deltar14.kJ/molHPMSBennet and Field, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Deltar34.J/mol*KHPMSBennet and Field, 1972gas phase; Entropy change is questionable; M

(Cobalt ion (1+) bullet Ethane) + Methane = (Cobalt ion (1+) bullet Methane bullet Ethane)

By formula: (Co+ bullet C2H6) + CH4 = (Co+ bullet CH4 bullet C2H6)

Quantity Value Units Method Reference Comment
Deltar110.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; «DELTA»rS(490 K); M

Enthalpy of reaction

DeltarH° (kJ/mol) T (K) Method Reference Comment
102. (+4.6,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; «DELTA»rS(490 K); M

NH4+ + Methane = (NH4+ bullet Methane)

By formula: H4N+ + CH4 = (H4N+ bullet CH4)

Quantity Value Units Method Reference Comment
Deltar15.kJ/molHPMSBennet and Field, 1972, 2gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Deltar64.9J/mol*KHPMSBennet and Field, 1972, 2gas phase; Entropy change is questionable; M

Hydrogen bromide (g) + methyllithium (cr) = Methane (g) + Lithium bromide (cr)

By formula: HBr (g) + CH3Li (cr) = CH4 (g) + BrLi (cr)

Quantity Value Units Method Reference Comment
Deltar-317.3 ± 2.0kJ/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

2Hydrogen + Methylene chloride = Methane + 2Hydrogen chloride

By formula: 2H2 + CH2Cl2 = CH4 + 2HCl

Quantity Value Units Method Reference Comment
Deltar-163.4 ± 1.3kJ/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -167.7 ± 1.3 kJ/mol; At 250 C; ALS

Dimethylzinc (l) + (Sulfuric Acid bullet 100Water) (solution) = 2Methane (g) + (zinc sulphate bullet 100Water) (solution)

By formula: C2H6Zn (l) + (H2O4S bullet 100H2O) (solution) = 2CH4 (g) + (O4SZn bullet 100H2O) (solution)

Quantity Value Units Method Reference Comment
Deltar-341.8 ± 0.8kJ/molRSCCarson, Hartley, et al., 1949Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

(CH5+ bullet 4Methane) + Methane = (CH5+ bullet 5Methane)

By formula: (CH5+ bullet 4CH4) + CH4 = (CH5+ bullet 5CH4)

Quantity Value Units Method Reference Comment
Deltar11.7 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar104.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ bullet 5Methane) + Methane = (CH5+ bullet 6Methane)

By formula: (CH5+ bullet 5CH4) + CH4 = (CH5+ bullet 6CH4)

Quantity Value Units Method Reference Comment
Deltar11.3 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar106.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ bullet 6Methane) + Methane = (CH5+ bullet 7Methane)

By formula: (CH5+ bullet 6CH4) + CH4 = (CH5+ bullet 7CH4)

Quantity Value Units Method Reference Comment
Deltar11.2 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar111.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ bullet 7Methane) + Methane = (CH5+ bullet 8Methane)

By formula: (CH5+ bullet 7CH4) + CH4 = (CH5+ bullet 8CH4)

Quantity Value Units Method Reference Comment
Deltar8.5 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar90.4J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(C2H5+ bullet 2Methane) + Methane = (C2H5+ bullet 3Methane)

By formula: (C2H5+ bullet 2CH4) + CH4 = (C2H5+ bullet 3CH4)

Quantity Value Units Method Reference Comment
Deltar9.54kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar74.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ bullet 3Methane) + Methane = (C2H5+ bullet 4Methane)

By formula: (C2H5+ bullet 3CH4) + CH4 = (C2H5+ bullet 4CH4)

Quantity Value Units Method Reference Comment
Deltar9.46kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar77.0J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ bullet 4Methane) + Methane = (C2H5+ bullet 5Methane)

By formula: (C2H5+ bullet 4CH4) + CH4 = (C2H5+ bullet 5CH4)

