Acetic acid, methyl ester

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-98.00kcal/molCcrHall and Baldt, 1971ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
13.33100.Chao J., 1986p=1 bar. Recommended Cp(T) values are in close agreement with those calculated by [ Vay P.-M., 1971]. S(T) values calculated by [ Vay P.-M., 1971] are 4.6-4.8 J/mol*K lower than those of [ Chao J., 1986].; GT
15.12150.
16.74200.
19.49273.15
20.56 ± 0.029298.15
20.64300.
25.170400.
29.493500.
33.282600.
36.530700.
39.309800.
41.697900.
43.7521000.
45.5231100.
47.0531200.
48.3721300.
49.5171400.
50.5111500.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
22.13335.0Connett J.E., 1976GT
22.82350.0
23.994375.0
25.170400.0
26.286425.0
27.397450.0

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-106.57kcal/molCcrHall and Baldt, 1971ALS
Quantity Value Units Method Reference Comment
Δcliquid-378.3kcal/molCcbSeno, Tsuchiya, et al., 1975Corresponding Δfliquid = -108.8 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-380.54 ± 0.16kcal/molCcrHall and Baldt, 1971Corresponding Δfliquid = -106.56 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
33.51288.58Okamoto, Oguni, et al., 1992T = 13 to 290 K. Unsmoothed experimental datum.; DH
33.781298.15Pintos, Bravo, et al., 1988DH
33.60298.15Costas and Patterson, 1985T = 283.15, 298.15, 313.15 K.; DH
33.595298.15Costas and Patterson, 1985, 2T = 283.15, 298.15, 313.15 K.; DH
29.57297.Hall and Baldt, 1971DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil330.0 ± 0.9KAVGN/AAverage of 50 out of 55 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus175.15KN/ATimmermans and Hennaut-Roland, 1955Uncertainty assigned by TRC = 0.3 K; TRC
Tfus175.1KN/ATimmermans, 1911Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Ttriple174.90KN/AOkamoto, Oguni, et al., 1992, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.01 K; TRC
Quantity Value Units Method Reference Comment
Tc510. ± 30.KAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Pc46.88atmN/AAmbrose, Ellender, et al., 1981Uncertainty assigned by TRC = 0.0468 atm; Visual; TRC
Pc46.33atmN/AYoung, 1910Uncertainty assigned by TRC = 0.8000 atm; TRC
Pc46.329atmN/AYoung and Thomas, 1893Uncertainty assigned by TRC = 0.39 atm; TRC
Pc47.54atmN/ANadezhdin, 1887Uncertainty assigned by TRC = 0.99995 atm; TRC
Pc57.64atmN/ASajots, 1879Uncertainty assigned by TRC = 6.0000 atm; TRC
Quantity Value Units Method Reference Comment
ρc4.394mol/lN/AYoung and Thomas, 1893Uncertainty assigned by TRC = 0.05 mol/l; TRC
ρc4.32mol/lN/ANadezhdin, 1887Uncertainty assigned by TRC = 0.08 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap7.9 ± 0.9kcal/molAVGN/AAverage of 7 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
7.247330.1N/AMajer and Svoboda, 1985 
8.15275.AStephenson and Malanowski, 1987Based on data from 260. - 351. K.; AC
7.98289.AStephenson and Malanowski, 1987Based on data from 274. - 329. K. See also Polák and Mertl, 1965 and Dykyj, 1970.; AC
7.60323.DTAMeyer, Awe, et al., 1980Based on data from 308. - 338. K.; AC
7.05 ± 0.02343.CSvoboda, Uchytilová, et al., 1980AC
7.70 ± 0.02304.CSvoboda, Veselý, et al., 1977AC
7.55 ± 0.02313.CSvoboda, Veselý, et al., 1977AC
7.29 ± 0.02328.CSvoboda, Veselý, et al., 1977AC
7.24 ± 0.02331.CSvoboda, Veselý, et al., 1977AC
7.77295.N/AConnett, Counsell, et al., 1976AC
7.22330.N/AConnett, Counsell, et al., 1976AC
8.25296.BGBaldt and Hall, 1971Based on data from 273. - 318. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
296. - 343.11.590.2757506.8Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
274.91 - 328.994.197931164.426-52.69Polák and Mertl, 1965Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
1.789174.897Okamoto, Oguni, et al., 1992DH
1.79174.9Okamoto, Oguni, et al., 1992AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H7O2+ + Acetic acid, methyl ester = (C3H7O2+ • Acetic acid, methyl ester)

By formula: C3H7O2+ + C3H6O2 = (C3H7O2+ • C3H6O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr29.1kcal/molPHPMSSzulejko and McMahon, 1991gas phase; M
Δr29.7kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr33.8cal/mol*KPHPMSSzulejko and McMahon, 1991gas phase; M
Δr30.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr20.5kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H5O2- + Hydrogen cation = Acetic acid, methyl ester

By formula: C3H5O2- + H+ = C3H6O2

Quantity Value Units Method Reference Comment
Δr371.8 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr371.8 ± 3.7kcal/molD-EAZimmerman, Reed, et al., 1977gas phase; B
Δr375.9 ± 3.5kcal/molEIAEPariat and Allan, 1991gas phase; From CH3CO2Me; B
Quantity Value Units Method Reference Comment
Δr365.1 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

C3H9Sn+ + Acetic acid, methyl ester = (C3H9Sn+ • Acetic acid, methyl ester)

By formula: C3H9Sn+ + C3H6O2 = (C3H9Sn+ • C3H6O2)

Quantity Value Units Method Reference Comment
Δr38.4kcal/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr32.6cal/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
21.3525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Ethane, 1,1,1-trimethoxy- + Water = 2Methyl Alcohol + Acetic acid, methyl ester

By formula: C5H12O3 + H2O = 2CH4O + C3H6O2

Quantity Value Units Method Reference Comment
Δr-6.426 ± 0.007kcal/molCmWiberg, Martin, et al., 1985liquid phase; solvent: Aqueous dioxane; ALS
Δr-6.4641 ± 0.0072kcal/molCmWiberg and Squires, 1979liquid phase; solvent: Water; Hydrolysis; ALS

CH6N+ + Acetic acid, methyl ester = (CH6N+ • Acetic acid, methyl ester)

By formula: CH6N+ + C3H6O2 = (CH6N+ • C3H6O2)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr23.5kcal/molPHPMSMeot-Ner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr24.8cal/mol*KPHPMSMeot-Ner, 1984gas phase; M

Nitric oxide anion + Acetic acid, methyl ester = (Nitric oxide anion • Acetic acid, methyl ester)

By formula: NO- + C3H6O2 = (NO- • C3H6O2)

Quantity Value Units Method Reference Comment
Δr39.8kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Lithium ion (1+) + Acetic acid, methyl ester = (Lithium ion (1+) • Acetic acid, methyl ester)

By formula: Li+ + C3H6O2 = (Li+ • C3H6O2)

Quantity Value Units Method Reference Comment
Δr44.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Sodium ion (1+) + Acetic acid, methyl ester = (Sodium ion (1+) • Acetic acid, methyl ester)

By formula: Na+ + C3H6O2 = (Na+ • C3H6O2)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
23.3298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

Water + Acetic acid, methyl ester = Acetic acid + Methyl Alcohol

By formula: H2O + C3H6O2 = C2H4O2 + CH4O

Quantity Value Units Method Reference Comment
Δr1.05kcal/molCmCoon and Daniels, 1933liquid phase; solvent: in HCl; ALS

Ketene + Methyl Alcohol = Acetic acid, methyl ester

By formula: C2H2O + CH4O = C3H6O2

Quantity Value Units Method Reference Comment
Δr-36.93kcal/molCmRice and Greenberg, 1934gas phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
7.85000.MN/A
8.6 MButtery, Ling, et al., 1969
11. MN/A

