H3+


Reaction thermochemistry data

Go To: Top, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

H3+ + Hydrogen = (H3+ • Hydrogen)

By formula: H3+ + H2 = (H3+ • H2)

Quantity Value Units Method Reference Comment
Δr6.9 ± 0.4kcal/molAVGN/AAverage of 4 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Δr17.4 - 17.4cal/mol*KRNGN/ARange of 6 values; Individual data points

(H3+ • Hydrogen) + Hydrogen = (H3+ • 2Hydrogen)

By formula: (H3+ • H2) + H2 = (H3+ • 2H2)

Quantity Value Units Method Reference Comment
Δr3.3 ± 0.2kcal/molPHPMSHiraoka, 1987gas phase
Δr3.1kcal/molHPMSBeuhler, Ehrenson, et al., 1983gas phase
Δr3.4kcal/molHPMSBeuhler, Ehrenson, et al., 1983gas phase; deuterated
Δr4.1kcal/molPHPMSHiraoka and Kebarle, 1975gas phase
Δr1.8kcal/molHPMSBennett and Field, 1972gas phase; Entropy change is questionable
Quantity Value Units Method Reference Comment
Δr17.4cal/mol*KPHPMSHiraoka, 1987gas phase
Δr16.9cal/mol*KHPMSBeuhler, Ehrenson, et al., 1983gas phase
Δr16.1cal/mol*KHPMSBeuhler, Ehrenson, et al., 1983gas phase; deuterated
Δr19.8cal/mol*KPHPMSHiraoka and Kebarle, 1975gas phase
Δr10.8cal/mol*KHPMSBennett and Field, 1972gas phase; Entropy change is questionable

(H3+ • 3Hydrogen) + Hydrogen = (H3+ • 4Hydrogen)

By formula: (H3+ • 3H2) + H2 = (H3+ • 4H2)

Quantity Value Units Method Reference Comment
Δr1.7 ± 0.1kcal/molPHPMSHiraoka, 1987gas phase
Δr2.4kcal/molPHPMSHiraoka and Kebarle, 1975gas phase
Quantity Value Units Method Reference Comment
Δr17.9cal/mol*KPHPMSHiraoka, 1987gas phase
Δr19.3cal/mol*KPHPMSHiraoka and Kebarle, 1975gas phase

(H3+ • 2Hydrogen) + Hydrogen = (H3+ • 3Hydrogen)

By formula: (H3+ • 2H2) + H2 = (H3+ • 3H2)

Quantity Value Units Method Reference Comment
Δr3.2 ± 0.1kcal/molPHPMSHiraoka, 1987gas phase
Δr3.8kcal/molPHPMSHiraoka and Kebarle, 1975gas phase
Quantity Value Units Method Reference Comment
Δr18.5cal/mol*KPHPMSHiraoka, 1987gas phase
Δr20.2cal/mol*KPHPMSHiraoka and Kebarle, 1975gas phase

H3+ + Argon = (H3+ • Argon)

By formula: H3+ + Ar = (H3+ • Ar)

Quantity Value Units Method Reference Comment
Δr6.7 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase
Δr7.5 ± 0.8kcal/molSIFTBedford and Smith, 1990gas phase; switching reaction(H3+)H2, Hiraoka and Mori, 1989
Quantity Value Units Method Reference Comment
Δr13.4cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(H3+ • Oxygen) + Oxygen = (H3+ • 2Oxygen)

By formula: (H3+ • O2) + O2 = (H3+ • 2O2)

Quantity Value Units Method Reference Comment
Δr11.5kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2
Quantity Value Units Method Reference Comment
Δr22.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2

H3+ + Oxygen = (H3+ • Oxygen)

By formula: H3+ + O2 = (H3+ • O2)

Quantity Value Units Method Reference Comment
Δr12.5kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2
Quantity Value Units Method Reference Comment
Δr19.6cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2

(H3+ • 2Argon) + Argon = (H3+ • 3Argon)

By formula: (H3+ • 2Ar) + Ar = (H3+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr4.3 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr17.3cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(H3+ • 3Argon) + Argon = (H3+ • 4Argon)

By formula: (H3+ • 3Ar) + Ar = (H3+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr2.5 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr16.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(H3+ • 4Argon) + Argon = (H3+ • 5Argon)

By formula: (H3+ • 4Ar) + Ar = (H3+ • 5Ar)

Quantity Value Units Method Reference Comment
Δr2.3 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr16.7cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(H3+ • 5Argon) + Argon = (H3+ • 6Argon)