Quantity Value Units Method Reference Comment
Deltar9.29kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar79.1J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ bullet 5Methane) + Methane = (C2H5+ bullet 6Methane)

By formula: (C2H5+ bullet 5CH4) + CH4 = (C2H5+ bullet 6CH4)

Quantity Value Units Method Reference Comment
Deltar9.25kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar81.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ bullet 6Methane) + Methane = (C2H5+ bullet 7Methane)

By formula: (C2H5+ bullet 6CH4) + CH4 = (C2H5+ bullet 7CH4)

Quantity Value Units Method Reference Comment
Deltar8.91kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar86.6J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ bullet 7Methane) + Methane = (C2H5+ bullet 8Methane)

By formula: (C2H5+ bullet 7CH4) + CH4 = (C2H5+ bullet 8CH4)

Quantity Value Units Method Reference Comment
Deltar8.79kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar87.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ bullet 8Methane) + Methane = (C2H5+ bullet 9Methane)

By formula: (C2H5+ bullet 8CH4) + CH4 = (C2H5+ bullet 9CH4)

Quantity Value Units Method Reference Comment
Deltar8.70kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar91.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ bullet 2Methane) + Methane = (C3H7+ bullet 3Methane)

By formula: (C3H7+ bullet 2CH4) + CH4 = (C3H7+ bullet 3CH4)

Quantity Value Units Method Reference Comment
Deltar9.46kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar77.0J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ bullet 3Methane) + Methane = (C3H7+ bullet 4Methane)

By formula: (C3H7+ bullet 3CH4) + CH4 = (C3H7+ bullet 4CH4)

Quantity Value Units Method Reference Comment
Deltar9.20kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar79.5J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ bullet 4Methane) + Methane = (C3H7+ bullet 5Methane)

By formula: (C3H7+ bullet 4CH4) + CH4 = (C3H7+ bullet 5CH4)

Quantity Value Units Method Reference Comment
Deltar9.20kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar87.4J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ bullet 5Methane) + Methane = (C3H7+ bullet 6Methane)

By formula: (C3H7+ bullet 5CH4) + CH4 = (C3H7+ bullet 6CH4)

Quantity Value Units Method Reference Comment
Deltar9.16kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar87.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ bullet 6Methane) + Methane = (C3H7+ bullet 7Methane)

By formula: (C3H7+ bullet 6CH4) + CH4 = (C3H7+ bullet 7CH4)

Quantity Value Units Method Reference Comment
Deltar9.04kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar91.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ bullet 2Methane) + Methane = (C4H9+ bullet 3Methane)

By formula: (C4H9+ bullet 2CH4) + CH4 = (C4H9+ bullet 3CH4)

Quantity Value Units Method Reference Comment
Deltar9.92kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar82.4J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ bullet 3Methane) + Methane = (C4H9+ bullet 4Methane)

By formula: (C4H9+ bullet 3CH4) + CH4 = (C4H9+ bullet 4CH4)

Quantity Value Units Method Reference Comment
Deltar9.87kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar83.7J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ bullet 4Methane) + Methane = (C4H9+ bullet 5Methane)

By formula: (C4H9+ bullet 4CH4) + CH4 = (C4H9+ bullet 5CH4)

Quantity Value Units Method Reference Comment
Deltar9.25kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar81.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ bullet 5Methane) + Methane = (C4H9+ bullet 6Methane)

By formula: (C4H9+ bullet 5CH4) + CH4 = (C4H9+ bullet 6CH4)

Quantity Value Units Method Reference Comment
Deltar8.74kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar80.8J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ bullet 6Methane) + Methane = (C4H9+ bullet 7Methane)

By formula: (C4H9+ bullet 6CH4) + CH4 = (C4H9+ bullet 7CH4)

Quantity Value Units Method Reference Comment
Deltar8.58kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar82.4J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ bullet 7Methane) + Methane = (C4H9+ bullet 8Methane)