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C3H6O2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.25 ± 0.02eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)196.4kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity189.0kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.2PECannington and Ham, 1985LBLHLM
10.25PITraeger, McLouglin, et al., 1982LBLHLM
10.25 ± 0.05PEBenoit, Harrison, et al., 1977LLK
10.33PESweigart and Turner, 1972LLK
10.27 ± 0.02PIWatanabe, Nakayama, et al., 1962RDSH
10.5PECannington and Ham, 1985Vertical value; LBLHLM
10.25PEBenoit and Harrison, 1977Vertical value; LLK
11.0PERao, 1975Vertical value; LLK
10.59PESustmann and Trill, 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CHO+13.95 ± 0.08?EIBrion and Dunning, 1963RDSH
CH2+20.8?EIKing and Long, 1958RDSH
CH3+13.07 ± 0.10?EIBrion and Dunning, 1963RDSH
CH3O+12.52 ± 0.10?EIBrion and Dunning, 1963RDSH
C2H2O+11.81 ± 0.15?EIFriedland and Strakna, 1956RDSH
C2H3O+11.05CH3OPITraeger, McLouglin, et al., 1982LBLHLM
C2H3O+10.9 ± 0.1CH3OEIBurgers and Holmes, 1982LBLHLM
C2H3O+10.94?EIHolmes and Lossing, 1979LLK
C2H3O+11.37 ± 0.05CH3OEIHaney and Franklin, 1969RDSH
C2H3O2+11.32 ± 0.05CH3EIBlanchette, Holmes, et al., 1986LBLHLM
C2H3O2+12.35 ± 0.03CH3EIBriggs and Shannon, 1969RDSH

De-protonation reactions

C3H5O2- + Hydrogen cation = Acetic acid, methyl ester

By formula: C3H5O2- + H+ = C3H6O2

Quantity Value Units Method Reference Comment
Δr371.8 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr371.8 ± 3.7kcal/molD-EAZimmerman, Reed, et al., 1977gas phase; B
Δr375.9 ± 3.5kcal/molEIAEPariat and Allan, 1991gas phase; From CH3CO2Me; B
Quantity Value Units Method Reference Comment
Δr365.1 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

CH6N+ + Acetic acid, methyl ester = (CH6N+ • Acetic acid, methyl ester)

By formula: CH6N+ + C3H6O2 = (CH6N+ • C3H6O2)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr23.5kcal/molPHPMSMeot-Ner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr24.8cal/mol*KPHPMSMeot-Ner, 1984gas phase; M

C3H7O2+ + Acetic acid, methyl ester = (C3H7O2+ • Acetic acid, methyl ester)

By formula: C3H7O2+ + C3H6O2 = (C3H7O2+ • C3H6O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr29.1kcal/molPHPMSSzulejko and McMahon, 1991gas phase; M
Δr29.7kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr33.8cal/mol*KPHPMSSzulejko and McMahon, 1991gas phase; M
Δr30.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr20.5kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H9Sn+ + Acetic acid, methyl ester = (C3H9Sn+ • Acetic acid, methyl ester)

By formula: C3H9Sn+ + C3H6O2 = (C3H9Sn+ • C3H6O2)

Quantity Value Units Method Reference Comment
Δr38.4kcal/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr32.6cal/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
21.3525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Lithium ion (1+) + Acetic acid, methyl ester = (Lithium ion (1+) • Acetic acid, methyl ester)

By formula: Li+ + C3H6O2 = (Li+ • C3H6O2)

Quantity Value Units Method Reference Comment
Δr44.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Nitric oxide anion + Acetic acid, methyl ester = (Nitric oxide anion • Acetic acid, methyl ester)

By formula: NO- + C3H6O2 = (NO- • C3H6O2)

Quantity Value Units Method Reference Comment
Δr39.8kcal/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Sodium ion (1+) + Acetic acid, methyl ester = (Sodium ion (1+) • Acetic acid, methyl ester)

By formula: Na+ + C3H6O2 = (Na+ • C3H6O2)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
23.3298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, NIST Free Links, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1998.
NIST MS number 291292

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   Cs     Symmetry Number σ = 1


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a' 1 CH3(O) d-str 3035  D 3035 M gas 3028 liq.
a' 2 CH3(C) d-str 3031  E SF2 )of 3OCD3
a' 3 CH3(O) s-str 2966  D 2966 S gas 2954 p liq.
a' 4 CH3(C) s-str 2964  E 2942 p liq. SF4 )of 3OCD3
a' 5 C=O str 1771  C 1771 VS gas 1738 p liq.
a' 6 CH3(O) d-deform 1460  E 1460 W sh solid solid OV20)
a' 7 CH3(O) s-deform 1440  D 1440 M gas
a' 8 CH3(C) d-deform 1430  E SF8 )of 3OCD3
a' 9 CH3(C) s-deform 1375  D 1375 S gas 1372 p liq.
a' 10 C-O str 1248  C 1248 VS gas 1254 liq.
a' 11 CH3(O) rock 1159  E 1159 VW liq.
a' 12 O-CH3 str 1060  C 1060 S gas 1044 liq.
a' 13 CH3(C) rock 980  C 980 W gas 980 p liq.
a' 14 CC str 844  C 844 M gas 844 p liq.
a' 15 C=O ip-bend 639  C 639 M gas 640 p liq.
a' 16 CCO deform 429  C 429 M gas 433 p liq.
a 17 COC deform 303  D 303 M gas 303 p liq.
a 18 CH3(O) d-str 3005  D 3005 M gas 3002 liq.
a 19 CH3(C) d-str 2994  D 2994 W gas
a 20 CH3(O) d-deform 1460  E 1460 W sh solid solid 1449 dp liq. OV6)
a 21 CH3(C) d-deform 1430  E 1430 W gas
a 22 CH3(O) rock 1187  D 1187 W gas 1187 liq.
a 23 CH3(C) rock 1036  E 1036 W sln.
a 24 C=O op-bend 607  D 607 M gas 610 dp liq.
a 25 C-O torsion 187  D 187 W gas
a 26 C-C torsion 136  E 136 VW liq.
a 27 O-CH3 torsion 110  E 110 VW liq.

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
shShoulder
pPolarized
dpDepolarized
OCFrequency estimated from an overtone or a combination tone indicated in the parentheses.
SFCalculation shows that the frequency approximately equals that of the vibration indicated in the parentheses.
OVOverlapped by band indicated in parentheses.
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-180.501.15Mijin and Antonovic, 200630. m/0.256 mm/0.25 μm, N2
CapillaryDB-580.522.17Mijin and Antonovic, 200660. m/0.321 mm/0.25 μm, N2
CapillaryHP-10.520.6Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-110.521.Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-120.526.2Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-130.521.3Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-140.515.7Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-150.513.8Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-160.511.5Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillarySE-54110.529.7Grigor'eva, Vasil'ev, et al., 198915. m/0.28 mm/2.5 μm, Ar
CapillarySE-54130.525.7Grigor'eva, Vasil'ev, et al., 198915. m/0.28 mm/2.5 μm, Ar
CapillarySE-54150.523.7Grigor'eva, Vasil'ev, et al., 198915. m/0.28 mm/2.5 μm, Ar
CapillarySE-54110.530.Grigor'eva, Vasil'ev, et al., 198915. m/0.28 mm/2.5 μm, Ar
CapillarySE-54130.525.7Grigor'eva, Vasil'ev, et al., 198915. m/0.28 mm/2.5 μm, Ar
CapillarySE-54150.522.4Grigor'eva, Vasil'ev, et al., 198915. m/0.28 mm/2.5 μm, Ar
CapillarySE-30100.505.Tarjan, Nyiredy, et al., 1989 
CapillarySE-3080.505.Tarjan, Nyiredy, et al., 1989 
CapillarySE-30100.505.Haken and Korhonen, 1986N2; Column length: 25. m; Column diameter: 0.33 mm
CapillarySE-3060.509.Haken and Korhonen, 1986N2; Column length: 25. m; Column diameter: 0.33 mm
CapillarySE-3080.505.Haken and Korhonen, 1986N2; Column length: 25. m; Column diameter: 0.33 mm
CapillaryApiezon L + KF70.529.Svetlova, Samusenko, et al., 198630. m/0.25 mm/0.06 μm
CapillarySE-30100.560.Haken, Madden, et al., 1983Column length: 25. m; Column diameter: 0.22 mm
CapillaryOV-10180.525.9Komárek, Hornová, et al., 1982N2; Column length: 15. m; Column diameter: 0.22 mm
PackedSE-30150.509.Haken, Ho, et al., 1975Column length: 3.7 m
PackedSE-30150.509.Ashes and Haken, 1974Celaton (62-72 mesh); Column length: 3.7 m
PackedSE-30100.505.Zarazir, Chovin, et al., 1970Chromosorb W; Column length: 2. m
PackedSE-30150.506.Germaine and Haken, 1969Celite 560; Column length: 3.7 m
PackedSE-3080.510.Viani, Müggler-Chavan, et al., 1965He, Chromosorb P; Column length: 6. m

