Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Argon

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar154.846 ± 0.003J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar154.84J/mol*KReviewChase, 1998Data last reviewed in March, 1982

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 6000.
A 20.78600
B 2.825911×10-7
C -1.464191×10-7
D 1.092131×10-8
E -3.661371×10-8
F -6.197350
G 179.9990
H 0.000000
ReferenceChase, 1998
Comment Data last reviewed in March, 1982

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny, director

Quantity Value Units Method Reference Comment
Tboil87.5KN/AStreng, 1971Uncertainty assigned by TRC = 0.3 K; TRC
Tboil87.28KN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tfus83.8KN/AVan't Zelfde, Omar, et al., 1968Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Ttriple87.78KN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple83.8KN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple83.8KN/AZiegler, Mullins, et al., 1962Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple83.78KN/AClark, Din, et al., 1951Uncertainty assigned by TRC = 0.04 K; TRC
Ttriple83.78KN/AClusius and Weigand, 1940Uncertainty assigned by TRC = 0.2 K; See property X for dP/dT at triple point; TRC
Quantity Value Units Method Reference Comment
Ptriple0.689barN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.0001 bar; TRC
Ptriple0.689barN/AZiegler, Mullins, et al., 1962Uncertainty assigned by TRC = 0.0001 bar; TRC
Ptriple0.6875barN/AClark, Din, et al., 1951Uncertainty assigned by TRC = 0.0007 bar; TRC
Quantity Value Units Method Reference Comment
Tc150.86KN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.1 K; TRC
Tc150.86KN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.1 K; TRC
Tc150.65KN/AMcCain and Ziegler, 1967Uncertainty assigned by TRC = 0.03 K; TRC
Quantity Value Units Method Reference Comment
Pc4.8979barN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.002 bar; TRC
Pc48.9805barN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.1013 bar; TRC
Pc48.5549barN/AMcCain and Ziegler, 1967Uncertainty assigned by TRC = 0.0709 bar; TRC
Quantity Value Units Method Reference Comment
rhoc13.41mol/lN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.005 mol/l; TRC
rhoc8.4029mol/lN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.008 mol/l; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
114.40 - 150.314.46903481.01222.156McCain and Ziegler, 1967Coefficents calculated by NIST from author's data.
83.78 - 150.723.29555215.24-22.233Drii and Rabinovich, 1966Coefficents calculated by NIST from author's data.
129.33 - 147.404.97171658.98249.819van Itterbeek, Verbeke, et al., 1963Coefficents calculated by NIST from author's data.
90.94 - 101.483.73479302.683-6.083Clark, Din, et al., 1951, 2Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Lithium ion (1+) + Argon = (Lithium ion (1+) bullet Argon)

By formula: Li+ + Ar = (Li+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar30. ± 4.kJ/molAVGN/AAverage of 4 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar30.J/mol*KDTMcKnight and Sawina, 1973gas phase; «DELTA»rS approximate; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
5.9294.IMobCassidy and Elford, 1985gas phase; M
7.9319.DTKeller, Beyer, et al., 1973gas phase; LOW E/N; M
11.215.DTMcKnight and Sawina, 1973gas phase; «DELTA»rS approximate; M

Ar+ + Argon = (Ar+ bullet Argon)

By formula: Ar+ + Ar = (Ar+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar100. ± 90.kJ/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar53.6J/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)Ar; Turner and Conway, 1979, Liu and Conway, 1975; M

Potassium ion (1+) + Argon = (Potassium ion (1+) bullet Argon)

By formula: K+ + Ar = (K+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar12. ± 3.kJ/molAVGN/AAverage of 9 values; Individual data points

Nitrogen cation + Argon = (Nitrogen cation bullet Argon)

By formula: N2+ + Ar = (N2+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar112.kJ/molPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M
Deltar106.kJ/molPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M
Quantity Value Units Method Reference Comment
Deltar81.6J/mol*KPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M
Deltar57.3J/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M

Cesium ion (1+) + Argon = (Cesium ion (1+) bullet Argon)

By formula: Cs+ + Ar = (Cs+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar8.16kJ/molIMobGatland, 1984gas phase; M
Deltar6.11kJ/molSCATTERINGGislason, 1984gas phase; M
Deltar8.20kJ/molIMobViehland, 1984gas phase; M
Deltar9.54kJ/molIMobTakebe, 1983gas phase; M
Deltar9.6kJ/molIMobTakebe, 1983gas phase; values from this reference are consistently too high; M

Chromium ion (1+) + Argon = (Chromium ion (1+) bullet Argon)

By formula: Cr+ + Ar = (Cr+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar29. ± 2.kJ/molSIDTKemper, Hsu, et al., 1991gas phase; «DELTA»rH(0 K) = 27.4 kJ/mol, «DELTA»rS(100 K) = 60.2 J/mol*K; M
Quantity Value Units Method Reference Comment
Deltar66.1J/mol*KSIDTKemper, Hsu, et al., 1991gas phase; «DELTA»rH(0 K) = 27.4 kJ/mol, «DELTA»rS(100 K) = 60.2 J/mol*K; M

Sodium ion (1+) + Argon = (Sodium ion (1+) bullet Argon)

By formula: Na+ + Ar = (Na+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar15. ± 8.8kJ/molCIDTArmentrout and Rodgers, 2000RCD
Deltar15.5kJ/molSCATTERINGGislason, 1984gas phase; M
Deltar18.4kJ/molIMobViehland, 1984gas phase; M
Deltar18.kJ/molDTMcKnight and Sawina, 1973gas phase; M
Deltar20.4kJ/molIMobTakebe, 1983gas phase; M

H3+ + Argon = (H3+ bullet Argon)

By formula: H3+ + Ar = (H3+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar28.0 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Deltar31. ± 3.kJ/molSIFTBedford and Smith, 1990gas phase; switching reaction(H3+)H2, Hiraoka and Mori, 1989; M
Quantity Value Units Method Reference Comment
Deltar56.1J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

Xe+ + Argon = (Xe+ bullet Argon)

By formula: Xe+ + Ar = (Xe+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar17.kJ/molPIDehmer and Pratt, 1982gas phase; M
Deltar25.kJ/molSIFTJones, Lister, et al., 1980gas phase; M
Deltar13.kJ/molPINg, Tiedemann, et al., 1977gas phase; M
Quantity Value Units Method Reference Comment
Deltar81.2J/mol*KSIFTJones, Lister, et al., 1980gas phase; M

(Ar+ bullet 2Argon) + Argon = (Ar+ bullet 3Argon)

By formula: (Ar+ bullet 2Ar) + Ar = (Ar+ bullet 3Ar)

Quantity Value Units Method Reference Comment
Deltar20. ± 1.kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.4J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
8.477.PHPMSTeng and Conway, 1973gas phase; M

(Nitrogen cation bullet 7Argon) + Argon = (Nitrogen cation bullet 8Argon)

By formula: (N2+ bullet 7Ar) + Ar = (N2+ bullet 8Ar)

Quantity Value Units Method Reference Comment
Deltar6.40kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