By formula: (C4H9+ bullet 7CH4) + CH4 = (C4H9+ bullet 8CH4)

Quantity Value Units Method Reference Comment
Deltar8.33kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Deltar84.1J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spec Data Center, S.E. Stein, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spec Data Center, S.E. Stein, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY
NIST MS number 61313

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: T. Shimanouchi

Symmetry:   Td     Symmetry Number sigma = 12


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 Sym str 2917  A  ia 2917.0 gas
e 2 Deg deform 1534  A 1533 ia gas 1533.6 Observed through Coriolis interaction with «nu»4
f2 3 Deg str 3019  A 3018.9 gas 3019.5
f2 4 Deg deform 1306  C 1306.2 gas

Source: Shimanouchi, 1972

Notes

iaInactive
A0~1 cm-1 uncertainty
C3~6 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]

Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Roth and Banse, 1932
Roth, W.A.; Banse, H., Die verbrennungs- und bildungswarme von kohlenoxyd und methan, Arch. Eisenhutten., 1932, 6, 43-46. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Rossini, 1931
Rossini, F.D., The heats of combustion of methane and carbon monoxide, J. Res. NBS, 1931, 6, 37-49. [all data]

Colwell J.H., 1963
Colwell J.H., Thermodynamic properties of CH4 and CD4. Interpretation of the properties of solid, J. Chem. Phys., 1963, 39, 635-653. [all data]

Vogt G.J., 1976
Vogt G.J., Entropy and heat capacity of methane; spin-species conversion, J. Chem. Thermodyn., 1976, 8, 1011-1031. [all data]

Friend D.G., 1989
Friend D.G., Thermophysical properties of methane, J. Phys. Chem. Ref. Data, 1989, 18, 583-638. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Giauque W.F., 1931
Giauque W.F., The entropies of methane and ammonia, Phys. Rev., 1931, 38, 196-197. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

McDowell R.S., 1963
McDowell R.S., Thermodynamic functions of methane, J. Chem. Eng. Data, 1963, 8, 547-548. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Van't Zelfde, Omar, et al., 1968
Van't Zelfde, P.; Omar, M.H.; LePair-Schroten, H.G.M.; Dokoupil, Z., Solid-liquid equilibrium diagram for the argon + methane system., Physica (Amsterdam), 1968, 38, 241-51. [all data]

Timmermans, 1935
Timmermans, J., Researches in Stoichiometry. I. The Heat of Fusion of Organic Compounds., Bull. Soc. Chim. Belg., 1935, 44, 17-40. [all data]

Clusius, 1929
Clusius, K., The specific heat of several condensed gases between 10deg. abs. and their triple point., Z. Phys. Chem., Abt. B, 1929, 3, 41. [all data]

Eucken and Karwat, 1924
Eucken, A.; Karwat, E., Determination of the heat content of several condensed gases, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1924, 112, 467. [all data]

Ambrose and Tsonopoulos, 1995
Ambrose, D.; Tsonopoulos, C., Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkenes, J. Chem. Eng. Data, 1995, 40, 531-546. [all data]

Younglove and Ely, 1987
Younglove, B.A.; Ely, J.F., Thermophysical Properties of Fluids II. Methane, Ethane, Propane, Isobutane, and Normal Butane, J. Phys. Chem. Ref. Data, 1987, 16, 577. [all data]

Terry, Lynch, et al., 1969
Terry, M.J.; Lynch, J.T.; Bunclark, M.; Mansell, K.R.; Staveley, L.A.K., The Densities of Liquid Argon, Krypton, Xenon, Oxygen, Nitrogen, Carbon Monoxide, Methane and Carbon Tetrafluoride Along the Orthobaric Liquid Curve, J. Chem. Thermodyn., 1969, 1, 413. [all data]

Vogt and Pitzer, 1976
Vogt, G.J.; Pitzer, K.S., Entropy and heat capacity of methane, spin-species conversion, J. Chem. Thermodynam., 1976, 8, 1011-1031. [all data]