By formula: (H3+ • 5Ar) + Ar = (H3+ • 6Ar)

Quantity Value Units Method Reference Comment
Δr2.2 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr18.7cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(H3+ • 6Argon) + Argon = (H3+ • 7Argon)

By formula: (H3+ • 6Ar) + Ar = (H3+ • 7Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr23.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(H3+ • Argon) + Argon = (H3+ • 2Argon)

By formula: (H3+ • Ar) + Ar = (H3+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr4.6 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr16.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(H3+ • 4Hydrogen) + Hydrogen = (H3+ • 5Hydrogen)

By formula: (H3+ • 4H2) + H2 = (H3+ • 5H2)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.1kcal/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr18.9cal/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 5Hydrogen) + Hydrogen = (H3+ • 6Hydrogen)

By formula: (H3+ • 5H2) + H2 = (H3+ • 6H2)

Quantity Value Units Method Reference Comment
Δr1.5 ± 0.1kcal/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr20.0cal/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 6Hydrogen) + Hydrogen = (H3+ • 7Hydrogen)

By formula: (H3+ • 6H2) + H2 = (H3+ • 7H2)

Quantity Value Units Method Reference Comment
Δr0.9 ± 0.1kcal/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr16.5cal/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 7Hydrogen) + Hydrogen = (H3+ • 8Hydrogen)

By formula: (H3+ • 7H2) + H2 = (H3+ • 8H2)

Quantity Value Units Method Reference Comment
Δr0.8 ± 0.1kcal/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr17.9cal/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 8Hydrogen) + Hydrogen = (H3+ • 9Hydrogen)

By formula: (H3+ • 8H2) + H2 = (H3+ • 9H2)

Quantity Value Units Method Reference Comment
Δr0.6 ± 0.1kcal/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka, 1987gas phase

Vibrational and/or electronic energy levels

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1' 1 Ring breathing 3178.18 gas IR LD Majewski, Marshall, et al., 1987
Lembo, Petit, et al., 1989
Ketterle, Messmer, et al., 1989
Xu, Rosslein, et al., 1992
Majewski, McKellar, et al., 1994
e' 2 Deformation 2521.42 gas LD Oka, 1980
Watson, Foster, et al., 1984
Nakanaga, Ito, et al., 1990
Majewski, McKellar, et al., 1994
McKellar and Watson, 1998
2 Deformation 2521.42 gas EM Civis, Kubat, et al., 2006
2 Deformation 2109.7 T H2 IR Chan, Okumura, et al., 2000

Additional references: Jacox, 1994, page 11; Jacox, 1998, page 123; Jacox, 2003, page 9; Shy, Farley, et al., 1980; Amano and Watson, 1984; Lubic and Amano, 1984; Amano, 1985; Foster, McKellar, et al., 1986; Foster, McKellar, et al., 1986, 2; Watson, Foster, et al., 1987; Kozin, Polyansky, et al., 1988; Polyansky and McKellar, 1990; Bawendi, Rehfuss, et al., 1990; Xu, Gabrys, et al., 1990; Lee, Ventrudo, et al., 1991; Ventrudo, Cassidy, et al., 1994; Amano, Chan, et al., 1994; Amano and Hirao, 2005

Notes

TTentative assignment or approximate value

References

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hiraoka, 1987
Hiraoka, K., A Determination of the Stabilities of H3+(H2)n with n=1-9 from Measurements of the gas-Phase Ion Equilibria H3+(H2)n-1 + H2 = H3+(H2)n, J. Chem. Phys., 1987, 87, 7, 4048, https://doi.org/10.1063/1.452909 . [all data]

Beuhler, Ehrenson, et al., 1983
Beuhler, R.J.; Ehrenson, S.; Friedman, L., Hydrogen Cluster Ion Equilibria, J. Chem. Phys., 1983, 79, 12, 5982, https://doi.org/10.1063/1.445781 . [all data]

Hiraoka and Kebarle, 1975
Hiraoka, K.; Kebarle, P., A Determination of the Stabilities of H5+, H7+, H9+, and H11+ from Measurement of the Gas Phase Ion Equilibria Hn+ + H2 = H(n + 2)+ (n = 3, 5, 7, 9), J. Chem. Phys., 1975, 62, 6, 2267, https://doi.org/10.1063/1.430751 . [all data]

Bennett and Field, 1972
Bennett, S.L.; Field, F.H., Reversible Reactions of Gaseous Ions. VII. The Hydrogen System, J. Am. Chem. Soc., 1972, 94, 25, 8669, https://doi.org/10.1021/ja00780a003 . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Isotope Effect and Nature of Bonding in the Cluster Ions H3+(Ar)n and D3+(Ar)n, J. Chem. Phys., 1989, 91, 8, 4821, https://doi.org/10.1063/1.456720 . [all data]

