Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Allyl radical

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Gas phase ion energetics data, Vibrational and/or electronic energy levels, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Deltafgas40.9 ± 0.7kcal/molN/ATsang, 1996 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Vibrational and/or electronic energy levels, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to C3H5+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
Proton affinity (review)176.kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity169.1kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Deltaf(+) ion226.0kcal/molN/AN/A 
Quantity Value Units Method Reference Comment
DeltafH(+) ion,0K228.9kcal/molN/AN/A 

Electron affinity determinations

EA (eV) Method Reference Comment
0.4810 ± 0.0080LPESWenthold, Polak, et al., 1996B
0.47 ± 0.10D-EABartmess, Scott, et al., 1979value altered from reference due to change in acidity scale; B
0.362 ± 0.020LPESOakes and Ellison, 1984May have significant vibrational energy: Wenthold, Polak, et al., 1996; B
0.551 ± 0.052LPDZimmerman and Brauman, 1977B

Ionization energy determinations

IE (eV) Method Reference Comment
8.18 ± 0.07EIKagramanov, Ujszaszy, et al., 1983LBLHLM
8.1DERGriller and Lossing, 1981LLK
8.13 ± 0.02PEHoule and Beauchamp, 1978LLK
8.07 ± 0.03EILossing, 1971LLK
8.1 ± 0.1EIPottie, Harrison, et al., 1961RDSH

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   8s


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 63398 ± 5 gas Wu, Li, et al., 2000
Liang, Chen, et al., 2002


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 7 C3 bend 446 ± 5 gas MPI Liang, Chen, et al., 2002

State:   7s


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 62620 ± 5 gas Wu, Li, et al., 2000
Liang, Chen, et al., 2002


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 7 C3 bend 449 ± 5 gas MPI Liang, Chen, et al., 2002

State:   6s


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 61337 ± 5 gas Wu, Li, et al., 2000
Liang, Chen, et al., 2002


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 7 C3 bend 439 ± 5 gas MPI Wu, Li, et al., 2000
Liang, Chen, et al., 2002

State:   5s


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 58979 ± 5 gas Liang, Chen, et al., 2002


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 7 C3 bend 436 ± 5 gas MPI Liang, Chen, et al., 2002

State:   4s


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 53708 ± 5 gas Wu, Li, et al., 2000
Liang, Chen, et al., 2002


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 6 C3 stretch 1034 ± 5 gas MPI Wu, Li, et al., 2000
Liang, Chen, et al., 2002
7 C3 bend 429 ± 5 gas MPI Wu, Li, et al., 2000
Liang, Chen, et al., 2002

State:   3d


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 52114 ± 5 gas Wu, Li, et al., 2000
Liang, Chen, et al., 2002

State:   D


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 41557.8 ± 0.5 gas Blush, Minsek, et al., 1992
Getty, Liu, et al., 1992


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a2 9 CH2 a-twist 596 gas Ra Getty, Liu, et al., 1992
b1 12 CH2 s-twist 564 gas Ra Getty, Liu, et al., 1992

State:   C


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 40305.5 ± 0.5 gas C-X 220 250 Callear and Lee, 1968
Minsek, Blush, et al., 1992
Blush, Minsek, et al., 1992
Minsek and Chen, 1993
Tx = 47000 T Ar C-X Maier, Reisenauer, et al., 1983


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 7 CCC bend 385 ± 2 gas MPI Minsek, Blush, et al., 1992
Minsek and Chen, 1993

State:   B


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 40056.5 ± 0.5 gas Hudgens and Dulcey, 1985
Sappey and Weisshaar, 1987
Blush, Minsek, et al., 1992
Minsek and Chen, 1993


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 7 C3 bend 379 ± 2 gas MPI Hudgens and Dulcey, 1985
Sappey and Weisshaar, 1987
Minsek and Chen, 1993
a2 9 CH2 a-twist 596 ± 2 gas MPI Minsek and Chen, 1993
b1 12 CH2 s-twist 491 ± 7 gas MPI Sappey and Weisshaar, 1987

State:   A


 Energy 
 (cm-1
 Med.   Transition   «lambda»min 
 (nm) 
 «lambda»max 
 (nm) 
 References

To = 24492.1 gas A-X 370 410 Currie and Ramsay, 1966
Tonokura and Koshi, 2000
Achkasova, Araki, et al., 2005
Castiglione, Bach, et al., 2006
Kim, Araki, et al., 2006
To = 24480 Ar A-X 360 410 Maier, Reisenauer, et al., 1983