(Nitrogen cation bullet 8Argon) + Argon = (Nitrogen cation bullet 9Argon)

By formula: (N2+ bullet 8Ar) + Ar = (N2+ bullet 9Ar)

Quantity Value Units Method Reference Comment
Deltar6.36kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

Fluorine anion + Argon = ArF-

By formula: F- + Ar = ArF-

Quantity Value Units Method Reference Comment
Deltar8.37kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B
Quantity Value Units Method Reference Comment
Deltar-16.6kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B

Rubidium ion (1+) + Argon = (Rubidium ion (1+) bullet Argon)

By formula: Rb+ + Ar = (Rb+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar8.49kJ/molIMobGatland, 1984gas phase; M
Deltar8.28kJ/molIMobViehland, 1984gas phase; M
Deltar11.9kJ/molIMobTakebe, 1983gas phase; M

(O- bullet 10Argon) + Argon = (O- bullet 11Argon)

By formula: (O- bullet 10Ar) + Ar = (O- bullet 11Ar)

Quantity Value Units Method Reference Comment
Deltar2. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 11Argon) + Argon = (O- bullet 12Argon)

By formula: (O- bullet 11Ar) + Ar = (O- bullet 12Ar)

Quantity Value Units Method Reference Comment
Deltar3. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 12Argon) + Argon = (O- bullet 13Argon)

By formula: (O- bullet 12Ar) + Ar = (O- bullet 13Ar)

Quantity Value Units Method Reference Comment
Deltar0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 13Argon) + Argon = (O- bullet 14Argon)

By formula: (O- bullet 13Ar) + Ar = (O- bullet 14Ar)

Quantity Value Units Method Reference Comment
Deltar0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 14Argon) + Argon = (O- bullet 15Argon)

By formula: (O- bullet 14Ar) + Ar = (O- bullet 15Ar)

Quantity Value Units Method Reference Comment
Deltar2. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 15Argon) + Argon = (O- bullet 16Argon)

By formula: (O- bullet 15Ar) + Ar = (O- bullet 16Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 16Argon) + Argon = (O- bullet 17Argon)

By formula: (O- bullet 16Ar) + Ar = (O- bullet 17Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 17Argon) + Argon = (O- bullet 18Argon)

By formula: (O- bullet 17Ar) + Ar = (O- bullet 18Ar)

Quantity Value Units Method Reference Comment
Deltar0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 18Argon) + Argon = (O- bullet 19Argon)

By formula: (O- bullet 18Ar) + Ar = (O- bullet 19Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 19Argon) + Argon = (O- bullet 20Argon)

By formula: (O- bullet 19Ar) + Ar = (O- bullet 20Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 20Argon) + Argon = (O- bullet 21Argon)

By formula: (O- bullet 20Ar) + Ar = (O- bullet 21Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 21Argon) + Argon = (O- bullet 22Argon)

By formula: (O- bullet 21Ar) + Ar = (O- bullet 22Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 22Argon) + Argon = (O- bullet 23Argon)

By formula: (O- bullet 22Ar) + Ar = (O- bullet 23Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 23Argon) + Argon = (O- bullet 24Argon)

By formula: (O- bullet 23Ar) + Ar = (O- bullet 24Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 24Argon) + Argon = (O- bullet 25Argon)

By formula: (O- bullet 24Ar) + Ar = (O- bullet 25Ar)

Quantity Value Units Method Reference Comment
Deltar0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 25Argon) + Argon = (O- bullet 26Argon)

By formula: (O- bullet 25Ar) + Ar = (O- bullet 26Ar)

Quantity Value Units Method Reference Comment
Deltar0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 9Argon) + Argon = (O- bullet 10Argon)

By formula: (O- bullet 9Ar) + Ar = (O- bullet 10Ar)

Quantity Value Units Method Reference Comment
Deltar3. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 2Argon) + Argon = (O- bullet 3Argon)

By formula: (O- bullet 2Ar) + Ar = (O- bullet 3Ar)

Quantity Value Units Method Reference Comment
Deltar6.7 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 3Argon) + Argon = (O- bullet 4Argon)

By formula: (O- bullet 3Ar) + Ar = (O- bullet 4Ar)

Quantity Value Units Method Reference Comment
Deltar5.9 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 4Argon) + Argon = (O- bullet 5Argon)

By formula: (O- bullet 4Ar) + Ar = (O- bullet 5Ar)

Quantity Value Units Method Reference Comment
Deltar5.0 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 5Argon) + Argon = (O- bullet 6Argon)

By formula: (O- bullet 5Ar) + Ar = (O- bullet 6Ar)

Quantity Value Units Method Reference Comment
Deltar5.0 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 6Argon) + Argon = (O- bullet 7Argon)

By formula: (O- bullet 6Ar) + Ar = (O- bullet 7Ar)

Quantity Value Units Method Reference Comment
Deltar4.2 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 7Argon) + Argon = (O- bullet 8Argon)

By formula: (O- bullet 7Ar) + Ar = (O- bullet 8Ar)

Quantity Value Units Method Reference Comment
Deltar4. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 8Argon) + Argon = (O- bullet 9Argon)

By formula: (O- bullet 8Ar) + Ar = (O- bullet 9Ar)

Quantity Value Units Method Reference Comment
Deltar4. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet Argon) + Argon = (O- bullet 2Argon)

By formula: (O- bullet Ar) + Ar = (O- bullet 2Ar)

Quantity Value Units Method Reference Comment
Deltar8.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Ar+ bullet Argon) + Argon = (Ar+ bullet 2Argon)

By formula: (Ar+ bullet Ar) + Ar = (Ar+ bullet 2Ar)

Quantity Value Units Method Reference Comment
Deltar21.2 ± 0.3kJ/molPHPMSTurner and Conway, 1979gas phase; M
Quantity Value Units Method Reference Comment
Deltar84.9J/mol*KPHPMSTurner and Conway, 1979gas phase; M

(Nitrogen cation bullet Argon) + Argon = (Nitrogen cation bullet 2Argon)

By formula: (N2+ bullet Ar) + Ar = (N2+ bullet 2Ar)

Quantity Value Units Method Reference Comment
Deltar16.kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; «DELTA»rH>; M
Quantity Value Units Method Reference Comment
Deltar71.J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; «DELTA»rH>; M

O- + Argon = (O- bullet Argon)

By formula: O- + Ar = (O- bullet Ar)

Quantity Value Units Method Reference Comment
Deltar9.2 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Ar+ bullet 10Argon) + Argon = (Ar+ bullet 11Argon)

By formula: (Ar+ bullet 10Ar) + Ar = (Ar+ bullet 11Ar)

Quantity Value Units Method Reference Comment
Deltar6.5 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.8J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ bullet 9Argon) + Argon = (Ar+ bullet 10Argon)

By formula: (Ar+ bullet 9Ar) + Ar = (Ar+ bullet 10Ar)

Quantity Value Units Method Reference Comment
Deltar6.49 ± 0.84kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar71.5J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(D3+ bullet 2Argon) + Argon = (D3+ bullet 3Argon)

By formula: (D3+ bullet 2Ar) + Ar = (D3+ bullet 3Ar)