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySE-54531.Rembold, Wallner, et al., 198930. m/0.25 mm/0.25 μm, He, 0. C @ 12. min, 12. K/min; Tend: 250. C

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySE-30509.Chretien and Dubois, 1978Program: not specified

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-351100.844.Haken and Korhonen, 1986N2; Column length: 25. m; Column diameter: 0.32 mm
CapillaryOV-351120.877.Haken and Korhonen, 1986N2; Column length: 25. m; Column diameter: 0.32 mm
CapillaryOV-35160.823.Haken and Korhonen, 1986N2; Column length: 25. m; Column diameter: 0.32 mm
CapillaryOV-35180.839.Haken and Korhonen, 1986N2; Column length: 25. m; Column diameter: 0.32 mm
PackedCarbowax 20M75.850.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m
PackedCarbowax 20M100.836.Zarazir, Chovin, et al., 1970Chromosorb W; Column length: 2. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-20832.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax810.Shimoda and Shibamoto, 1990He, 40. C @ 6. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 190. C
CapillaryDB-Wax827.Tatsuka, Suekane, et al., 199060. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C
CapillaryDB-Wax828.Tatsuka, Suekane, et al., 199060. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C

Kovats' RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedCarbowax 20M798.Kevei and Kozma, 1976Chromosorb; Program: not specified

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5522.Bylaite and Meyer, 200630. m/0.25 mm/1. μm, 50. C @ 1. min, 10. K/min, 290. C @ 10. min
CapillaryCP-Sil 8CB-MS531.Hierro, de la Hoz, et al., 200460. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 280. C @ 5. min
CapillaryPetrocol DH517.2Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillaryDB-5526.3Xu, van Stee, et al., 200330. m/0.25 mm/1. μm, He, 2.5 K/min; Tstart: 50. C; Tend: 200. C
CapillaryCP Sil 5 CB506.Pino, Marbot, et al., 200230. m/0.25 mm/0.25 μm, H2, 60. C @ 10. min, 2. K/min, 280. C @ 40. min
CapillarySPB-1511.Larráyoz, Addis, et al., 200130. m/0.32 mm/4. μm, He, 45. C @ 13. min, 5. K/min, 240. C @ 5. min
CapillaryCP Sil 5 CB511.Pino, Marbot, et al., 200150. m/0.32 mm/0.4 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min
CapillaryOV-101521.3Golovnya, Syomina, et al., 199750. m/0.25 mm/0.25 μm, He, 8. K/min; Tstart: 140. C
CapillarySE-30516.7Grigor'eva, Golovnya, et al., 199725. m/0.32 mm/1. μm, He, 8. K/min; Tstart: 140. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryBPX-5536.Dharmawan, Kasapis, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C => 4C/min => 200C => 30C/min => 300C (3min)
CapillaryHP-5515.Boué, Shih, et al., 200350. m/0.2 mm/0.5 μm, He; Program: 40C(3min) => 10C/min => 60C =3C/min => 150C => 20C/min => 250C (5min)
CapillaryDB-5559.Beaulieu and Grimm, 200130. m/0.25 mm/0.25 μm, He; Program: 50C (1min) => 5C/min => 100C => 10C/min => 250C (9min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax839.Gurbuz O., Rouseff J.M., et al., 200660. m/0.25 mm/0.25 μm, He, 7. K/min, 265. C @ 5. min; Tstart: 40. C
CapillaryCP-Wax 52CB826.Kourkoutas, Elmore, et al., 200660. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 250. C
CapillaryDB-Wax864.Varming, Petersen, et al., 200430. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 6. K/min, 240. C @ 25. min
CapillaryCarbowax832.8Censullo, Jones, et al., 200360. m/0.25 mm/0.5 μm, He, 50. C @ 10. min, 5. K/min, 250. C @ 10. min
CapillaryHP-Wax801.Peng, 200015. m/0.53 mm/1. μm, He, 40. C @ 3. min, 5. K/min, 220. C @ 30. min
CapillaryFFAP834.Ott, Fay, et al., 199730. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min
CapillaryDB-Wax825.Iwaoka, Hagi, et al., 1994He, 40. C @ 5. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryDB-Wax829.Sumitani, Suekane, et al., 1994He, 40. C @ 5. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryDB-Wax827.Umano, Hagi, et al., 1992He, 40. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryCarbowax 20M817.Chen, Kuo, et al., 1982He, 50. C @ 10. min, 1. K/min; Tend: 160. C

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-10825.Bianchi, Cantoni, et al., 200730. m/0.25 mm/0.25 μm; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 220C(1min)
CapillarySupelcowax-10828.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-10825.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryPolydimethyl siloxane105.512.Tello, Lebron-Aguilar, et al., 2009 
CapillaryPolydimethyl siloxane75.513.Tello, Lebron-Aguilar, et al., 2009 
CapillaryPolydimethyl siloxane90.513.Tello, Lebron-Aguilar, et al., 2009 
CapillaryMethyl Silicone100.510.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.511.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone140.507.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone80.512.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryDB-160.515.Shimadzu, 2003, 260. m/0.32 mm/1. μm, He
PackedSE-3070.524.Yabumoto, Jennings, et al., 1977 

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5515.3Leffingwell and Alford, 200560. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min
CapillaryMDN-5525.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillaryBP-1511.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillaryDB-5515.Shimoda, Shibamoto, et al., 199360. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 3. K/min; Tend: 200. C
CapillaryDB-1513.Habu, Flath, et al., 19853. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C
CapillaryOV-101519.del Rosario, de Lumen, et al., 1984He, 0. C @ 1. min, 3. K/min; Column length: 50. m; Column diameter: 0.31 mm; Tend: 225. C
CapillarySP 2100509.Labropoulos, Palmer, et al., 1982Helium, 10. K/min; Column length: 40. m; Column diameter: 0.20 mm; Tstart: 40. C; Tend: 200. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5531.Miyazaki, Plotto, et al., 201160. m/0.25 mm/1.00 μm, Helium; Program: 40 0C 4 0C/min -> 230 0C 100 0C/min -> 260 0C (11.7 min)
CapillaryHP-5528.Rotsatschakul, Visesanguan, et al., 200960. m/0.25 mm/0.25 μm, Helium; Program: 30 0C (2 min) 2 0Cmin -> 60 0C 10 0C/min -> 100 0C 20 0C/min -> 140 0C 10 0C/min -> 200 0C (10 min)
CapillarySqualane509.Chen, 2008Program: not specified
CapillaryMethyl Silicone509.Chen and Feng, 2007Program: not specified
CapillaryVB-5525.Karlshøj, Nielsen, et al., 200760. m/0.25 mm/1. μm, He; Program: 35C(1min) => 4C/min => 175C => 10C/min => 260C
CapillarySE-30509.Liu, Liang, et al., 2007Program: not specified
CapillaryDB-5559.Beaulieu, 200560. m/0.25 mm/0.25 μm; Program: 50C => 5C/min => 100C => 15C/min => 250C (19C)
CapillaryDB-5523.Garcia-Estaban, Ansorena, et al., 200450. m/0.32 mm/1.05 μm; Program: 40C(10min) => 5C/min => 200C => 20C/min => 250C (5min)
CapillarySE-30513.Vinogradov, 2004Program: not specified
CapillaryMethyl Silicone509.N/AProgram: not specified
CapillaryDB-5530.Dittmann and Nitz, 2000Program: not specified
CapillarySPB-1512.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes510.Zenkevich and Chupalov, 1996Program: not specified
CapillaryDB-1507.Schuberth, 199430. m/0.25 mm/1. μm, He; Program: 40C (4min) => 10C/min => 200C => 50C/min => 250C
CapillarySPB-1512.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1513.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryCP Sil 8 CB524.Weller and Wolf, 198940. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C
CapillaryDB-1508.Takeoka, Flath, et al., 198830. m/0.25 mm/0.25 μm, H2; Program: 30C (2min) => 2C/min => 150C => 4C/min => 250C
CapillaryDB-1508.Takeoka, Flath, et al., 198830. m/0.25 mm/0.25 μm, H2; Program: 30C (2min) => 2C/min => 150C => 4C/min => 250C
CapillarySF96+Igepal519.Flath, Altieri, et al., 1984Column length: 152. m; Column diameter: 0.76 mm; Program: 25C(1min) => 5C/min => 50C (4min) => 1.25C/min => 180C
CapillaryOV-1513.Ramsey and Flanagan, 1982Program: not specified