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a 5 CH2 s-rock 1032 ± 10 gas CR PF Currie and Ramsay, 1966
Tonokura and Koshi, 2000
Castiglione, Bach, et al., 2006
7 CH2 a-wag 553 ± 10 gas PF Castiglione, Bach, et al., 2006
8 C3 bend 339 gas CR PF Currie and Ramsay, 1966
Tonokura and Koshi, 2000
Achkasova, Araki, et al., 2005
Castiglione, Bach, et al., 2006
9 CH2 a-twist 101 gas CR PF Achkasova, Araki, et al., 2005
Castiglione, Bach, et al., 2006
b 12 C3 a-stretch 1501 ± 10 gas PF Castiglione, Bach, et al., 2006
14 CH rock 1232 ± 10 gas CF PF Currie and Ramsay, 1966
Tonokura and Koshi, 2000
Castiglione, Bach, et al., 2006
15 CH2 a-rock 934 ± 10 gas CR PF Currie and Ramsay, 1966
Tonokura and Koshi, 2000
Castiglione, Bach, et al., 2006
16 Mixed 752 ± 10 gas PF Castiglione, Bach, et al., 2006

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 CH2 s-stretch 3113.98 gas LD CC Uy, Davis, et al., 1998
DeSain, Thompson, et al., 1998
1 CH2 s-stretch 3109 w m Ar IR Mal'tsev, Korolov, et al., 1982
Maier, Reisenauer, et al., 1983
Mal'tsev, Korolev, et al., 1984
Nandi, Arnold, et al., 2001
2 CH stretch 3033.87 gas LD Han, Utkin, et al., 2002
2 CH stretch 3052 w Ar IR Mal'tsev, Korolov, et al., 1982
Maier, Reisenauer, et al., 1983
Mal'tsev, Korolev, et al., 1984
Nandi, Arnold, et al., 2001
3 CH stretch 3023.46 gas LD Han, Utkin, et al., 2002
3 CH stretch 3027 w Ar IR Nandi, Arnold, et al., 2001
4 CH2 scissors 1488 ± 4 gas Ra Getty, Burmeister, et al., 1991
Getty and Kelly, 1992
4 CH2 scissors 1478 w Ar IR Mal'tsev, Korolov, et al., 1982
Maier, Reisenauer, et al., 1983
Mal'tsev, Korolev, et al., 1984
Nandi, Arnold, et al., 2001
5 Mixed 1245 ± 3 gas Ra Getty, Burmeister, et al., 1991
Getty and Kelly, 1992
5 Mixed 1242 w Ar IR Mal'tsev, Korolov, et al., 1982
Maier, Reisenauer, et al., 1983
Mal'tsev, Korolev, et al., 1984
Nandi, Arnold, et al., 2001
6 Mixed 1066 ± 4 gas Ra Getty, Burmeister, et al., 1991
Getty and Kelly, 1992
6 Mixed 990 ± 20 gas PE Wenthold, Polak, et al., 1996
7 C3 bend 427 ± 4 gas MPI Ra Hudgens and Dulcey, 1985
Sappey and Weisshaar, 1987
Getty, Burmeister, et al., 1991
Getty and Kelly, 1992
Minsek and Chen, 1993
7 C3 bend 427 ± 4 gas PE Wenthold, Polak, et al., 1996
Liang, Chen, et al., 2002
a2 9 CH2 a-twist 549 ± 4 gas MPI Ra Sappey and Weisshaar, 1987
Getty and Kelly, 1992
Getty, Liu, et al., 1993
b1 10 CH OPLA 968 H gas Ra Getty, Burmeister, et al., 1991
10 CH OPLA 983.6 w m Ar IR Mal'tsev, Korolov, et al., 1982
Maier, Reisenauer, et al., 1983
Mal'tsev, Korolev, et al., 1984
Holtzhauer, Cometta-Morini, et al., 1990
Nandi, Arnold, et al., 2001
11 CH2 s-wag 801.72 gas DL PE Hirota, Yamada, et al., 1992
Wenthold, Polak, et al., 1996
11 CH2 s-wag 801.1 vs Ar IR Jacox and Milligan, 1974
Mal'tsev, Korolov, et al., 1982
Maier, Reisenauer, et al., 1983
Mal'tsev, Korolev, et al., 1984
Holtzhauer, Cometta-Morini, et al., 1990
Huang and Graham, 1990
Nandi, Arnold, et al., 2001
12 CH2 s-twist 518 ± 4 gas MPI Ra Hudgens and Dulcey, 1985
Sappey and Weisshaar, 1987
Getty, Burmeister, et al., 1991
Getty and Kelly, 1992
Getty, Liu, et al., 1993
Minsek and Chen, 1993
12 CH2 s-twist 510.1 w m Ar IR Mal'tsev, Korolov, et al., 1982
Maier, Reisenauer, et al., 1983
Mal'tsev, Korolev, et al., 1984
Holtzhauer, Cometta-Morini, et al., 1990
Huang and Graham, 1990
Nandi, Arnold, et al., 2001
b2 13 CH2 a-stretch 3110.60 gas LD CC Uy, Davis, et al., 1998
DeSain, Thompson, et al., 1998
DeSain and Curl, 1999
13 CH2 a-stretch 3107 w Ar IR Nandi, Arnold, et al., 2001
14 CH stretch 3020.32 gas LD Han, Utkin, et al., 2002
14 CH stretch 3020 w Ar IR Mal'tsev, Korolov, et al., 1982
Maier, Reisenauer, et al., 1983
Mal'tsev, Korolev, et al., 1984
Nandi, Arnold, et al., 2001
15 CH2 scissors 1464 w m Ar IR Mal'tsev, Korolov, et al., 1982
Maier, Reisenauer, et al., 1983
Mal'tsev, Korolev, et al., 1984
Nandi, Arnold, et al., 2001
16 Mixed 1390 w Ar IR Mal'tsev, Korolov, et al., 1982
Maier, Reisenauer, et al., 1983
Mal'tsev, Korolev, et al., 1984
Nandi, Arnold, et al., 2001
17 C3 stretch 1182 Ar IR Mal'tsev, Korolev, et al., 1984
Nandi, Arnold, et al., 2001