Bedford and Smith, 1990
Bedford, D.K.; Smith, D., Variable-temperature selected ion flow tube studies of the reactions of Ar+, Ar2+ and ArHn+ (n=1-3) ions with H2, HD and D2 at 300 K and 80 K, Int. J. Mass Spectrom. Ion Proc., 1990, 98, 2, 179, https://doi.org/10.1016/0168-1176(90)85017-V . [all data]

Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P., Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements, Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346 . [all data]

Majewski, Marshall, et al., 1987
Majewski, W.A.; Marshall, M.D.; McKellar, A.R.W.; Johns, J.W.C.; Watson, J.K.G., Higher rotational lines in the ν2 fundamental of the H3+ molecular ion, J. Mol. Spectrosc., 1987, 122, 2, 341, https://doi.org/10.1016/0022-2852(87)90009-9 . [all data]

Lembo, Petit, et al., 1989
Lembo, L.J.; Petit, A.; Helm, H., Vibrational autoionization in H_{3} and measurements of the symmetric-stretch frequency of the metastable 2p A_{2}^{''} state, Phys. Rev. A, 1989, 39, 7, 3721, https://doi.org/10.1103/PhysRevA.39.3721 . [all data]

Ketterle, Messmer, et al., 1989
Ketterle, W.; Messmer, H.-P.; Walther, H., The ν, Europhys. Lett., 1989, 8, 4, 333, https://doi.org/10.1209/0295-5075/8/4/006 . [all data]

Xu, Rosslein, et al., 1992
Xu, L.-W.; Rosslein, M.; Gabrys, C.M.; Oka, T., Observation of infrared forbidden transitions of H3+, J. Mol. Spectrosc., 1992, 153, 1-2, 726, https://doi.org/10.1016/0022-2852(92)90507-K . [all data]

Majewski, McKellar, et al., 1994
Majewski, W.A.; McKellar, A.R.W.; Sadovskii, D.; Watson, J.K.G., New observations and analysis of the infrared vibration--rotation spectrum of H, Can. J. Phys., 1994, 72, 11-12, 1016, https://doi.org/10.1139/p94-133 . [all data]

Oka, 1980
Oka, T., Observation of the Infrared Spectrum of H_{3}^{+}, Phys. Rev. Lett., 1980, 45, 7, 531, https://doi.org/10.1103/PhysRevLett.45.531 . [all data]

Watson, Foster, et al., 1984
Watson, J.K.G.; Foster, S.C.; McKellar, A.R.W.; Bernath, P.; Amano, T.; Pan, F.S.; Crofton, M.W.; Altman, R.S.; Oka, T., The infrared spectrum of the ν, Can. J. Phys., 1984, 62, 12, 1875, https://doi.org/10.1139/p84-231 . [all data]

Nakanaga, Ito, et al., 1990
Nakanaga, T.; Ito, F.; Sugawara, K.; Takeo, H.; Matsumura, C., Observation of infrared absorption spectra of molecular ions, H3+ and HN2+, by FTIR spectroscopy, Chem. Phys. Lett., 1990, 169, 3, 269, https://doi.org/10.1016/0009-2614(90)85199-M . [all data]

McKellar and Watson, 1998
McKellar, A.R.W.; Watson, J.K.G., The Infrared Spectrum of H+3Revealed, J. Mol. Spectrosc., 1998, 191, 1, 215, https://doi.org/10.1006/jmsp.1998.7613 . [all data]

Civis, Kubat, et al., 2006
Civis, S.; Kubat, P.; Nishida, S.; Kawaguchi, K., Time-resolved Fourier transform infrared emission spectroscopy of molecular ion, Chem. Phys Lett., 2006, 418, 4-6, 448, https://doi.org/10.1016/j.cplett.2005.10.136 . [all data]

Chan, Okumura, et al., 2000
Chan, M.-C.; Okumura, M.; Oka, T., Infrared Spectrum of, J. Phys. Chem. A, 2000, 104, 16, 3775, https://doi.org/10.1021/jp993890h . [all data]

Jacox, 1994
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]

Shy, Farley, et al., 1980
Shy, J.-T.; Farley, J.W.; Lamb, W.E., Jr.; Wing, W.H., Observation of the Infrared Spectrum of the Triatomic Deuterium Molecular Ion D_{3}^{+}, Phys. Rev. Lett., 1980, 45, 7, 535, https://doi.org/10.1103/PhysRevLett.45.535 . [all data]