Quantity Value Units Method Reference Comment
Deltar18.6 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar77.0J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ bullet 3Argon) + Argon = (D3+ bullet 4Argon)

By formula: (D3+ bullet 3Ar) + Ar = (D3+ bullet 4Ar)

Quantity Value Units Method Reference Comment
Deltar10.2 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar69.5J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ bullet 4Argon) + Argon = (D3+ bullet 5Argon)

By formula: (D3+ bullet 4Ar) + Ar = (D3+ bullet 5Ar)

Quantity Value Units Method Reference Comment
Deltar9.5 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.8J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ bullet 5Argon) + Argon = (D3+ bullet 6Argon)

By formula: (D3+ bullet 5Ar) + Ar = (D3+ bullet 6Ar)

Quantity Value Units Method Reference Comment
Deltar9.1 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar79.9J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ bullet 6Argon) + Argon = (D3+ bullet 7Argon)

By formula: (D3+ bullet 6Ar) + Ar = (D3+ bullet 7Ar)

Quantity Value Units Method Reference Comment
Deltar6.5 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar105.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Ar+ bullet 3Argon) + Argon = (Ar+ bullet 4Argon)

By formula: (Ar+ bullet 3Ar) + Ar = (Ar+ bullet 4Ar)

Quantity Value Units Method Reference Comment
Deltar7.0 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar58.2J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/kg*bar)
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/kg*bar) d(ln(kH))/d(1/T) (K) Method Reference
0.00141500.LN/A
0.00141100.MN/A

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)15.759 ± 0.001eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)369.2kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity346.3kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
15.763PIPECOWeitzel, Mahnert, et al., 1994LL
15.75962EVALLide, 1992LL
15.82EIWetzel, Baiocchi, et al., 1987LBLHLM
15.760SKelly, 1987LBLHLM
15.759PEKimura, Katsumata, et al., 1981LLK
15.88EIClare and Sowerby, 1981LLK
15.7EIFreiser, 1980LLK
15.75962 ± 0.00001SMinnhagen, 1973LLK
15.753 ± 0.002TESpohr, Guyon, et al., 1971LLK
15.75962 ± 0.00001SYoshino, 1970RDSH
15.759SYoshino, 1969RDSH
15.713 ± 0.003CIHotop and Niehaus, 1969RDSH
15.757 ± 0.005PECollin and Natalis, 1968RDSH
15.74 ± 0.05EIGallegos and Klaver, 1967RDSH
15.78 ± 0.03EIWinters, Collins, et al., 1966RDSH
15.79PEAl-Joboury and Turner, 1963RDSH

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Ar+ + Argon = (Ar+ bullet Argon)

By formula: Ar+ + Ar = (Ar+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar100. ± 90.kJ/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar53.6J/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)Ar; Turner and Conway, 1979, Liu and Conway, 1975; M

(Ar+ bullet Argon) + Argon = (Ar+ bullet 2Argon)

By formula: (Ar+ bullet Ar) + Ar = (Ar+ bullet 2Ar)

Quantity Value Units Method Reference Comment
Deltar21.2 ± 0.3kJ/molPHPMSTurner and Conway, 1979gas phase; M
Quantity Value Units Method Reference Comment
Deltar84.9J/mol*KPHPMSTurner and Conway, 1979gas phase; M

(Ar+ bullet 2Argon) + Argon = (Ar+ bullet 3Argon)

By formula: (Ar+ bullet 2Ar) + Ar = (Ar+ bullet 3Ar)

Quantity Value Units Method Reference Comment
Deltar20. ± 1.kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.4J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
8.477.PHPMSTeng and Conway, 1973gas phase; M

(Ar+ bullet 3Argon) + Argon = (Ar+ bullet 4Argon)

By formula: (Ar+ bullet 3Ar) + Ar = (Ar+ bullet 4Ar)

Quantity Value Units Method Reference Comment
Deltar7.0 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar58.2J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ bullet 4Argon) + Argon = (Ar+ bullet 5Argon)

By formula: (Ar+ bullet 4Ar) + Ar = (Ar+ bullet 5Ar)

Quantity Value Units Method Reference Comment
Deltar6.8 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar67.4J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ bullet 5Argon) + Argon = (Ar+ bullet 6Argon)

By formula: (Ar+ bullet 5Ar) + Ar = (Ar+ bullet 6Ar)

Quantity Value Units Method Reference Comment
Deltar6.8 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar71.1J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ bullet 6Argon) + Argon = (Ar+ bullet 7Argon)

By formula: (Ar+ bullet 6Ar) + Ar = (Ar+ bullet 7Ar)

Quantity Value Units Method Reference Comment
Deltar6.7 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.8J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ bullet 7Argon) + Argon = (Ar+ bullet 8Argon)

By formula: (Ar+ bullet 7Ar) + Ar = (Ar+ bullet 8Ar)

Quantity Value Units Method Reference Comment
Deltar6.7 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.8J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ bullet 8Argon) + Argon = (Ar+ bullet 9Argon)

By formula: (Ar+ bullet 8Ar) + Ar = (Ar+ bullet 9Ar)

Quantity Value Units Method Reference Comment
Deltar6.6 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.4J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ bullet 9Argon) + Argon = (Ar+ bullet 10Argon)

By formula: (Ar+ bullet 9Ar) + Ar = (Ar+ bullet 10Ar)

Quantity Value Units Method Reference Comment
Deltar6.49 ± 0.84kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar71.5J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ bullet 10Argon) + Argon = (Ar+ bullet 11Argon)

By formula: (Ar+ bullet 10Ar) + Ar = (Ar+ bullet 11Ar)

Quantity Value Units Method Reference Comment
Deltar6.5 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.8J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

ArNO- + 2Argon = Ar2NO-

By formula: ArNO- + 2Ar = Ar2NO-

Quantity Value Units Method Reference Comment
Deltar6.28kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar2NO- + 3Argon = Ar3NO-

By formula: Ar2NO- + 3Ar = Ar3NO-

Quantity Value Units Method Reference Comment
Deltar5.44kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar3NO- + 4Argon = Ar4NO-

By formula: Ar3NO- + 4Ar = Ar4NO-

Quantity Value Units Method Reference Comment
Deltar5.44kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar4NO- + 5Argon = Ar5NO-

By formula: Ar4NO- + 5Ar = Ar5NO-

Quantity Value Units Method Reference Comment
Deltar5.44kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar5NO- + 6Argon = Ar6NO-

By formula: Ar5NO- + 6Ar = Ar6NO-

Quantity Value Units Method Reference Comment
Deltar5.02kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar6NO- + 7Argon = Ar7NO-

By formula: Ar6NO- + 7Ar = Ar7NO-

Quantity Value Units Method Reference Comment
Deltar3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar7NO- + 8Argon = Ar8NO-

By formula: Ar7NO- + 8Ar = Ar8NO-

Quantity Value Units Method Reference Comment
Deltar3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar8NO- + 9Argon = Ar9NO-