Additional references: Jacox, 1994, page 372; Jacox, 1998, page 334; Jacox, 2003, page 356; Liu, Getty, et al., 1993; Schultz and Fischer, 1998

Notes

wWeak
mMedium
vsVery strong
H(1/2)(2nu)
TTentative assignment or approximate value
oEnergy separation between the v = 0 levels of the excited and electronic ground states.
xEnergy separation between the band maximum of the excited electronic state and the v = 0 level of the ground state.

References

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Tsang, 1996
Tsang, W., Heats of Formation of Organic Free Radicals by Kinetic Methods in Energetics of Organic Free Radicals, Martinho Simoes, J.A.; Greenberg, A.; Liebman, J.F., eds., Blackie Academic and Professional, London, 1996, 22-58. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Wenthold, Polak, et al., 1996
Wenthold, P.G.; Polak, M.L.; Lineberger, W.C., Photoelectron Spectroscopy of the Allyl and 2-Methylallyl Anions, J. Phys. Chem., 1996, 100, 17, 6920, https://doi.org/10.1021/jp953401n . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Oakes and Ellison, 1984
Oakes, J.M.; Ellison, G.B., Photoelectron spectroscopy of the allylic anion, J. Am. Chem. Soc., 1984, 106, 7734. [all data]

Zimmerman and Brauman, 1977
Zimmerman, A.H.; Brauman, J.I., Electron photodetachment from negative ions of C2v symmetry. Electron affinities of allyl and cyanomethyl radicals, J. Am. Chem. Soc., 1977, 99, 3565. [all data]

Kagramanov, Ujszaszy, et al., 1983
Kagramanov, N.D.; Ujszaszy, K.; Tamas, J.; Mal'tsev, A.K.; Nefedov, O.M., Mass spectrometric detection of allylic and perfluorallylic free radicals and the determination of their ionization potentials, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1983, 7, 1531, In original 1683. [all data]

Griller and Lossing, 1981
Griller, D.; Lossing, F.P., On the thermochemistry of «alpha»-aminoalkyl radicals, J. Am. Chem. Soc., 1981, 103, 1586. [all data]

Houle and Beauchamp, 1978
Houle, F.A.; Beauchamp, J.L., Detection and investigation of allyl and benzyl radicals by photoelectron spectroscopy, J. Am. Chem. Soc., 1978, 100, 3290. [all data]

Lossing, 1971
Lossing, F.P., Free radicals by mass spectrometry. XLIII. Ionization potentials and ionic heats of formation for vinyl, allyl, and benzyl radicals, Can. J. Chem., 1971, 49, 357. [all data]

Pottie, Harrison, et al., 1961
Pottie, R.F.; Harrison, A.G.; Lossing, F.P., Free radicals by mass spectrometry. XXIV. Ionization potentials of cycloalkyl free radicals and cycloalkanes, J. Am. Chem. Soc., 1961, 83, 3204. [all data]