Frank and Clusius, 1937
Frank, A.; Clusius, K., The entropy of methane, Z. Physik. Chem., 1937, B36, 291-300. [all data]

Stock, Henning, et al., 2006
Stock, Alfred; Henning, Fritz; Kuß, Ernst, Dampfdrucktafeln für Temperaturbestimmungen zwischen + 25° und - 185°, Ber. dtsch. Chem. Ges. A/B, 2006, 54, 5, 1119-1129, https://doi.org/10.1002/cber.19210540531 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ott, Goates, et al., 1972
Ott, J. Bevan; Goates, J. Rex; Lamb, John D., Solid-liquid phase equilibria in water + ethylene glycol, The Journal of Chemical Thermodynamics, 1972, 4, 1, 123-126, https://doi.org/10.1016/S0021-9614(72)80015-6 . [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Hestermans and White, 1961
Hestermans, P.; White, David, THE VAPOR PRESSURE, HEAT OF VAPORIZATION AND HEAT CAPACITY OF METHANE FROM THE BOILING POINT TO THE CRITICAL TEMPERATURE, J. Phys. Chem., 1961, 65, 2, 362-365, https://doi.org/10.1021/j100820a044 . [all data]

Frank and Clusius, 1939
Frank, A.; Clusius, K., Z. Phys. Chem. Abt. B, 1939, 42, 395. [all data]

Prydz and Goodwin, 1972
Prydz, R.; Goodwin, R.D., Experimental Melting and Vapor Pressures of Methane, J. Chem. Thermodyn., 1972, 4, 1, 127-133, https://doi.org/10.1016/S0021-9614(72)80016-8 . [all data]

Regnier, 1972
Regnier, J., Tension de Vapeur de L'Ethane Entre 80 et 135 K, J. Chim. Phys., 1972, 69, 942-944. [all data]

Cutler and Morrison, 1965
Cutler, A.J.B.; Morrison, J.A., Excess Thermodynamic Functions for Liquid Mixtures of Methane+Propane, Trans. Faraday Soc., 1965, 61, 429-442, https://doi.org/10.1039/tf9656100429 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Armstrong, Brickwedde, et al., 1955
Armstrong, George T.; Brickwedde, F.G.; Scott, R.B., Vapor pressures of the methanes, J. RES. NATL. BUR. STAN., 1955, 55, 1, 39, https://doi.org/10.6028/jres.055.005 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Tickner and Lossing, 1951
Tickner, A.W.; Lossing, F.P., The Measurement of Low Vapor Pressures by Means of a Mass Spectrometer., J. Phys. Chem., 1951, 55, 5, 733-740, https://doi.org/10.1021/j150488a013 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Ellison, Engelking, et al., 1978
Ellison, G.B.; Engelking, P.C.; Lineberger, W.C., An experimental determination of the geometry and electron affinity of CH3, J. Am. Chem. Soc., 1978, 100, 2556. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas - Phase Stability and Structure of Cluster Ions CH5+(CH4)n with n = 1 - 9, Chem. Phys. Lett., 1989, 161, 2, 111, https://doi.org/10.1016/0009-2614(89)85040-7 . [all data]

Hiraoka and Kebarle, 1975
Hiraoka, K.; Kebarle, P., Energetics, Stabilities and Possible Structures of CH5+(CH4)n Clusters from Gas Phase Study of Equilibria CH5+(CH4)n - 1 + CH4 = CH5+(CH4)n for n = 1 - 5, J. Am. Chem. Soc., 1975, 97, 15, 4179, https://doi.org/10.1021/ja00848a005 . [all data]

Field and Beggs, 1971
Field, F.H.; Beggs, D.P., Reversible Reactions of Gas Phase Ions. III. Studies with Methane at 0.1-1.0 Torr and 77-300 K, J. Am. Chem. Soc., 1971, 93, 7, 1585, https://doi.org/10.1021/ja00736a003 . [all data]