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-Wax60.848.Shimadzu, 2003, 250. m/0.32 mm/1. μm, He
PackedCarbowax 20M100.818.Yabumoto, Jennings, et al., 1977 

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryZB-Wax843.Marin, Pozrl, et al., 200860. m/0.32 mm/0.50 μm, Helium, 40. C @ 5. min, 4. K/min, 220. C @ 5. min
CapillaryTR-WAX828.Tena N., Lazzez A., et al., 200760. m/0.25 mm/0.25 μm, H2, 40. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillaryDB-Wax813.Rizzolo, Cambiaghi, et al., 200560. m/0.53 mm/1. μm, 50. C @ 10. min, 3. K/min; Tend: 180. C
CapillaryDB-Wax832.Chida, Sone, et al., 200460. m/0.25 mm/0.5 μm, 35. C @ 5. min, 4. K/min, 240. C @ 10. min
CapillarySupelcowax-10828.Vichi, Castellote, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C
CapillarySupelcowax-10826.Vichi, Pizzale, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C
CapillaryHP-Wax782.Sanz, Maeztu, et al., 200260. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryDB-Wax856.Umano, Hagi, et al., 200260. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C
CapillaryDB-Wax822.Duque, Bonilla, et al., 200130. m/0.25 mm/0.25 μm, Helium, 4. K/min, 220. C @ 30. min; Tstart: 25. C
CapillaryHP-Wax782.Maeztu, Sanz, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryHP-Wax782.Sanz, Ansorena, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryDB-Wax825.Takeoka, Flath, et al., 198860. m/0.25 mm/0.25 μm, H2, 30. C @ 2. min, 2. K/min; Tend: 180. C
CapillaryDB-Wax827.Takeoka, Flath, et al., 198860. m/0.25 mm/0.25 μm, H2, 30. C @ 2. min, 2. K/min; Tend: 180. C
CapillaryCarbowax 20M837.Labropoulos, Palmer, et al., 1982Helium, 10. K/min; Column length: 31. m; Column diameter: 0.50 mm; Tstart: 40. C; Tend: 200. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M845.Lee, Chong, et al., 2012Program: not specified
CapillarySOLGel-Wax825.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySOLGel-Wax825.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySOLGel-Wax828.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax784.Miyazaki, Plotto, et al., 201160. m/0.25 mm/0.50 μm, Helium; Program: 40 0C 4 0C/min -> 230 0C 100 0C/min -> 260 0C (11.7 min)
CapillaryHP-Innowax834.Xiao, Dai, et al., 201160. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 3 0C/min -> 150 0C 5 0C/min -> 220 0C (5 min)
CapillaryFFAP854.Ortiz, Echeverra, et al., 200950. m/0.20 mm/0.33 μm, Helium; Program: 70 0C (1 min) 3 0C/min -> 142 0C 5 0C/min -> 225 0C (10 min)
CapillarySupelcowax 10826.Soria, Martinez-Castro, et al., 200850. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min)
CapillaryDB-Wax827.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: 44 0C 3 0C/min -> 170 0C 8 0C/min -> 250 0C
CapillaryDB-Wax813.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: not specified
CapillaryFFAP834.Lopez, Villatoro, et al., 200750. m/0.2 mm/0.33 μm, He; Program: 70C(1min) => 3C/min => 142C => 5C/min => 225C(10min)
CapillaryHP-Innowax804.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (5 min) 4 0C/min -> 60 0C (5 min) 8 0C/min -> 250 0C (3 min)
CapillaryHP-Innowax834.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: not specified
CapillaryFFAP834.Echeverría, Correa, et al., 200450. m/0.2 mm/0.33 μm, He; Program: 70C(1min) => 3C/min => 142C => 5C/min => 225C(10min)
CapillaryCarbowax 20M813.Vinogradov, 2004Program: not specified
CapillaryHP-FFAP834.Echeverria, Fuentes, et al., 200350. m/0.2 mm/0.33 μm, He; Program: 70C(1min) => 3C/min => 142C => 5C/min => 225C (10min)
CapillaryFFAP841.Lopez, Lavilla, et al., 200050. m/0.2 mm/0.33 μm, N2; Program: 70C(1min) => 3C/min => 142C(2min) => 25C/min => 230C(5min)
CapillaryCross-linked FFAP841.Lavilla, Puy, et al., 199950. m/0.2 mm/0.33 μm, N2; Program: 70C(1min) => 3C/min => 142C (2min) => 25C/min => 230C(5min)
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.827.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M796.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hall and Baldt, 1971
Hall, H.K., Jr.; Baldt, J.H., Thermochemistry of strained-ring bridgehead nitriles and esters, J. Am. Chem. Soc., 1971, 93, 140-145. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Vay P.-M., 1971
Vay P.-M., Tables of thermodynamic functions for gaseous methyl formate and methyl acetate, J. Chim. Phys. Physico-Chim. Biol., 1971, 68, 1757-1758. [all data]

Connett J.E., 1976
Connett J.E., Thermodynamic properties of organic oxygen compounds. XLIV. Vapor heat capacities and enthalpies of vaporization of methyl acetate, ethyl acetate, and propyl acetate, J. Chem. Thermodyn., 1976, 8, 1199-1203. [all data]

Seno, Tsuchiya, et al., 1975
Seno, M.; Tsuchiya, S.; Kise, H.; Asahara, T., Studies on bond character in phosphorus ylides by combustion heat and x-ray photoelectron spectroscopy, Bull. Chem. Soc. Jpn., 1975, 48, 2001-2005. [all data]

Okamoto, Oguni, et al., 1992
Okamoto, N.; Oguni, M.; Suga, H., Low temperature calorimetric study of methyl acetate, Thermochim. Acta, 1992, 202, 215-222. [all data]

Pintos, Bravo, et al., 1988
Pintos, M.; Bravo, R.; Baluja, M.C.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E., Can. J. Chem., 1988, 1179. [all data]

Costas and Patterson, 1985
Costas, M.; Patterson, D., Heat capacities of water + organic-solvent mixtures, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 2381-2398. [all data]

Costas and Patterson, 1985, 2
Costas, M.; Patterson, D., Self-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 635-654. [all data]

Timmermans and Hennaut-Roland, 1955
Timmermans, J.; Hennaut-Roland, M., Work of the International Bureau of Physical-Chemical Standards. IX. The Physical Constants of Twenty Organic Compounds, J. Chim. Phys. Phys.-Chim. Biol., 1955, 52, 223. [all data]

Timmermans, 1911
Timmermans, J., Researches on the freezing point of organic liquid compounds, Bull. Soc. Chim. Belg., 1911, 25, 300. [all data]

Okamoto, Oguni, et al., 1992, 2
Okamoto, N.; Oguni, M.; Saga, H., Low temperature calorimetric study of methyl acetate, Thermochim. Acta, 1992, 202, 215, https://doi.org/10.1016/0040-6031(92)85165-R . [all data]

Ambrose, Ellender, et al., 1981
Ambrose, D.; Ellender, J.H.; Gundry, H.A.; Lee, D.A.; Townsend, R., Thermodynamic properties of organic oxygen compounds. LI. The vapour pressures of some esters and fatty acids, J. Chem. Thermodyn., 1981, 13, 795. [all data]

Young, 1910
Young, S., The Internal Heat of Vaporization constants of thirty pure substances, Sci. Proc. R. Dublin Soc., 1910, 12, 374. [all data]

Young and Thomas, 1893
Young, S.; Thomas, G.L., The vapour pressures, molecular volumes, and critical constants of ten of the lower esters, J. Chem. Soc., 1893, 63, 1191. [all data]

Nadezhdin, 1887
Nadezhdin, A., Rep. Phys., 1887, 23, 708. [all data]

Sajots, 1879
Sajots, W., Vapor Pressures of Saturated Vapors at High Temperatures., Beibl. Ann. Phys., 1879, 3, 741-3. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Polák and Mertl, 1965
Polák, J.; Mertl, I., Saturated vapour pressure of methyl acetate, ethyl acetate, n-propyl acetate, methyl propionate, and ethyl propionate, Collect. Czech. Chem. Commun., 1965, 30, 10, 3526-3528, https://doi.org/10.1135/cccc19653526 . [all data]