By formula: Ar8NO- + 9Ar = Ar9NO-

Quantity Value Units Method Reference Comment
Deltar2.9kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar9NO- + 10Argon = Ar10NO-

By formula: Ar9NO- + 10Ar = Ar10NO-

Quantity Value Units Method Reference Comment
Deltar2.9kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar10NO- + 11Argon = Ar11NO-

By formula: Ar10NO- + 11Ar = Ar11NO-

Quantity Value Units Method Reference Comment
Deltar2.5kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar11NO- + 12Argon = Ar12NO-

By formula: Ar11NO- + 12Ar = Ar12NO-

Quantity Value Units Method Reference Comment
Deltar2.9kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar12NO- + 13Argon = Ar13NO-

By formula: Ar12NO- + 13Ar = Ar13NO-

Quantity Value Units Method Reference Comment
Deltar1.3kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar13NO- + 14Argon = Ar14NO-

By formula: Ar13NO- + 14Ar = Ar14NO-

Quantity Value Units Method Reference Comment
Deltar0.84kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Bromine anion + Argon = (Bromine anion bullet Argon)

By formula: Br- + Ar = (Br- bullet Ar)

Quantity Value Units Method Reference Comment
Deltar3.3kJ/molTherZhao, Yourshaw, et al., 1994gas phase; B
Deltar5.86kJ/molMoblGatland, 1984, 2gas phase; B,M

Methyl cation + Argon = (Methyl cation bullet Argon)

By formula: CH3+ + Ar = (CH3+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar47.3 ± 8.4kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar84.1J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation bullet Argon) + Argon = (Methyl cation bullet 2Argon)

By formula: (CH3+ bullet Ar) + Ar = (CH3+ bullet 2Ar)

Quantity Value Units Method Reference Comment
Deltar9.5 ± 0.8kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar65.7J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation bullet 2Argon) + Argon = (Methyl cation bullet 3Argon)

By formula: (CH3+ bullet 2Ar) + Ar = (CH3+ bullet 3Ar)

Quantity Value Units Method Reference Comment
Deltar8.2 ± 0.8kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar93.3J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation bullet 3Argon) + Argon = (Methyl cation bullet 4Argon)

By formula: (CH3+ bullet 3Ar) + Ar = (CH3+ bullet 4Ar)

Quantity Value Units Method Reference Comment
Deltar8.2 ± 0.8kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar88.3J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation bullet 4Argon) + Argon = (Methyl cation bullet 5Argon)

By formula: (CH3+ bullet 4Ar) + Ar = (CH3+ bullet 5Ar)

Quantity Value Units Method Reference Comment
Deltar8.1 ± 0.8kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar86.2J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation bullet 5Argon) + Argon = (Methyl cation bullet 6Argon)

By formula: (CH3+ bullet 5Ar) + Ar = (CH3+ bullet 6Ar)

Quantity Value Units Method Reference Comment
Deltar8. ± 1.kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar87.9J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation bullet 6Argon) + Argon = (Methyl cation bullet 7Argon)

By formula: (CH3+ bullet 6Ar) + Ar = (CH3+ bullet 7Ar)

Quantity Value Units Method Reference Comment
Deltar8. ± 2.kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar88.7J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation bullet 7Argon) + Argon = (Methyl cation bullet 8Argon)

By formula: (CH3+ bullet 7Ar) + Ar = (CH3+ bullet 8Ar)

Quantity Value Units Method Reference Comment
Deltar8.08kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; Entropy change calculated or estimated; M

CO+ + Argon = (CO+ bullet Argon)

By formula: CO+ + Ar = (CO+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar67.4 ± 5.9kJ/molPIPECONorwood, Guo, et al., 1989gas phase; CO+(X) ground state; M

CO2+ + Argon = (CO2+ bullet Argon)

By formula: CO2+ + Ar = (CO2+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar25.kJ/molPIPratt and Dehmer, 1983gas phase; M

Cobalt ion (1+) + Argon = (Cobalt ion (1+) bullet Argon)

By formula: Co+ + Ar = (Co+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar49.4kJ/molPDisAsher, Bellert, et al., 1994RCD

Chromium ion (1+) + Argon = (Chromium ion (1+) bullet Argon)

By formula: Cr+ + Ar = (Cr+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar29. ± 2.kJ/molSIDTKemper, Hsu, et al., 1991gas phase; «DELTA»rH(0 K) = 27.4 kJ/mol, «DELTA»rS(100 K) = 60.2 J/mol*K; M
Quantity Value Units Method Reference Comment
Deltar66.1J/mol*KSIDTKemper, Hsu, et al., 1991gas phase; «DELTA»rH(0 K) = 27.4 kJ/mol, «DELTA»rS(100 K) = 60.2 J/mol*K; M

Cesium ion (1+) + Argon = (Cesium ion (1+) bullet Argon)

By formula: Cs+ + Ar = (Cs+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar8.16kJ/molIMobGatland, 1984gas phase; M
Deltar6.11kJ/molSCATTERINGGislason, 1984gas phase; M
Deltar8.20kJ/molIMobViehland, 1984gas phase; M
Deltar9.54kJ/molIMobTakebe, 1983gas phase; M
Deltar9.6kJ/molIMobTakebe, 1983gas phase; values from this reference are consistently too high; M

D3+ + Argon = (D3+ bullet Argon)

By formula: D3+ + Ar = (D3+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar29.1 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar60.7J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ bullet Argon) + Argon = (D3+ bullet 2Argon)

By formula: (D3+ bullet Ar) + Ar = (D3+ bullet 2Ar)

Quantity Value Units Method Reference Comment
Deltar20.1 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar73.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ bullet 2Argon) + Argon = (D3+ bullet 3Argon)

By formula: (D3+ bullet 2Ar) + Ar = (D3+ bullet 3Ar)

Quantity Value Units Method Reference Comment
Deltar18.6 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar77.0J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ bullet 3Argon) + Argon = (D3+ bullet 4Argon)

By formula: (D3+ bullet 3Ar) + Ar = (D3+ bullet 4Ar)

Quantity Value Units Method Reference Comment
Deltar10.2 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar69.5J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ bullet 4Argon) + Argon = (D3+ bullet 5Argon)

By formula: (D3+ bullet 4Ar) + Ar = (D3+ bullet 5Ar)

Quantity Value Units Method Reference Comment
Deltar9.5 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.8J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ bullet 5Argon) + Argon = (D3+ bullet 6Argon)

By formula: (D3+ bullet 5Ar) + Ar = (D3+ bullet 6Ar)

Quantity Value Units Method Reference Comment
Deltar9.1 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar79.9J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ bullet 6Argon) + Argon = (D3+ bullet 7Argon)

By formula: (D3+ bullet 6Ar) + Ar = (D3+ bullet 7Ar)

Quantity Value Units Method Reference Comment
Deltar6.5 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar105.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

Fluorine anion + Argon = ArF-

By formula: F- + Ar = ArF-

Quantity Value Units Method Reference Comment
Deltar8.37kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B
Quantity Value Units Method Reference Comment
Deltar-16.6kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B