Amano and Watson, 1984
Amano, T.; Watson, J.K.G., Observation of the ν1 fundamental band of H2D+, J. Chem. Phys., 1984, 81, 7, 2869, https://doi.org/10.1063/1.448059 . [all data]

Lubic and Amano, 1984
Lubic, K.G.; Amano, T., Observation of the ν, Can. J. Phys., 1984, 62, 12, 1886, https://doi.org/10.1139/p84-232 . [all data]

Amano, 1985
Amano, T., Difference-frequency laser spectroscopy of molecular ions with a hollow-cathode cell: extended analysis of the ν_1 band of H_2D^+, J. Opt. Soc. Am. B, 1985, 2, 5, 790, https://doi.org/10.1364/JOSAB.2.000790 . [all data]

Foster, McKellar, et al., 1986
Foster, S.C.; McKellar, A.R.W.; Peterkin, I.R.; Watson, J.K.G.; Pan, F.S.; Crofton, M.W.; Altman, R.S.; Oka, T., Observation and analysis of the ν2 and ν3 fundamental bands of the H2D+ ion, J. Chem. Phys., 1986, 84, 1, 91, https://doi.org/10.1063/1.450137 . [all data]

Foster, McKellar, et al., 1986, 2
Foster, S.C.; McKellar, A.R.W.; Watson, J.K.G., Observation and analysis of the ν2 and ν3 fundamental bands of the D2H+ ion, J. Chem. Phys., 1986, 85, 2, 664, https://doi.org/10.1063/1.451841 . [all data]

Watson, Foster, et al., 1987
Watson, J.K.G.; Foster, S.C.; McKellar, A.R.W., The infrared spectrum of the ν, Can. J. Phys., 1987, 65, 1, 38, https://doi.org/10.1139/p87-008 . [all data]

Kozin, Polyansky, et al., 1988
Kozin, I.N.; Polyansky, O.L.; Zobov, N.F., Improved analysis of the experimental data on the H2D+ and D2H+ absorption spectra, J. Mol. Spectrosc., 1988, 128, 1, 126, https://doi.org/10.1016/0022-2852(88)90212-3 . [all data]

Polyansky and McKellar, 1990
Polyansky, O.L.; McKellar, A.R.W., Improved analysis of the infrared spectrum of D2H+, J. Chem. Phys., 1990, 92, 7, 4039, https://doi.org/10.1063/1.457817 . [all data]

Bawendi, Rehfuss, et al., 1990
Bawendi, M.G.; Rehfuss, B.D.; Oka, T., Laboratory observation of hot bands of H+3, J. Chem. Phys., 1990, 93, 9, 6200, https://doi.org/10.1063/1.458989 . [all data]

Xu, Gabrys, et al., 1990
Xu, L.-W.; Gabrys, C.; Oka, T., Observation of the 2ν2(l=2)←0 overtone band of H+3, J. Chem. Phys., 1990, 93, 9, 6210, https://doi.org/10.1063/1.458990 . [all data]

Lee, Ventrudo, et al., 1991
Lee, S.S.; Ventrudo, B.F.; Cassidy, D.T.; Oka, T.; Miller, S.; Tennyson, J., Observation of the 3ν2 ← 0 overtone band of H3+, J. Mol. Spectrosc., 1991, 145, 1, 222, https://doi.org/10.1016/0022-2852(91)90365-H . [all data]

Ventrudo, Cassidy, et al., 1994
Ventrudo, B.F.; Cassidy, D.T.; Guo, Z.Y.; Joo, S.; Lee, S.S.; Oka, T., Near infrared 3ν2 overtone band of H+3, J. Chem. Phys., 1994, 100, 9, 6162, https://doi.org/10.1063/1.467088 . [all data]

Amano, Chan, et al., 1994
Amano, T.; Chan, M.-C.; Civis, S.; McKellar, A.R.W.; Majewski, W.A.; Sadovskii, D.; Watson, J.K.G., The infrared vibration--rotation spectrum of the molecular ion: extension to higher vibrational and rotational quantum numbers, Can. J. Phys., 1994, 72, 11-12, 1007, https://doi.org/10.1139/p94-132 . [all data]

Amano and Hirao, 2005
Amano, T.; Hirao, T., Accurate rest frequencies of submillimeter-wave lines of H2D+ and D2H+, J. Mol. Spectrosc., 2005, 233, 1, 7, https://doi.org/10.1016/j.jms.2005.05.008 . [all data]


Notes

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References