Hiraoka, Mori, et al., 1993
Hiraoka, K.; Mori, T.; Yamabe, S., The Gas-Phase Solvation of C2H5+, s-C3H7+ and s-C4H9+ with CH4. The Isomeric Structures of C2H5+ and C2H5+.CH4, Chem. Phys. Lett., 1993, 207, 2-3, 178, https://doi.org/10.1016/0009-2614(93)87011-Q . [all data]

Hiroka and Kebarle, 1975
Hiroka, K.; Kebarle, P., Information on the Proton Affinity and Protolysis of Propane from Measurement of the Ion Cluster Equilibrium: C2H5+ + CH4 = C3H9+, Can. J. Phys., 1975, 53, 970. [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1996
Haynes, C.L.; Armentrout, P.B., Guided Ion Beam Determination of the Co+ - H2 Bond Dissociation energy, Chem Phys. Let., 1996, 249, 1-2, 64, https://doi.org/10.1016/0009-2614(95)01337-7 . [all data]

Kemper, Bushnell, et al., 1993, 2
Kemper, P.R.; Bushnell, J.; Von Helden, G.; Bowers, M.T., Co+(H2)n Clusters: Binding Energies and Molecular Parameters, J. Chem Phys., 1993, 97, 1, 52, https://doi.org/10.1021/j100103a012 . [all data]

Martinho Simões and Beauchamp, 1990
Martinho Simões, J.A.; Beauchamp, J.L., Chem. Rev., 1990, 90, 629. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Pedley, 1994
Pedley, J.B., Thermodynamic Data and Structures of Organic Compounds; Thermodynamics Research Center Data Series, Vol I, Thermodynamics Research Center, College Station, 1994. [all data]

Martin and Finke, 1990
Martin, B.D.; Finke, R.G., J. Am. Chem. Soc., 1990, 112, 2419. [all data]

Martin and Finke, 1992
Martin, B.D.; Finke, R.G., J. Am. Chem. Soc., 1992, 114, 585. [all data]

Hiraoka and Kebarle, 1976
Hiraoka, K.; Kebarle, P., Stabilities and Energetics of Pentacoordinated Carbonium Ions. The Isomeric C2H7+ Ions and Some Higher Analogues: C3H9+ and C4H11+, J. Am. Chem. Soc., 1976, 98, 20, 6119, https://doi.org/10.1021/ja00436a009 . [all data]

Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W., The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical, J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]

Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O., Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide, J. Phys. Chem., 1965, 69, 3040-3041. [all data]

Nichol and Ubbelohde, 1952
Nichol, R.J.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. part II. Bond strengths based on the reaction CH3I + HI = CH4 + I2, J. Am. Chem. Soc., 1952, 415-421. [all data]

Bennet and Field, 1972
Bennet, S.L.; Field, F.H., Reversible Reactions of Gaseous Ions. V. The Methane - Water System at Low Temperatures, J. Am. Chem. Soc., 1972, 94, 15, 5188, https://doi.org/10.1021/ja00770a008 . [all data]

Bennet and Field, 1972, 2
Bennet, S.L.; Field, F.H., Reversible Reactions of Gaseous Ions. VI. The NH3 - CH4, H2S - CH4 and CF4 - CH4 Systems at Low Temperatures, J. Am. Chem. Soc., 1972, 94, 18, 6305, https://doi.org/10.1021/ja00773a009 . [all data]

Holm, 1974
Holm, T., J. Organometal. Chem., 1974, 77, 27. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W., In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]

Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D., Reaction heats of organic compounds. Part 5.-Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane, Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]

Carson, Hartley, et al., 1949
Carson, A.S.; Hartley, K.; Skinner, H.A., Thermochemistry of metal alkyls. Part II.?The bond dissociation energies of some Zn?C and Cd?C bonds, and of Et?I., Trans. Faraday Soc., 1949, 45, 1159, https://doi.org/10.1039/tf9494501159 . [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References