Iron ion (1+) + Argon = (Iron ion (1+) bullet Argon)

By formula: Fe+ + Ar = (Fe+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar11. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Hydrogen cation + Argon = (Hydrogen cation bullet Argon)

By formula: H2+ + Ar = (H2+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar100.kJ/molSIFTBedford and Smith, 1990gas phase; switching reaction(Ar+)Ar, «DELTA»rH>; M

H3+ + Argon = (H3+ bullet Argon)

By formula: H3+ + Ar = (H3+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar28.0 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Deltar31. ± 3.kJ/molSIFTBedford and Smith, 1990gas phase; switching reaction(H3+)H2, Hiraoka and Mori, 1989; M
Quantity Value Units Method Reference Comment
Deltar56.1J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ bullet Argon) + Argon = (H3+ bullet 2Argon)

By formula: (H3+ bullet Ar) + Ar = (H3+ bullet 2Ar)

Quantity Value Units Method Reference Comment
Deltar19.1 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar66.9J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ bullet 2Argon) + Argon = (H3+ bullet 3Argon)

By formula: (H3+ bullet 2Ar) + Ar = (H3+ bullet 3Ar)

Quantity Value Units Method Reference Comment
Deltar17.9 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.4J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ bullet 3Argon) + Argon = (H3+ bullet 4Argon)

By formula: (H3+ bullet 3Ar) + Ar = (H3+ bullet 4Ar)

Quantity Value Units Method Reference Comment
Deltar10.3 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar67.4J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ bullet 4Argon) + Argon = (H3+ bullet 5Argon)

By formula: (H3+ bullet 4Ar) + Ar = (H3+ bullet 5Ar)

Quantity Value Units Method Reference Comment
Deltar9.5 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar69.9J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ bullet 5Argon) + Argon = (H3+ bullet 6Argon)

By formula: (H3+ bullet 5Ar) + Ar = (H3+ bullet 6Ar)

Quantity Value Units Method Reference Comment
Deltar9.1 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar78.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ bullet 6Argon) + Argon = (H3+ bullet 7Argon)

By formula: (H3+ bullet 6Ar) + Ar = (H3+ bullet 7Ar)

Quantity Value Units Method Reference Comment
Deltar6.5 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar96.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

Hg+ + Argon = (Hg+ bullet Argon)

By formula: Hg+ + Ar = (Hg+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar22. ± 2.kJ/molPILinn, Brom, et al., 1985gas phase; M

Iodide + Argon = (Iodide bullet Argon)

By formula: I- + Ar = (I- bullet Ar)

Quantity Value Units Method Reference Comment
Deltar2.5kJ/molTherZhao, Yourshaw, et al., 1994gas phase; B

Potassium ion (1+) + Argon = (Potassium ion (1+) bullet Argon)

By formula: K+ + Ar = (K+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar12. ± 3.kJ/molAVGN/AAverage of 9 values; Individual data points

Kr+ + Argon = (Kr+ bullet Argon)

By formula: Kr+ + Ar = (Kr+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar51.0kJ/molPIDehmer and Pratt, 1982gas phase; M
Deltar56.9kJ/molPINg, Tiedemann, et al., 1977gas phase; M

Lithium ion (1+) + Argon = (Lithium ion (1+) bullet Argon)

By formula: Li+ + Ar = (Li+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar30. ± 4.kJ/molAVGN/AAverage of 4 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar30.J/mol*KDTMcKnight and Sawina, 1973gas phase; «DELTA»rS approximate; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
5.9294.IMobCassidy and Elford, 1985gas phase; M
7.9319.DTKeller, Beyer, et al., 1973gas phase; LOW E/N; M
11.215.DTMcKnight and Sawina, 1973gas phase; «DELTA»rS approximate; M

Magnesium ion (1+) + Argon = (Magnesium ion (1+) bullet Argon)

By formula: Mg+ + Ar = (Mg+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar9.6 ± 6.7kJ/molCIDTAndersen, Muntean, et al., 2000RCD

N+ + Argon = (N+ bullet Argon)

By formula: N+ + Ar = (N+ bullet Ar)

Enthalpy of reaction

DeltarH° (kJ/mol) T (K) Method Reference Comment
118. (+44.,-0.) CIDHaynes, Freysinger, et al., 1995gas phase; giuded ion beam CID; M

Nitric oxide anion + Argon = (Nitric oxide anion bullet Argon)

By formula: NO- + Ar = (NO- bullet Ar)

Quantity Value Units Method Reference Comment
Deltar5.4 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Deltar6.7 ± 1.3kJ/molN/ABowen and Eaton, 1988gas phase; B

Nitrogen cation + Argon = (Nitrogen cation bullet Argon)

By formula: N2+ + Ar = (N2+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar112.kJ/molPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M
Deltar106.kJ/molPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M
Quantity Value Units Method Reference Comment
Deltar81.6J/mol*KPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M
Deltar57.3J/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M

(Nitrogen cation bullet Argon) + Argon = (Nitrogen cation bullet 2Argon)

By formula: (N2+ bullet Ar) + Ar = (N2+ bullet 2Ar)

Quantity Value Units Method Reference Comment
Deltar16.kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; «DELTA»rH>; M
Quantity Value Units Method Reference Comment
Deltar71.J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; «DELTA»rH>; M

(Nitrogen cation bullet 2Argon) + Argon = (Nitrogen cation bullet 3Argon)

By formula: (N2+ bullet 2Ar) + Ar = (N2+ bullet 3Ar)

Quantity Value Units Method Reference Comment
Deltar7.3 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Deltar57.3J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; M

(Nitrogen cation bullet 3Argon) + Argon = (Nitrogen cation bullet 4Argon)

By formula: (N2+ bullet 3Ar) + Ar = (N2+ bullet 4Ar)

Quantity Value Units Method Reference Comment
Deltar7.0 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Deltar74.9J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; M

(Nitrogen cation bullet 4Argon) + Argon = (Nitrogen cation bullet 5Argon)

By formula: (N2+ bullet 4Ar) + Ar = (N2+ bullet 5Ar)

Quantity Value Units Method Reference Comment
Deltar6.6 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Deltar71.1J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; M

(Nitrogen cation bullet 5Argon) + Argon = (Nitrogen cation bullet 6Argon)

By formula: (N2+ bullet 5Ar) + Ar = (N2+ bullet 6Ar)

Quantity Value Units Method Reference Comment
Deltar6.5 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.8J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; M

(Nitrogen cation bullet 6Argon) + Argon = (Nitrogen cation bullet 7Argon)

By formula: (N2+ bullet 6Ar) + Ar = (N2+ bullet 7Ar)

Quantity Value Units Method Reference Comment
Deltar6.4 ± 0.8kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Deltar72.4J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; M

(Nitrogen cation bullet 7Argon) + Argon = (Nitrogen cation bullet 8Argon)

By formula: (N2+ bullet 7Ar) + Ar = (N2+ bullet 8Ar)

Quantity Value Units Method Reference Comment
Deltar6.40kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

(Nitrogen cation bullet 8Argon) + Argon = (Nitrogen cation bullet 9Argon)