Dykyj, 1970
Dykyj, J., Petrochemica, 1970, 10, 2, 51. [all data]

Meyer, Awe, et al., 1980
Meyer, Edwin F.; Awe, Michael J.; Wagner, Robert E., Cohesive energies in polar organic liquids. 4. n-Alkyl acetates, J. Chem. Eng. Data, 1980, 25, 4, 371-374, https://doi.org/10.1021/je60087a030 . [all data]

Svoboda, Uchytilová, et al., 1980
Svoboda, Václav; Uchytilová, Vera; Majer, Vladimír; Pick, Jirí, Heats of vaporization of alkyl esters of formic, acetic and propionic acids, Collect. Czech. Chem. Commun., 1980, 45, 12, 3233-3240, https://doi.org/10.1135/cccc19803233 . [all data]

Svoboda, Veselý, et al., 1977
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Heats of vaporization of alkyl acetates and propionates, Collect. Czech. Chem. Commun., 1977, 42, 3, 943-951, https://doi.org/10.1135/cccc19770943 . [all data]

Connett, Counsell, et al., 1976
Connett, J.E.; Counsell, J.F.; Lee, D.A., Thermodynamic properties of organic oxygen compounds XLIV. Vapour heat capacities and enthalpies of vaporization of methyl acetate, ethyl acetate, and propyl acetate, The Journal of Chemical Thermodynamics, 1976, 8, 12, 1199-1203, https://doi.org/10.1016/0021-9614(76)90129-4 . [all data]

Baldt and Hall, 1971
Baldt, J.H.; Hall, H.K.K., Jr., Thermochemistry of strained-ring bridgehead nitriles and esters, J. Am. Chem. Soc., 1971, 93, 140-145. [all data]

Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B., A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Zimmerman, Reed, et al., 1977
Zimmerman, A.H.; Reed, K.J.; Brauman, J.I., Photodetachment of electrons from enolate anions. Gas phase electron affinities of enolate radicals, J. Am. Chem. Soc., 1977, 99, 7203. [all data]

Pariat and Allan, 1991
Pariat, Y.; Allan, M., Dissociative Attachment to Methyl Acetate: Evidence for Ion/Molecule Complexes as Intermediates, Int. J. Mass Spectrom. Ion Proc., 1991, 103, 2-3, 181, https://doi.org/10.1016/0168-1176(91)80088-5 . [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Wiberg, Martin, et al., 1985
Wiberg, K.B.; Martin, E.J.; Squires, R.R., Thermochemical studies of carbonyl compounds. 3. Enthalpies of hydrolysis of ortho esters, J. Org. Chem., 1985, 50, 4717-4720. [all data]

Wiberg and Squires, 1979
Wiberg, K.B.; Squires, R.R., A microprocessor-controlled system for precise measurement of temperature changes. Determination of the enthalpies of hydrolysis of some polyoxygenated hydrocarbons, J. Chem. Thermodyn., 1979, 11, 773-786. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Coon and Daniels, 1933
Coon, E.D.; Daniels, F., An isothermal calorimeter for slow reactions, J. Phys. Chem., 1933, 37, 1-12. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]

Buttery, Ling, et al., 1969
Buttery, R.G.; Ling, L.C.; Guadagni, D.G., Volatilities Aldehydes, Ketones, and Esters in Dilute Water Solution, J. Agric. Food Chem., 1969, 17, 385-389. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Cannington and Ham, 1985
Cannington, P.H.; Ham, N.S., He(II) photoelectron spectra of esters, J. Electron Spectrosc. Relat. Phenom., 1985, 36, 203. [all data]

Traeger, McLouglin, et al., 1982
Traeger, J.C.; McLouglin, R.G.; Nicholson, A.J.C., Heat of formation for acetyl cation in the gas phase, J. Am. Chem. Soc., 1982, 104, 5318. [all data]

Benoit, Harrison, et al., 1977
Benoit, F.M.; Harrison, A.G.; Lossing, F.P., Hydrogen migrations in mass spectrometry III-Energetics of formation of [R'CO2H2]+ in the mass spectra of R'CO2R, Org. Mass Spectrom., 1977, 12, 78. [all data]

Sweigart and Turner, 1972
Sweigart, D.A.; Turner, D.W., Lone pair orbitals and their interactions studied by photoelectron spectroscopy. I. Carboxylic acids and their derivatives, J. Am. Chem. Soc., 1972, 94, 5592. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Sustmann and Trill, 1972
Sustmann, R.; Trill, H., Photoelektronenspektroskopische Bestimmung von Substituenten-Effekten. II. α,β-ungesattigte Carbonester, Tetrahedron Lett., 1972, 42, 4271. [all data]

Brion and Dunning, 1963
Brion, C.E.; Dunning, W.J., Electron impact studies of simple carboxylic esters, J. Chem. Soc. Faraday Trans., 1963, 59, 647. [all data]

King and Long, 1958
King, A.B.; Long, F.A., Mass spectra of some simple esters and their interpretation by quasi-equilibrium theory, J. Chem. Phys., 1958, 29, 374. [all data]

Friedland and Strakna, 1956
Friedland, S.S.; Strakna, R.E., Appearance potential studies. I, J. Phys. Chem., 1956, 60, 815. [all data]

Burgers and Holmes, 1982
Burgers, P.C.; Holmes, J.L., Metastable ion studies. XIII. The measurement of appearance energies of metastable peaks, Org. Mass Spectrom., 1982, 17, 123. [all data]

Holmes and Lossing, 1979
Holmes, J.L.; Lossing, F.P., Keto and enol forms of methyl acetate molecular ions, their stability and interconvertibility prior to fragmentation in the gas phase, Org. Mass Spectrom., 1979, 14, 512. [all data]

Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L., Excess energies in mass spectra of some oxygen-containing organic compounds, J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]

Blanchette, Holmes, et al., 1986
Blanchette, M.C.; Holmes, J.L.; Hop, C.E.C.A.; Lossing, F.P.; Postma, R.; Ruttink, P.J.A.; Terlouw, J.K., Theory and experiment in concert; the CH3O-C=O+ ion and its isomers, J. Am. Chem. Soc., 1986, 108, 7589. [all data]

Briggs and Shannon, 1969
Briggs, P.R.; Shannon, T.W., The heat of formation of the methoxycarbonyl ion, J. Am. Chem. Soc., 1969, 91, 4307. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Mijin and Antonovic, 2006
Mijin, D.; Antonovic, D.G., The temperature dependence of the retention index for n-alkyl esters of acetic, propionic, cyclohexanecarboxylic, benzoic and phenylacetic acid on DB-1 and DB-5 capillary columns, J. Serb. Chem. Soc., 2006, 71, 6, 629-637, https://doi.org/10.2298/JSC0606629M . [all data]

Wang, Liu, et al., 2005
Wang, Y.; Liu, J.; Li, N.; Shi, G.; Jiang, G.; Ma, W., Preliminary study of the retention behavior for different compounds using cryogenic chromatography at different initial temperatures, Microchem. J., 2005, 81, 2, 184-190, https://doi.org/10.1016/j.microc.2005.02.003 . [all data]

Grigor'eva, Vasil'ev, et al., 1989
Grigor'eva, D.N.; Vasil'ev, A.V.; Golovnya, R.V., Variation in retention indices and equivalent chain lengths of homologous series of n-alkyl acetates, n-alkyl methyl ketones, and methyl esters of aliphatic carboxylic acids as a function of homolog number and analysis temperature, Zh. Anal. Khim., 1989, 44, 1, 68-73. [all data]

Tarjan, Nyiredy, et al., 1989
Tarjan, G.; Nyiredy, Sz.; Gyor, M.; Lombosi, E.R.; Lombosi, T.S.; Budahegyi, M.V.; Meszaros, S.Y.; Takacs, J.M., Review. Thirtieth Anniversary of the Retention Index According to Kovats in Gas-Liquid Chromatography, J. Chromatogr., 1989, 472, 1-92, https://doi.org/10.1016/S0021-9673(00)94099-8 . [all data]

