Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

CdCH3


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Quantity Value Units Method Reference Comment
Deltafgas49.9 ± 4.0kcal/molReviewMartinho SimõesThe enthalpy of formation relies on 25.05 ± 0.31 kcal/mol for the enthalpy of formation of Cd(Me)2(g).
Deltafgas48.0 - 50.9kcal/molReviewMartinho SimõesThe enthalpy of formation limits rely on 25.05 ± 0.31 kcal/mol for the enthalpy of formation of Cd(Me)2(g).
Deltafgas45.9 ± 1.6kcal/molReviewMartinho SimõesThe enthalpy of formation relies on 25.05 ± 0.31 kcal/mol for the enthalpy of formation of Cd(Me)2(g).

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Vibrational and/or electronic energy levels, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C2H6Cd (g) = CH3Cd (g) + Methane (g)

By formula: C2H6Cd (g) = CH3Cd (g) + CH4 (g)

Quantity Value Units Method Reference Comment
Deltar56.0 ± 1.5kcal/molKinGJackson, 1989 
Deltar58.1 - 60.9kcal/molN/ASmith and Patrick, 1983 
Deltar60.0 ± 4.0kcal/molN/AMcMillen and Golden, 1982 

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   C


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 34916 gas B-X 264 287 Young, Gosavi, et al., 1973
Ellis, Robles, et al., 1992


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 2 CH3 deform. 960 T gas AB Young, Gosavi, et al., 1973

State:   A


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 22514 gas A-X 400 458 Young, Gosavi, et al., 1973
Yu, Youngs, et al., 1986
Suto, Ye, et al., 1988
Ibuki, Hiraya, et al., 1990
Penner, Amirav, et al., 1991
Robles, Ellis, et al., 1991
Ellis, Robles, et al., 1992
Cerny, Tan, et al., 1993
Tan, Cerny, et al., 1994
Panov, Powers, et al., 1998
Pushkarsky, Barckholtz, et al., 1999


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 2 CH3 deform. 1019 ± 3 gas LF Ellis, Robles, et al., 1992
Cerny, Tan, et al., 1993
Panov, Powers, et al., 1998
Pushkarsky, Barckholtz, et al., 1999
3 CdC stretch 400 ± 3 gas LF Robles, Ellis, et al., 1991
Ellis, Robles, et al., 1992
Cerny, Tan, et al., 1993
Panov, Powers, et al., 1998
Pushkarsky, Barckholtz, et al., 1999
e 6 Deformation 638 ± 2 gas MPI FD Panov, Powers, et al., 1998
Pushkarsky, Barckholtz, et al., 1999

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 2 CH3 deform. 1000 ± 3 gas EM LF Penner, Amirav, et al., 1991
Robles, Ellis, et al., 1991
Ellis, Robles, et al., 1992
3 CdC stretch 355 ± 3 gas EM LF Penner, Amirav, et al., 1991
Robles, Ellis, et al., 1991
Ellis, Robles, et al., 1992

Additional references: Jacox, 1994, page 231; Jacox, 1998, page 268; Jacox, 2003, page 250

Notes

TTentative assignment or approximate value
oEnergy separation between the v = 0 levels of the excited and electronic ground states.

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Vibrational and/or electronic energy levels, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Martinho Simões
Martinho Simões, J.A., Private communication (see http://webbook.nist.gov/chemistry/om/). [all data]

Jackson, 1989
Jackson, R.L., Chem. Phys. Lett., 1989, 163, 315. [all data]

Smith and Patrick, 1983
Smith, G.P.; Patrick, R., Int. J. Chem. Kinet., 1983, 15, 167. [all data]

McMillen and Golden, 1982
McMillen, D.F.; Golden, D.M., Hydrocarbon bond dissociation energies, Ann. Rev. Phys. Chem., 1982, 33, 493. [all data]

Young, Gosavi, et al., 1973
Young, P.J.; Gosavi, R.K.; Connor, J.; Strausz, O.P.; Gunning, H.E., Ultraviolet absorption spectra of CdCH3, ZnCH3, and TeCH3, J. Chem. Phys., 1973, 58, 12, 5280, https://doi.org/10.1063/1.1679141 . [all data]

Ellis, Robles, et al., 1992
Ellis, A.M.; Robles, E.S.J.; Miller, T.A., Dispersed fluorescence spectroscopy and fluorescence lifetime measurements of excited vibrational levels of CdCH3, Chem. Phys. Lett., 1992, 190, 6, 599, https://doi.org/10.1016/0009-2614(92)85196-H . [all data]

Yu, Youngs, et al., 1986
Yu, C.F.; Youngs, F.; Tsukiyama, K.; Bersohn, R.; Preses, J., Photodissociation dynamics of cadmium and zinc dimethyl, J. Chem. Phys., 1986, 85, 3, 1382, https://doi.org/10.1063/1.451226 . [all data]

Suto, Ye, et al., 1988
Suto, M.; Ye, C.; Lee, L.C., Quantitative absorption and fluorescence spectroscopy of Cd(CH3)2 in vacuum ultraviolet, J. Chem. Phys., 1988, 89, 1, 160, https://doi.org/10.1063/1.455499 . [all data]

Ibuki, Hiraya, et al., 1990
Ibuki, T.; Hiraya, A.; Shobatake, K., Photoexcitation of M(CH3)2 (M=Zn, Cd, Hg) compounds in the 106--270 nm region, J. Chem. Phys., 1990, 92, 5, 2797, https://doi.org/10.1063/1.457926 . [all data]

Penner, Amirav, et al., 1991
Penner, A.; Amirav, A.; Bersohn, R., Emission spectrum of CdCH3, Chem. Phys. Lett., 1991, 176, 2, 147, https://doi.org/10.1016/0009-2614(91)90146-Z . [all data]

Robles, Ellis, et al., 1991
Robles, E.S.J.; Ellis, A.M.; Miller, T.A., Laser-induced fluorescence spectra of the cold radicals, ZnCH3 and CdCH3, and their inert-gas complexes, X«58872»CdCH3 (X = He, Ne, Ar, Kr, Xe), Chem. Phys. Lett., 1991, 178, 2-3, 185, https://doi.org/10.1016/0009-2614(91)87054-F . [all data]

Cerny, Tan, et al., 1993
Cerny, T.M.; Tan, X.Q.; Williamson, J.M.; Robles, E.S.J.; Ellis, A.M.; Miller, T.A., High resolution electronic spectroscopy of ZnCH3 and CdCH3, J. Chem. Phys., 1993, 99, 12, 9376, https://doi.org/10.1063/1.465521 . [all data]

Tan, Cerny, et al., 1994
Tan, X.Q.; Cerny, T.M.; Williamson, J.M.; Miller, T.A., Hyperfine structure in the electronic spectra of the CdH and CdCH3 radicals, J. Chem. Phys., 1994, 101, 8, 6396, https://doi.org/10.1063/1.468396 . [all data]

Panov, Powers, et al., 1998
Panov, S.I.; Powers, D.E.; Miller, T.A., The spectroscopy of the CdCH[sub 3] radical and its positive ion, J. Chem. Phys., 1998, 108, 4, 1335, https://doi.org/10.1063/1.475506 . [all data]

Pushkarsky, Barckholtz, et al., 1999
Pushkarsky, M.B.; Barckholtz, T.A.; Miller, T.A., J. Ch3m. Phys., 1999, 110, 2016. [all data]

Jacox, 1994
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Vibrational and/or electronic energy levels, NIST Free Links, References