By formula: (N2+ bullet 8Ar) + Ar = (N2+ bullet 9Ar)

Quantity Value Units Method Reference Comment
Deltar6.36kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

Sodium ion (1+) + Argon = (Sodium ion (1+) bullet Argon)

By formula: Na+ + Ar = (Na+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar15. ± 8.8kJ/molCIDTArmentrout and Rodgers, 2000RCD
Deltar15.5kJ/molSCATTERINGGislason, 1984gas phase; M
Deltar18.4kJ/molIMobViehland, 1984gas phase; M
Deltar18.kJ/molDTMcKnight and Sawina, 1973gas phase; M
Deltar20.4kJ/molIMobTakebe, 1983gas phase; M

O- + Argon = (O- bullet Argon)

By formula: O- + Ar = (O- bullet Ar)

Quantity Value Units Method Reference Comment
Deltar9.2 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet Argon) + Argon = (O- bullet 2Argon)

By formula: (O- bullet Ar) + Ar = (O- bullet 2Ar)

Quantity Value Units Method Reference Comment
Deltar8.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 2Argon) + Argon = (O- bullet 3Argon)

By formula: (O- bullet 2Ar) + Ar = (O- bullet 3Ar)

Quantity Value Units Method Reference Comment
Deltar6.7 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 3Argon) + Argon = (O- bullet 4Argon)

By formula: (O- bullet 3Ar) + Ar = (O- bullet 4Ar)

Quantity Value Units Method Reference Comment
Deltar5.9 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 4Argon) + Argon = (O- bullet 5Argon)

By formula: (O- bullet 4Ar) + Ar = (O- bullet 5Ar)

Quantity Value Units Method Reference Comment
Deltar5.0 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 5Argon) + Argon = (O- bullet 6Argon)

By formula: (O- bullet 5Ar) + Ar = (O- bullet 6Ar)

Quantity Value Units Method Reference Comment
Deltar5.0 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 6Argon) + Argon = (O- bullet 7Argon)

By formula: (O- bullet 6Ar) + Ar = (O- bullet 7Ar)

Quantity Value Units Method Reference Comment
Deltar4.2 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 7Argon) + Argon = (O- bullet 8Argon)

By formula: (O- bullet 7Ar) + Ar = (O- bullet 8Ar)

Quantity Value Units Method Reference Comment
Deltar4. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 8Argon) + Argon = (O- bullet 9Argon)

By formula: (O- bullet 8Ar) + Ar = (O- bullet 9Ar)

Quantity Value Units Method Reference Comment
Deltar4. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 9Argon) + Argon = (O- bullet 10Argon)

By formula: (O- bullet 9Ar) + Ar = (O- bullet 10Ar)

Quantity Value Units Method Reference Comment
Deltar3. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 10Argon) + Argon = (O- bullet 11Argon)

By formula: (O- bullet 10Ar) + Ar = (O- bullet 11Ar)

Quantity Value Units Method Reference Comment
Deltar2. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 11Argon) + Argon = (O- bullet 12Argon)

By formula: (O- bullet 11Ar) + Ar = (O- bullet 12Ar)

Quantity Value Units Method Reference Comment
Deltar3. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 12Argon) + Argon = (O- bullet 13Argon)

By formula: (O- bullet 12Ar) + Ar = (O- bullet 13Ar)

Quantity Value Units Method Reference Comment
Deltar0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 13Argon) + Argon = (O- bullet 14Argon)

By formula: (O- bullet 13Ar) + Ar = (O- bullet 14Ar)

Quantity Value Units Method Reference Comment
Deltar0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 14Argon) + Argon = (O- bullet 15Argon)

By formula: (O- bullet 14Ar) + Ar = (O- bullet 15Ar)

Quantity Value Units Method Reference Comment
Deltar2. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 15Argon) + Argon = (O- bullet 16Argon)

By formula: (O- bullet 15Ar) + Ar = (O- bullet 16Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 16Argon) + Argon = (O- bullet 17Argon)

By formula: (O- bullet 16Ar) + Ar = (O- bullet 17Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 17Argon) + Argon = (O- bullet 18Argon)

By formula: (O- bullet 17Ar) + Ar = (O- bullet 18Ar)

Quantity Value Units Method Reference Comment
Deltar0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 18Argon) + Argon = (O- bullet 19Argon)

By formula: (O- bullet 18Ar) + Ar = (O- bullet 19Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 19Argon) + Argon = (O- bullet 20Argon)

By formula: (O- bullet 19Ar) + Ar = (O- bullet 20Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 20Argon) + Argon = (O- bullet 21Argon)

By formula: (O- bullet 20Ar) + Ar = (O- bullet 21Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 21Argon) + Argon = (O- bullet 22Argon)

By formula: (O- bullet 21Ar) + Ar = (O- bullet 22Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 22Argon) + Argon = (O- bullet 23Argon)

By formula: (O- bullet 22Ar) + Ar = (O- bullet 23Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 23Argon) + Argon = (O- bullet 24Argon)

By formula: (O- bullet 23Ar) + Ar = (O- bullet 24Ar)

Quantity Value Units Method Reference Comment
Deltar0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 24Argon) + Argon = (O- bullet 25Argon)

By formula: (O- bullet 24Ar) + Ar = (O- bullet 25Ar)

Quantity Value Units Method Reference Comment
Deltar0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- bullet 25Argon) + Argon = (O- bullet 26Argon)

By formula: (O- bullet 25Ar) + Ar = (O- bullet 26Ar)

Quantity Value Units Method Reference Comment
Deltar0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

Oxygen anion + Argon = (Oxygen anion bullet Argon)

By formula: O2- + Ar = (O2- bullet Ar)

Quantity Value Units Method Reference Comment
Deltar6.95kJ/molN/ABowen and Eaton, 1988gas phase; Bound by 70 meV relative to EA(O2-.); B

Rubidium ion (1+) + Argon = (Rubidium ion (1+) bullet Argon)

By formula: Rb+ + Ar = (Rb+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar8.49kJ/molIMobGatland, 1984gas phase; M
Deltar8.28kJ/molIMobViehland, 1984gas phase; M
Deltar11.9kJ/molIMobTakebe, 1983gas phase; M

Xe+ + Argon = (Xe+ bullet Argon)

By formula: Xe+ + Ar = (Xe+ bullet Ar)

Quantity Value Units Method Reference Comment
Deltar17.kJ/molPIDehmer and Pratt, 1982gas phase; M
Deltar25.kJ/molSIFTJones, Lister, et al., 1980gas phase; M
Deltar13.kJ/molPINg, Tiedemann, et al., 1977gas phase; M
Quantity Value Units Method Reference Comment
Deltar81.2J/mol*KSIFTJones, Lister, et al., 1980gas phase; M

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin DOW CHEMICAL COMPANY / ASTM E14-UNCERTIFIED SPECTRUM 1
NIST MS number 34321

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Gosman, McCarty, et al., 1969
Gosman, A.L.; McCarty, R.D.; Hust, J.G., Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. NSRDS-NBS 27, 1969. [all data]