Haken and Korhonen, 1986
Haken, J.K.; Korhonen, I.O.O., Gas chromatography of homologous esters. XXXII. Capillary chromatography of C1-C18 monochlorinated n-alkyl acetates, J. Chromatogr., 1986, 356, 79-94, https://doi.org/10.1016/S0021-9673(00)91468-7 . [all data]

Svetlova, Samusenko, et al., 1986
Svetlova, N.I.; Samusenko, A.L.; Golovnya, R.V., Advantage of the universal equation over the linear equation for the calculation of retention parameters of homologous series in capillary chromatography, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 12, 737-740, https://doi.org/10.1002/jhrc.1240091205 . [all data]

Haken, Madden, et al., 1983
Haken, J.K.; Madden, B.G.; Korhonen, I.O.O., Gas chromatography of homologous esters. XX. Capillary column studies of alkyl acetates, chloroacetates, dichloroacetates and trichloroacetates, J. Chromatogr., 1983, 256, 221-229, https://doi.org/10.1016/S0021-9673(01)88235-2 . [all data]

Komárek, Hornová, et al., 1982
Komárek, K.; Hornová, L.; Churácek, J., Glass capillary gas chromatography of homologous series of esters. Separation of homologous series of esters of halogenated carboxylic acids on a glass capillary column with the non-polar stationary silicone phase OV-101, J. Chromatogr., 1982, 244, 1, 142-147, https://doi.org/10.1016/S0021-9673(00)80131-4 . [all data]

Haken, Ho, et al., 1975
Haken, J.K.; Ho, D.K.M.; Vaughan, C.E., Gas chromatography of homologous esters. VII. The retention behaviour of pyruvate esters and related carbonyl and carboxyl compounds, J. Chromatogr., 1975, 106, 2, 317-325, https://doi.org/10.1016/S0021-9673(00)93839-1 . [all data]

Ashes and Haken, 1974
Ashes, J.R.; Haken, J.K., Gas chromatography of homologous esters. VI. Structure-retention increments of aliphatic esters, J. Chromatogr., 1974, 101, 1, 103-123, https://doi.org/10.1016/S0021-9673(01)94737-5 . [all data]

Zarazir, Chovin, et al., 1970
Zarazir, D.; Chovin, P.; Guiochon, G., Identification of hydroxylic compounds and their derivatives by gas chromatography, Chromatographia, 1970, 3, 4, 180-195, https://doi.org/10.1007/BF02269018 . [all data]

Germaine and Haken, 1969
Germaine, R.W.; Haken, J.K., Gas chromatography of homologous esters. Part 1. Simple aliphatic esters, J. Chromatogr., 1969, 43, 33-42, https://doi.org/10.1016/S0021-9673(00)99162-3 . [all data]

Viani, Müggler-Chavan, et al., 1965
Viani, R.; Müggler-Chavan, F.; Reymond, D.; Egli, R.H., 196. Sur la composition de l'arôme de café, Helv. Chim. Acta, 1965, 48, 195-196, 1809-1815, https://doi.org/10.1002/hlca.19650480743 . [all data]

Rembold, Wallner, et al., 1989
Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F., Volatile components of chickpea (Cicer arietinum L.) seed, J. Agric. Food Chem., 1989, 37, 3, 659-662, https://doi.org/10.1021/jf00087a018 . [all data]

Chretien and Dubois, 1978
Chretien, J.R.; Dubois, J-E., Topological Analysis: A Technique for the Physico-Chemical Exploitation of Retention Data in Gas-Liquid Chromatography, J. Chromatogr., 1978, 158, 43-56, https://doi.org/10.1016/S0021-9673(00)89954-9 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Shimadzu, 2003
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Shimoda and Shibamoto, 1990
Shimoda, M.; Shibamoto, T., Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/MS method, J. Agric. Food Chem., 1990, 38, 3, 802-804, https://doi.org/10.1021/jf00093a045 . [all data]

Tatsuka, Suekane, et al., 1990
Tatsuka, K.; Suekane, S.; Sakai, Y.; Sumitani, H., Volatile constituents of kiwi fruit flowers: simultaneous distillation and extraction versus headspace sampling, J. Agric. Food Chem., 1990, 38, 12, 2176-2180, https://doi.org/10.1021/jf00102a015 . [all data]

Kevei and Kozma, 1976
Kevei, E.; Kozma, E., Gaschromatographische Untersuchungsmethoden zur Aromaprüfung in gekochtem Schweinefleisch (M. semimembranosus), Nahrung, 1976, 20, 3, 243-252, https://doi.org/10.1002/food.19760200303 . [all data]

Bylaite and Meyer, 2006
Bylaite, E.; Meyer, A.S., · Characterisation of volatile aroma compounds of orange juices by three dynamic and static headspace gas chromatography techniques, Eur. Food Res. Technol., 2006, 222, 1-2, 176-184, https://doi.org/10.1007/s00217-005-0141-8 . [all data]

Hierro, de la Hoz, et al., 2004
Hierro, E.; de la Hoz, L.; Ordóñez, J.A., Headspace volatile compounds from salted and occasionally smoked dried meats (cecinas) as affected by animal species, Food Chem., 2004, 85, 4, 649-657, https://doi.org/10.1016/j.foodchem.2003.07.001 . [all data]

Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T., Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography, J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922 . [all data]

Xu, van Stee, et al., 2003
Xu, X.; van Stee, L.L.P.; Williams, J.; Beens, J.; Adahchour, M.; Vreuls, R.J.J.; Brinkman, U.A.Th.; Lelieveld, J., Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere, Atmos. Chem. Phys., 2003, 3, 3, 665-682, https://doi.org/10.5194/acp-3-665-2003 . [all data]

Pino, Marbot, et al., 2002
Pino, J.A.; Marbot, R.; Bello, A., Volatile compounds of Psidium salutare (H.B.K.) Berg. fruit, J. Agric. Food Chem., 2002, 50, 18, 5146-5148, https://doi.org/10.1021/jf0116303 . [all data]

Larráyoz, Addis, et al., 2001
Larráyoz, P.; Addis, M.; Gauch, R.; Bosset, J.O., Comparison of dynamic headspace and simultaneous distillation extraction techniques used for the analysis of the volatile components in three European PDO ewes milk cheeses, Int. Dairy J., 2001, 11, 11-12, 911-926, https://doi.org/10.1016/S0958-6946(01)00144-3 . [all data]

Pino, Marbot, et al., 2001
Pino, J.A.; Marbot, R.; Vázquez, C., Characterization of volatiles in strawberry guava (Psidium cattleianum Sabine) fruit, J. Agric. Food Chem., 2001, 49, 12, 5883-5887, https://doi.org/10.1021/jf010414r . [all data]

Golovnya, Syomina, et al., 1997
Golovnya, R.V.; Syomina, L.A.; Samusenko, A.L., Nonlinear variation of sorption parameters of n-alkane homologs in temperature-programmed gas chromatography (TPGC) and new equation for calculation of retention indices, J. Hi. Res. Chromatogr., 1997, 20, 11, 611-614, https://doi.org/10.1002/jhrc.1240201108 . [all data]

Grigor'eva, Golovnya, et al., 1997
Grigor'eva, D.N.; Golovnya, R.V.; Syomina, L.A., An equation for the calculation of retention indices in temperature-programmed gas chromatography with allowance for the nonlinear variation of the retention parameters of n-alkanes, Russ. Chem. Bull. (Engl. Transl.), 1997, 46, 2, 309-313, https://doi.org/10.1007/BF02494369 . [all data]

Dharmawan, Kasapis, et al., 2007
Dharmawan, J.; Kasapis, S.; Curran, P.; Johnson, J.R., Characterization of volatile compounds in selected citrus fruits from Asia. Part I: freshly-squeezed juice, Flavour Fragr. J., 2007, 22, 3, 228-232, https://doi.org/10.1002/ffj.1790 . [all data]

Boué, Shih, et al., 2003
Boué, S.M.; Shih, B.Y.; Carter-Wientjes, C.H.; Cleveland, T.E., Identification of volatile compounds in soybean at various developmental stages using solid phase microextraction, J. Agric. Food Chem., 2003, 51, 17, 4873-4876, https://doi.org/10.1021/jf030051q . [all data]

Beaulieu and Grimm, 2001
Beaulieu, J.C.; Grimm, C.C., Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction, J. Agric. Food Chem., 2001, 49, 3, 1345-1352, https://doi.org/10.1021/jf0005768 . [all data]

