Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Ethane, pentafluoro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny, director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil227. ± 6.KAVGN/AAverage of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus170.KN/AYoung, Fukuhara, et al., 1940Uncertainty assigned by TRC = 3. K; TRC
Quantity Value Units Method Reference Comment
Tc339.22KN/AYata, Hori, et al., 1996Uncertainty assigned by TRC = 0.3 K; TRC
Tc339.160KN/AKuwabara, Aoyama, et al., 1995Uncertainty assigned by TRC = 0.04 K; TRC
Tc339.17KN/AHigashi, 1994Uncertainty assigned by TRC = 0.03 K; TRC
Tc339.4KN/AWilson, Wilding, et al., 1992Uncertainty assigned by TRC = 0.7 K; TRC
Quantity Value Units Method Reference Comment
Pc35.82atmN/ATsvetkov, Kletskii, et al., 1995Uncertainty assigned by TRC = 0.06 atm; by extrapolation of obs. vapor pressure to selected Tc; TRC
Pc35.726atmN/AYe, Sato, et al., 1995Uncertainty assigned by TRC = 0.03 atm; calc. from vapor pressure equation fit to data at selected Tc(339.165 K); TRC
Pc35.73atmN/AHigashi, 1994Uncertainty assigned by TRC = 0.07 atm; TRC
Pc35.72atmN/ASagawa, Sato, et al., 1994Uncertainty assigned by TRC = 0.05 atm; Calculated from vapor pressure curve for Tc = 339.165 K; TRC
Pc34.73atmN/AWilson, Wilding, et al., 1992Uncertainty assigned by TRC = 1.48 atm; by extrapoltion of vapor pressure equation to Tc; TRC
Quantity Value Units Method Reference Comment
rhoc4.73mol/lN/AKuwabara, Aoyama, et al., 1995Uncertainty assigned by TRC = 0.02 mol/l; TRC
rhoc4.7658mol/lN/AHigashi, 1994Uncertainty assigned by TRC = 0.05 mol/l; TRC
rhoc4.757mol/lN/AWilson, Wilding, et al., 1992Uncertainty assigned by TRC = 0.07 mol/l; TRC

Enthalpy of vaporization

DeltavapH (kcal/mol) Temperature (K) Method Reference Comment
5.45175.CWeber, 1999AC
5.23190.CWeber, 1999AC
5.00205.CWeber, 1999AC
4.85215.CWeber, 1999AC

Enthalpy of fusion

DeltafusH (kcal/mol) Temperature (K) Reference Comment
0.538172.6L«65533»ddecke and Magee, 1996AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


References

Go To: Top, Phase change data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Young, Fukuhara, et al., 1940
Young, D.W.S.; Fukuhara, N.; Bigelow, L.A., The Action of Elementary Fluorine Upon Organic Compounds VIII. The Influence of Dilution on the Vapor Phase Fluorination of Ethane, J. Am. Chem. Soc., 1940, 62, 1171. [all data]

Yata, Hori, et al., 1996
Yata, J.; Hori, M.; Kawakatsu, H.; Minamiyama, T., Measurements of refractive index of alternative refrigerants, Int. J. Thermophys., 1996, 17, 65-74. [all data]

Kuwabara, Aoyama, et al., 1995
Kuwabara, S.; Aoyama, H.; Sato, H.; Watanabe, K., Vapor-liquid coexistence curves in the critical region and the critical temperatures and densities of difluoromethane and pentafluoroehtane, J. Chem. Eng. Data, 1995, 40, 112-116. [all data]

Higashi, 1994
Higashi, Y., Critical parameters for HFC134a, HFC32 and HFC125, Int. J. Refrig., 1994, 17, 524-531. [all data]

Wilson, Wilding, et al., 1992
Wilson, L.C.; Wilding, W.V.; Wilson, G.M.; Rowley, R.L.; Felix, V.M.; Chisolm-Carter, T., Thermophysical properties of HFC-125, Fluid Phase Equilib., 1992, 80, 167-77. [all data]

Tsvetkov, Kletskii, et al., 1995
Tsvetkov, O.B.; Kletskii, A.V.; Laptev, Yu.A.; Asambaev, A.J.; Zausaev, I.A., Thermal conductivity and PVT measurements of pentafluoroethane ( refrigerant HFC-125), Int. J. Thermophys., 1995, 16, 1185-92. [all data]

Ye, Sato, et al., 1995
Ye, F.; Sato, H.; Watanabe, K., Gas-phase PVT properties and vapor pressure of pentafluoroethane (HFC-125) determined according to the burnett method, J. Chem. Eng. Data, 1995, 40, 148-152. [all data]

Sagawa, Sato, et al., 1994
Sagawa, T.; Sato, H.; Watanabe, K., Thermodynamic properties of HFC-125 based on (p,V,T) measurements, High Temp. - High Pressures, 1994, 26, 193-201. [all data]

Weber, 1999
Weber, F., Measurement of the specific enthalpy of vaporization of the alternative refrigerant pentafluoroethane in the temperature range from 175 K to 220 K, PTB-Mitteilungen, 1999, 109, 6, 469. [all data]

L«65533»ddecke and Magee, 1996
L«65533»ddecke, T.O.; Magee, J.W., Molar heat capacity at constant volume of difluoromethane (R32) and pentafluoroethane (R125) from the triple-point temperature to 345 K at pressures to 35 MPa, Int J Thermophys, 1996, 17, 4, 823-849, https://doi.org/10.1007/BF01439192 . [all data]


Notes

Go To: Top, Phase change data, References