Van't Zelfde, Omar, et al., 1968
Van't Zelfde, P.; Omar, M.H.; LePair-Schroten, H.G.M.; Dokoupil, Z., Solid-liquid equilibrium diagram for the argon + methane system., Physica (Amsterdam), 1968, 38, 241-51. [all data]

Angus, Armstrong, et al., 1972
Angus, S.; Armstrong, B.; Gosman, A.L.; McCarty, R.D.; Hust, J.G.; Vasserman, A.A.; Rabinovich, V.A., International Thermodynamic Tables of the Fluid State - 1 Argon, Butterworths, London, 1972. [all data]

Ziegler, Mullins, et al., 1962
Ziegler, W.T.; Mullins, J.C.; Kirk, B.S., Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids, Especially Below One Atmosphere Pressure. II. Argon, Ga. Inst. Technol., Eng. Exp. Stn., Proj. A-460, Tech. Rep. No. 2, 1962. [all data]

Clark, Din, et al., 1951
Clark, A.M.; Din, F.; Robb, J.; Michels, A.; Wassenaar, T.; Zwietering, Th.N., The Vapor Pressure of Argon, Physica (Amsterdam), 1951, 17, 876. [all data]

Clusius and Weigand, 1940
Clusius, K.; Weigand, K., Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting, Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]

McCain and Ziegler, 1967
McCain, W.D., Jr.; Ziegler, W.T., The Critical Temperature, Critical Pressure, and Vapor Pressure of Argon, J. Chem. Eng. Data, 1967, 12, 2, 199-202, https://doi.org/10.1021/je60033a012 . [all data]

Drii and Rabinovich, 1966
Drii, L.I.; Rabinovich, V.A., Dependence of Vapor Pressure of Argon, Zh. Fiz. Khim., 1966, 40, 709-711. [all data]

van Itterbeek, Verbeke, et al., 1963
van Itterbeek, A.; Verbeke, O.; Staes, K., Measurements on the Equation of State of Liquid Argon and Methane Up to 300 kg cm-2 at Low Temperatures, Physica (Amsterdam), 1963, 29, 6, 742-754, https://doi.org/10.1016/S0031-8914(63)80231-1 . [all data]

Clark, Din, et al., 1951, 2
Clark, A.M.; Din, F.; Robb, J.; Michels, A.; Wassenaar, T.; Zwietering, Th., The Vapour Pressure of Argon, Physica (Amsterdam), 1951, 17, 10, 876-884, https://doi.org/10.1016/0031-8914(51)90041-9 . [all data]

McKnight and Sawina, 1973
McKnight, L.G.; Sawina, J.M., Equilibrium Constants and Binding Energies of Alkali Metal Ions with Inert Gases, Bull. Am. Phys. Soc., 1973, 18, 804. [all data]

Cassidy and Elford, 1985
Cassidy, R.A.; Elford, M.T., The Mobility of Li+ Ions in Helium and Argon, Aust. J. Phys., 1985, 38, 4, 587, https://doi.org/10.1071/PH850587 . [all data]

Keller, Beyer, et al., 1973
Keller, C.E.; Beyer, R.A.; Colonna-Romano, L.M., Clustering of Ar to Li+ and a Comparison of Drift - Tube Models, Phys. Rev. A, 1973, 8, 3, 1446, https://doi.org/10.1103/PhysRevA.8.1446 . [all data]

Teng and Conway, 1973
Teng, H.H.; Conway, D.C., Ion - Molecule Equilibria in Mixtures of N2 and Ar, J. Chem. Phys., 1973, 59, 5, 2316, https://doi.org/10.1063/1.1680338 . [all data]

Turner and Conway, 1979
Turner, D.L.; Conway, D.C., Study of the 2Ar + Ar2+ = Ar + Ar3+ Reaction, J. Chem. Phys., 1979, 71, 4, 1899, https://doi.org/10.1063/1.438544 . [all data]

Liu and Conway, 1975
Liu, W.F.; Conway, D.C., Ion - Molecule Reactions in Ar at 296, 195, and 77 K, J. Chem. Phys., 1975, 62, 8, 3070, https://doi.org/10.1063/1.430906 . [all data]

Kim and Bowers, 1990
Kim, H.S.; Bowers, M.T., Energetics, Structure and Photodissociation Dynamics of the Cluster Ar.N2+, J. Chem. Phys., 1990, 93, 2, 1158, https://doi.org/10.1063/1.459179 . [all data]

Hiraoka and Nakajima, 1988
Hiraoka, K.; Nakajima, G., A Determination of the Stabilities of N2+(N2)n and O2+(N2)n with n = 1 - 11 from Measurements of the Gas - Phase Ion Equilibria, J. Chem. Phys., 1988, 88, 12, 7709, https://doi.org/10.1063/1.454285 . [all data]

Gatland, 1984
Gatland, I.R., Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Gislason, 1984
Gislason, E.A., Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Viehland, 1984
Viehland, L.A., Interaction Potentials for Li+ - Rare - Gas Systems, Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3 . [all data]

Takebe, 1983
Takebe, M., The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves, J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763 . [all data]

Kemper, Hsu, et al., 1991
Kemper, P.R.; Hsu, M.T.; Bowers, M.T., Transition - Metal Ion - Rare Gas Clusters: Bond Strengths and Molecular Parameters for Co+(He/Ne)n, Ni+(He/Ne)n, and Cr+(He/Ne/Ar), J. Phys. Chem., 1991, 95, 26, 10600, https://doi.org/10.1021/j100179a022 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Isotope Effect and Nature of Bonding in the Cluster Ions H3+(Ar)n and D3+(Ar)n, J. Chem. Phys., 1989, 91, 8, 4821, https://doi.org/10.1063/1.456720 . [all data]

Bedford and Smith, 1990
Bedford, D.K.; Smith, D., Variable-temperature selected ion flow tube studies of the reactions of Ar+, Ar2+ and ArHn+ (n=1-3) ions with H2, HD and D2 at 300 K and 80 K, Int. J. Mass Spectrom. Ion Proc., 1990, 98, 2, 179, https://doi.org/10.1016/0168-1176(90)85017-V . [all data]

Dehmer and Pratt, 1982
Dehmer, P.M.; Pratt, S.T., Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions, J. Chem. Phys., 1982, 77, 4804. [all data]

Jones, Lister, et al., 1980
Jones, J.D.C.; Lister, D.G.; Twiddy, N.D., Equilibrium Constant for the Reaction Xe+ + 2Ar ---> XeAr+ + Ar in the Temperature Range 150 - 300 K and the Dissociation Energy of XeAr+, Chem. Phys. Lett., 1980, 70, 3, 575, https://doi.org/10.1016/0009-2614(80)80128-X . [all data]

Ng, Tiedemann, et al., 1977
Ng, C.Y.; Tiedemann, P.W.; Mahan, B.H.; Lee, Y.T., Photoionization Studies of the Diatomic Internuclear Rare Gas Molecules XeKr, XeAr, and KrAr, J. Chem. Phys., 1977, 66, 12, 5737, https://doi.org/10.1063/1.433848 . [all data]