Gurbuz O., Rouseff J.M., et al., 2006
Gurbuz O.; Rouseff J.M.; Rouseff R.L., Comparison of aroma volatiles in commercial Merlot and Cabernet Sauvignon wines using gas chromatography - Olfactometry and gas chromatography - Mass spectrometry, J. Agric. Food Chem., 2006, 54, 11, 3990-3996, https://doi.org/10.1021/jf053278p . [all data]

Kourkoutas, Elmore, et al., 2006
Kourkoutas, D.; Elmore, J.S.; Mottram, D.S., Comparison of the volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons, Food Chem., 2006, 97, 1, 95-102, https://doi.org/10.1016/j.foodchem.2005.03.026 . [all data]

Varming, Petersen, et al., 2004
Varming, C.; Petersen, M.A.; Poll, L., Comparison of isolation methods for the determination of important aroma compounds in black currant (Ribes nigrum L.) juice, using nasal impact frequency profiling, J. Agric. Food Chem., 2004, 52, 6, 1647-1652, https://doi.org/10.1021/jf035133t . [all data]

Peng, 2000
Peng, C.T., Prediction of retention indices. V. Influence of electronic effects and column polarity on retention index, J. Chromatogr. A, 2000, 903, 1-2, 117-143, https://doi.org/10.1016/S0021-9673(00)00901-8 . [all data]

Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A., Determination and origin of the aroma impact compounds of yogurt flavor, J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e . [all data]

Iwaoka, Hagi, et al., 1994
Iwaoka, W.; Hagi, Y.; Umano, K.; Shibamoto, T., Volatile chemicals identified in fresh and cooked breadfruit, J. Agric. Food Chem., 1994, 42, 4, 975-976, https://doi.org/10.1021/jf00040a026 . [all data]

Sumitani, Suekane, et al., 1994
Sumitani, H.; Suekane, S.; Nakatani, A.; Tatsuka, K., Changes in composition of volatile compounds in high pressure treated peach, J. Agric. Food Chem., 1994, 42, 3, 785-790, https://doi.org/10.1021/jf00039a037 . [all data]

Umano, Hagi, et al., 1992
Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T., Volatile constituents of green and ripened pineapple (Aanas comosus [L.] Merr.), J. Agric. Food Chem., 1992, 40, 4, 599-603, https://doi.org/10.1021/jf00016a014 . [all data]

Chen, Kuo, et al., 1982
Chen, C.-C.; Kuo, M.-C.; Hwang, L.S.; Wu, J.S.-B.; Wu, C.-M., Headspace components of passion fruit juice, J. Agric. Food Chem., 1982, 30, 6, 1211-1215, https://doi.org/10.1021/jf00114a052 . [all data]

Bianchi, Cantoni, et al., 2007
Bianchi, F.; Cantoni, C.; Careri, M.; Chiesa, L.; Musci, M.; Pinna, A., Characterization of the aromatic profile for the authentication and differentiation of typical Italian dry-sausages, Talanta, 2007, 72, 4, 1552-1563, https://doi.org/10.1016/j.talanta.2007.02.019 . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Tello, Lebron-Aguilar, et al., 2009
Tello, A.M.; Lebron-Aguilar, R.; Quintanilla-Lopez, J.E.; Santiuste, J.M., Isothermal retention indices on poly93-cyanopropylmethyl)siloxane stationary phases, J. Chromatogr. A, 2009, 1216, 10, 1630-1639, https://doi.org/10.1016/j.chroma.2008.10.025 . [all data]

Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M., Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases, J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025 . [all data]

Shimadzu, 2003, 2
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Yabumoto, Jennings, et al., 1977
Yabumoto, K.; Jennings, W.G.; Yamaguchi, M., Gas chromatographic retention as identification criteria, Anal. Biochem., 1977, 78, 1, 244-251, https://doi.org/10.1016/0003-2697(77)90029-X . [all data]

Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D., Volatile constituents of Perique tobacco, Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]

van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J., Identification and olfactometry of French fries flavour extracted at mouth conditions, Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005 . [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

Shimoda, Shibamoto, et al., 1993
Shimoda, M.; Shibamoto, T.; Noble, A.C., Evaluation of heaspace volatiles of Cabernet Sauvignon wines sampled by an on-column method, J. Agric. Food Chem., 1993, 41, 10, 1664-1668, https://doi.org/10.1021/jf00034a028 . [all data]

Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F., Volatile components of Rooibos tea (Aspalathus linearis), J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024 . [all data]

del Rosario, de Lumen, et al., 1984
del Rosario, R.; de Lumen, B.O.; Habu, T.; Flath, R.A.; Mon, T.R.; Teranishi, R., Comparison of headspace volatiles from winged beans and soybeans, J. Agric. Food Chem., 1984, 32, 5, 1011-1015, https://doi.org/10.1021/jf00125a015 . [all data]

Labropoulos, Palmer, et al., 1982
Labropoulos, A.E.; Palmer, J.K.; Tao, P., Flavor evaluation and characterization of yogurt as affected by ultra-high temperature and vat processes, J. Dairy Sci., 1982, 65, 2, 191-196, https://doi.org/10.3168/jds.S0022-0302(82)82176-0 . [all data]

Miyazaki, Plotto, et al., 2011
Miyazaki, T.; Plotto, A.; Goodner, K.; Gmitter F.G., Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance, J. Sci. Food Agric., 2011, 91, 3, 449-460, https://doi.org/10.1002/jsfa.4205 . [all data]

Rotsatschakul, Visesanguan, et al., 2009
Rotsatschakul, P.; Visesanguan, W.; Smitinont, T.; Chaiseri, S., Changes in volatile compounds during fermentation of nham (Thai fermented sausage), Int. Food Res. J., 2009, 16, 391-414. [all data]

Chen, 2008
Chen, H.-F., Quantitative prediction of gas chromatography retention indices with support vector machines, radial basis neutral networks and multiple linear regression, Anal. Chim. Acta, 2008, 609, 1, 24-36, https://doi.org/10.1016/j.aca.2008.01.003 . [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Karlshøj, Nielsen, et al., 2007
Karlshøj, K.; Nielsen, P.V.; Larsen, T.O., Prediction of Penicillium expansum Spoilage and Patulin Concentration in Apples Used for Apple Juice Production by Electronic Nose Analysis, J. Agric. Food Chem., 2007, 55, 11, 4289-4298, https://doi.org/10.1021/jf070134x . [all data]

Liu, Liang, et al., 2007
Liu, F.; Liang, Y.; Cao, C.; Zhou, N., QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices, Talanta, 2007, 72, 4, 1307-1315, https://doi.org/10.1016/j.talanta.2007.01.038 . [all data]

Beaulieu, 2005
Beaulieu, J.C., Within-Season Volatile and Quality Differences in Stored Fresh-Cut Cantaloupe Cultivars, J. Agric. Food Chem., 2005, 53, 22, 8679-8687, https://doi.org/10.1021/jf050241w . [all data]

Garcia-Estaban, Ansorena, et al., 2004
Garcia-Estaban, M.; Ansorena, D.; Astiasarán, I.; Ruiz, J., Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME), Talanta, 2004, 64, 2, 458-466, https://doi.org/10.1016/j.talanta.2004.03.007 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Dittmann and Nitz, 2000
Dittmann, B.; Nitz, S., Strategies for the development of reliable QArQC methods when working with mass spectrometry-based chemosensory systems, Sens. Actuators B, 2000, 69, 3, 253-257, https://doi.org/10.1016/S0925-4005(00)00504-9 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A., New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments, Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]

Schuberth, 1994
Schuberth, J., Joint use of retention index and mass spectrum in postmortem tests for volatile organics by headspace capillary gas chromatography with ion-trap detection, J. Chromatogr. A, 1994, 674, 1-2, 63-71, https://doi.org/10.1016/0021-9673(94)85217-0 . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Weller and Wolf, 1989
Weller, J.-P.; Wolf, M., Massenspektroskopie und Headspace-GC, Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]

Takeoka, Flath, et al., 1988
Takeoka, G.R.; Flath, R.A.; Güntert, M.; Jennings, W., Nectarine volatiles: vacuum steam distillation versus headspace sampling, J. Agric. Food Chem., 1988, 36, 3, 553-560, https://doi.org/10.1021/jf00081a037 . [all data]