Hiraoka and Mori, 1989, 2
Hiraoka, K.; Mori, T., Formation and Stabilities of Cluster Ions Arn+, J. Chem. Phys., 1989, 90, 12, 7143, https://doi.org/10.1063/1.456245 . [all data]

Hiraoka, Mori, et al., 1992
Hiraoka, K.; Mori, T.; Yamabe, S., Gas-Phase Solvation of N2+ with Ar Atoms - A Charge Switch in the Reaction N2+(Ar)...Ar+(N2), Chem. Phys. Lett., 1992, 189, 1, 7, https://doi.org/10.1016/0009-2614(92)85144-Y . [all data]

Wada, Kikkawa, et al., 2007
Wada, A.; Kikkawa, A.; Sugiyama, T.; Hiraoka, K., Thermochemical Stabilities of the Gas-phase Cluster Ions of Halide Ions with Rare Gas Atoms, Int. J. Mass Spectrom.., 2007, 267, 1-3, 284-287, https://doi.org/10.1016/j.ijms.2007.02.053 . [all data]

Arnold, Hendricks, et al., 1995
Arnold, S.T.; Hendricks, J.H.; Bowen, K.H., Photoelectron spectroscopy of the solvated anion clusters O-(Ar)(n=1-26,34): Energetics and structure, J. Chem. Phys., 1995, 102, 1, 39, https://doi.org/10.1063/1.469415 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Weitzel, Mahnert, et al., 1994
Weitzel, K.-M.; Mahnert, J.; Penno, M., ZEKE-PEPICO investigations of dissociation energies in ionic reactions, Chem. Phys. Lett., 1994, 224, 371. [all data]

Lide, 1992
Lide, D.R. (Editor), Ionization potentials of atoms and atomic ions in Handbook of Chem. and Phys., 1992, 10-211. [all data]

Wetzel, Baiocchi, et al., 1987
Wetzel, R.C.; Baiocchi, F.A.; Hayes, T.R.; Freund, R.S., Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method, Phys. Rev. A, 1987, 35, 559. [all data]

Kelly, 1987
Kelly, R.L., Atomic and ionic spectrum lines of hydrogen through kryton, J. Phys. Chem. Ref. Data, 1987, 16. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Clare and Sowerby, 1981
Clare, P.; Sowerby, D.B., Electron impact ionisation energies of some halo-cyclotriphosphazenes, J. Inorg. Nucl. Chem., 1981, 43, 477. [all data]

Freiser, 1980
Freiser, B.S., Electron impact ionization of argon ions by trapped ion cyclotron resonanace spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1980, 33, 263. [all data]

Minnhagen, 1973
Minnhagen, L., Spectrum and the energy levels of neutral argon, Ar I, J. Opt. Soc. Am., 1973, 63, 1185. [all data]

Spohr, Guyon, et al., 1971
Spohr, R.; Guyon, P.M.; Chupka, W.A.; Berkowitz, J., Threshold photoelectron detector for use in the vacuum ultraviolet, Rev. Sci. Instrum., 1971, 42, 1872. [all data]

Yoshino, 1970
Yoshino, K., Absorption spectrum of the argon atom in the vacuum-ultraviolet region, J. Opt. Soc. Am., 1970, 60, 1220. [all data]

Yoshino, 1969
Yoshino, K., Absorption spectrum of the argon atom in the vacuum-ultraviolet region, J. Opt. Soc. Am., 1969, 59, 1525. [all data]

Hotop and Niehaus, 1969
Hotop, H.; Niehaus, A., Reactions of excited atoms molecules with atoms and molecules. II. Energy analysis of penning electrons, Z. Phys., 1969, 228, 68. [all data]

Collin and Natalis, 1968
Collin, J.E.; Natalis, P., Vibrational and electronic ionic states of nitric oxide. An accurate method for measuring ionization potentials by photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 483. [all data]

Gallegos and Klaver, 1967
Gallegos, E.J.; Klaver, R.F., Automatic voltage scanner for a peak switching mass spectrometer, J.Sci. Instr., 1967, 44, 427. [all data]

Winters, Collins, et al., 1966
Winters, R.E.; Collins, J.H.; Courchene, W.L., Resolution of fine structure in ionization-efficiency curves, J. Chem. Phys., 1966, 45, 1931. [all data]

Al-Joboury and Turner, 1963
Al-Joboury, M.I.; Turner, D.W., Molecular photo-electron spectroscopy. Part I. The hydrogen and nitrogen molecules, J. Chem. Soc., 1963, 5141. [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Zhao, Yourshaw, et al., 1994
Zhao, Y.X.; Yourshaw, I.; Reiser, G.; Arnold, C.C.; Neumark, D.M., Study of the ArBr(-), ArI(-), and KrI(-) anions and the corresponding neutral van der Waals complexes by anion zero electron kinetic energy, J. Chem. Phys., 1994, 101, 8, 6538, https://doi.org/10.1063/1.468500 . [all data]

Gatland, 1984, 2
Gatland, I.R., Determination of Ion-Atom Potentials from Mobility Experiments. in Swarms of Ions and Electrons In Gases, W. Lindinger, Ed., Springer-Verlag, NY,, 1984, 44. [all data]

Hiraoka, Kudaka, et al., 1991
Hiraoka, K.; Kudaka, I.; Yamabe, S., A Charge-Transfer Complex CH3+ Ar in the Gas Phase, Chem. Phys. Lett., 1991, 178, 1, 103, https://doi.org/10.1016/0009-2614(91)85060-A . [all data]

Norwood, Guo, et al., 1989
Norwood, K.; Guo, J.H.; Luo, G.; Ng, C.Y., A Study of Intramolecular Charge Transfer in Mixed Ar/Co Dimer and Trimer Ions Using the Photoion - Photoelectron Coincidence Method, Chem. Phys., 1989, 129, 1, 109, https://doi.org/10.1016/0301-0104(89)80023-0 . [all data]

Pratt and Dehmer, 1983
Pratt, S.T.; Dehmer, P.M., On the Dissociation Energy of ArCO2+, J. Chem. Phys., 1983, 78, 10, 6336, https://doi.org/10.1063/1.444561 . [all data]

Asher, Bellert, et al., 1994
Asher, R.L.; Bellert, D.; Buthelezi, T.; Brucat, P.J., The Bond Strength of Ni2+, Chem. Phys. Lett., 1994, 224, 5-6, 529, https://doi.org/10.1016/0009-2614(94)00574-5 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Linn, Brom, et al., 1985
Linn, S.H.; Brom, J.M., Jr.; Tzeng, W.-B.; Ng, C.Y., Photoionization study of HgAr, J. Chem. Phys., 1985, 82, 648. [all data]

Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B., Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6, J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t . [all data]

Haynes, Freysinger, et al., 1995
Haynes, C.L.; Freysinger, W.; Armentrout, P.B., Collision-induced dissociation of N3+(X3-) with Ne, Ar, Kr, and Xe, Int. J. Mass Spectrom. Ion Processes, 1995, 149/150, 267. [all data]

Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G., Photodetachment Spectroscopy of Negative Cluster Ions, in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, References