Flath, Altieri, et al., 1984
Flath, R.A.; Altieri, M.A.; Mon, T.R., Volatile constituents of Amaranthus retroflexus L., J. Agric. Food Chem., 1984, 32, 1, 92-94, https://doi.org/10.1021/jf00121a024 . [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Marin, Pozrl, et al., 2008
Marin, K.; Pozrl, T.; Zlatic, E.; Plestenjak, A., A new aroma index to determine the aroma quality of roasted and ground coffee during storage, Food Technol. Biotechnol., 2008, 46, 4, 442-447. [all data]

Tena N., Lazzez A., et al., 2007
Tena N.; Lazzez A.; Aparicio-Ruiz R.; Garcia-Gonzalez D.L., Volatile compounds characterizing tunisian chemiali and chetoui virgin olive oils, J. Agric. Food Chem., 2007, 55, 19, 7852-7858, https://doi.org/10.1021/jf071030p . [all data]

Rizzolo, Cambiaghi, et al., 2005
Rizzolo, A.; Cambiaghi, P.; Grassi, M.; Zerbini, P.E., Influence of 1-Methylcyclopropene and Storage Atmosphere on Changes in Volatile Compounds and Fruit Quality of Conference Pears, J. Agric. Food Chem., 2005, 53, 25, 9781-9789, https://doi.org/10.1021/jf051339d . [all data]

Chida, Sone, et al., 2004
Chida, M.; Sone, Y.; Tamura, H., Aroma characteristics of stored tobacco cut leaves analyzed by a high vacuum distillation and canister system, J. Agric. Food Chem., 2004, 52, 26, 7918-7924, https://doi.org/10.1021/jf049223p . [all data]

Vichi, Castellote, et al., 2003
Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E., Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection, J. Chromatogr. A, 2003, 983, 1-2, 19-33, https://doi.org/10.1016/S0021-9673(02)01691-6 . [all data]

Vichi, Pizzale, et al., 2003
Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E., Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: characterization of virgin olive oils from two distinct geographical areas of Northern Italy, J. Agric. Food Chem., 2003, 51, 22, 6572-6577, https://doi.org/10.1021/jf030269c . [all data]

Sanz, Maeztu, et al., 2002
Sanz, C.; Maeztu, L.; Zapelena, M.J.; Bello, J.; Cid, C., Profiles of volatile compounds and sensory analysis of three blends of coffee: influence of different proportions of Arabica and Robusta and influence of roasting coffee with sugar, J. Sci. Food Agric., 2002, 82, 8, 840-847, https://doi.org/10.1002/jsfa.1110 . [all data]

Umano, Hagi, et al., 2002
Umano, K.; Hagi, Y.; Shibamoto, T., Volatile chemicals identified in extracts from newly hybrid citrus, dekopon (Shiranuhi mandarin Suppl. J.), J. Agric. Food Chem., 2002, 50, 19, 5355-5359, https://doi.org/10.1021/jf0203951 . [all data]

Duque, Bonilla, et al., 2001
Duque, C.; Bonilla, A.; Bautista, E.; Zea, S., Exudation of low molecular wight compounds (thiobismethane, methyl isocyanide, amd methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix, Biochem. Systematics Ecol., 2001, 29, 5, 459-467, https://doi.org/10.1016/S0305-1978(00)00081-8 . [all data]

Maeztu, Sanz, et al., 2001
Maeztu, L.; Sanz, C.; Andueza, S.; de Peña, M.P.; Bello, J.; Cid, C., Characterization of espresso coffee aroma by static headspace GC-MS and sensory flavor profile, J. Agric. Food Chem., 2001, 49, 11, 5437-5444, https://doi.org/10.1021/jf0107959 . [all data]

Sanz, Ansorena, et al., 2001
Sanz, C.; Ansorena, D.; Bello, J.; Cid, C., Optimizing headspace temperature and time sampling for identification of volatile compounds in ground roasted Arabica coffee, J. Agric. Food Chem., 2001, 49, 3, 1364-1369, https://doi.org/10.1021/jf001100r . [all data]

Lee, Chong, et al., 2012
Lee, P.-R.; Chong, I.S.-M.; Yu, B.; Curran, P.; Liu, S.-Q., Effect of precursors on volatile compounds in Papaya wine fermented by mixed yeasts, Uncorrected proof, 2012, 000-000. [all data]

Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F., Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS), J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x . [all data]

Xiao, Dai, et al., 2011
Xiao, Z.; Dai, S.; Niu, Y.; Yu, H.; Zhu, J.; Tian, H.; Gu, Y., Discrimination of Chinese vinegars based on headspace solid-phase microextraction - gas chromatography mass spectrometry of volatile compounds and multivariate analysis, J. Food Sci., 2011, 76, 8, c1125-c1135, https://doi.org/10.1111/j.1750-3841.2011.02356.x . [all data]

Ortiz, Echeverra, et al., 2009
Ortiz, A.; Echeverra, G.; Graell, J.; Lara, I., Calcium dips enhance volatile emission of cold-stored Fuji Kiki-8 apples, J. Agric. Food Chem., 2009, 57, 11, 4931-4938, https://doi.org/10.1021/jf9003576 . [all data]

Soria, Martinez-Castro, et al., 2008
Soria, A.C.; Martinez-Castro, I.; Sanz, J., Some aspects of dynamic headspace analysis of volatile components in honey, Foog Res. International, 2008, 41, 8, 838-848, https://doi.org/10.1016/j.foodres.2008.07.010 . [all data]

Gonzalez-Rios, Suarez-Quiroz, et al., 2007
Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.-P.; Schorr-Galindo, S., Impact of ecological post-harvest processing of coffee aroma: II Roasted coffee., J. Food Composition Analysis, 2007, 20, 3-4, 297-307, https://doi.org/10.1016/j.jfca.2006.12.004 . [all data]

Lopez, Villatoro, et al., 2007
Lopez, M.L.; Villatoro, C.; Fuentes, T.; Graell, J.; Lara, I.; Echeverria, G., Volatile compounds, quality parameters and consumer acceptance of 'Pink Lady®' apples stored in different conditions, Postharvest Biol. Technol., 2007, 43, 1, 55-66, https://doi.org/10.1016/j.postharvbio.2006.07.009 . [all data]

Viegas and Bassoli, 2007
Viegas, M.C.; Bassoli, D.G., Utilizacao do indice de retencao linear para caracterizacao de compostos volateis em cafe soluvel utilizando GC-MS e coluna HP-Innowax, Quim. Nova, 2007, 30, 8, 2031-2034, https://doi.org/10.1590/S0100-40422007000800040 . [all data]

Echeverría, Correa, et al., 2004
Echeverría, G.; Correa, E.; Ruiz-Altisent, M.; Graell, J.; Puy, J.; López, L., Characterization of Fuji apples from different harvest dates and storage conditions from measurements of volatiles by gas chromatography and electronic nose, J. Agric. Food Chem., 2004, 52, 10, 3069-3076, https://doi.org/10.1021/jf035271i . [all data]

Echeverria, Fuentes, et al., 2003
Echeverria, G.; Fuentes, M.T.; Graell, J.; Lopez, M.L., Relationships between volatile production, fruit quality and sensory evaluation of Fuji apples stored in different atmospheres by means of multivariate analysis, J. Sci. Food Agric., 2003, 84, 1, 5-20, https://doi.org/10.1002/jsfa.1554 . [all data]

Lopez, Lavilla, et al., 2000
Lopez, M.L.; Lavilla, M.T.; Recasens, I.; Graell, J.; Vendrell, M., Changes in aroma quality of 'Golden Delicious' apples after storage at different oxygen and carbon dioxide concentrations, J. Sci. Food Agric., 2000, 80, 3, 311-324, https://doi.org/10.1002/1097-0010(200002)80:3<311::AID-JSFA519>3.0.CO;2-F . [all data]

Lavilla, Puy, et al., 1999
Lavilla, T.; Puy, J.; López, M.L.; Recasens, I.; Vendrell, M., Relationships between volatile production, fruit quality, and sensory evaluation in Granny Smith apples stored in different controlled-atmosphere treatments by means of multivariate analysis, J. Agric. Food Chem., 1999, 47, 9, 3791-3803, https://doi.org/10.1021/jf990066h . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, NIST Free Links, References