Wu, Li, et al., 2000
Wu, J.-C.; Li, R.; Chang, J.-L.; Chen, Y.-T., Rydberg states of the allyl radical observed by two-photon resonant ionization spectroscopy, J. Chem. Phys., 2000, 113, 17, 7286, https://doi.org/10.1063/1.1313560 . [all data]

Liang, Chen, et al., 2002
Liang, C.-W.; Chen, C.-C.; Wei, C.-Y.; Chen, Y.-T., Two-photon resonant ionization spectroscopy of the allyl-h[sub 5] and allyl-d[sub 5] radicals: Rydberg states and ionization energies, J. Chem. Phys., 2002, 116, 10, 4162, https://doi.org/10.1063/1.1450553 . [all data]

Blush, Minsek, et al., 1992
Blush, J.A.; Minsek, D.W.; Chen, P., Electronic spectrum of allyl and allyl-d5 radicals: the B[12A1] .rarw. X[12A2], C[22B1] .rarw. X[12A2], and D[12B2] .rarw. X[12A2] band systems, J. Phys. Chem., 1992, 96, 25, 10150, https://doi.org/10.1021/j100204a013 . [all data]

Getty, Liu, et al., 1992
Getty, J.D.; Liu, X.; Kelly, P.B., Vibronic coupling of the allyl radical excited states, J. Phys. Chem., 1992, 96, 25, 10155, https://doi.org/10.1021/j100204a014 . [all data]

Callear and Lee, 1968
Callear, A.B.; Lee, H.K., Electronic spectra of the free allyl radical and some of its simple derivatives, Trans. Faraday Soc., 1968, 64, 308, https://doi.org/10.1039/tf9686400308 . [all data]

Minsek, Blush, et al., 1992
Minsek, D.W.; Blush, J.A.; Chen, P., The 1 + 1 resonant multiphoton ionization spectrum of the allyl radical. Rotational structure in the ~C[22B1] .fwdarw. ~X[12A2] origin band, J. Phys. Chem., 1992, 96, 5, 2025, https://doi.org/10.1021/j100184a003 . [all data]

Minsek and Chen, 1993
Minsek, D.W.; Chen, P., The 1 + 1 and 2 + 2 resonant multiphoton ionization of allyl and allyl-dn (C3H5, C3H4D, C3HD4, and C3D5) radicals, J. Phys. Chem., 1993, 97, 50, 13375, https://doi.org/10.1021/j100152a050 . [all data]

Maier, Reisenauer, et al., 1983
Maier, G.; Reisenauer, H.P.; Rohde, B.; Dehnicke, K., IR-, UV- und ESR-Spektrum des Allylradikals in einer Argon-Matrix, Chem. Ber., 1983, 16, 2, 732, https://doi.org/10.1002/cber.19831160230 . [all data]

Hudgens and Dulcey, 1985
Hudgens, J.W.; Dulcey, C.S., Observation of the 3s 2A1 Rydberg states of allyl and 2-methylallyl radicals with multiphoton ionization spectroscopy, J. Phys. Chem., 1985, 89, 8, 1505, https://doi.org/10.1021/j100254a039 . [all data]

Sappey and Weisshaar, 1987
Sappey, A.D.; Weisshaar, J.C., Vibronic spectrum of cold, gas-phase allyl radicals by multiphoton ionization, J. Phys. Chem., 1987, 91, 14, 3731, https://doi.org/10.1021/j100298a004 . [all data]

Currie and Ramsay, 1966
Currie, C.L.; Ramsay, D.A., Electronic Absorption Spectrum and Dissociation Energy of the Allyl Radical, J. Chem. Phys., 1966, 45, 2, 488, https://doi.org/10.1063/1.1727594 . [all data]

Tonokura and Koshi, 2000
Tonokura, K.; Koshi, M., Absorption Spectrum and Cross Sections of the Allyl Radical Measured Using Cavity Ring-Down Spectroscopy: The à <-- X Band, J. Phys. Chem. A, 2000, 104, 37, 8456, https://doi.org/10.1021/jp001129y . [all data]

Achkasova, Araki, et al., 2005
Achkasova, E.; Araki, M.; Denisov, A.; Maier, J.P., Rotational analysis of the electronic spectrum of the allyl radical, Mol. Phys., 2005, 103, 11-12, 1555, https://doi.org/10.1080/00268970500044830 . [all data]

Castiglione, Bach, et al., 2006
Castiglione, L.; Bach, A.; Chen, P., Spectroscopy and dynamics of A [2B1] allyl radical, Phys. Chem. Chem. Phys., 2006, 8, 22, 2591, https://doi.org/10.1039/b602412b . [all data]

Kim, Araki, et al., 2006
Kim, E.; Araki, M.; Chauhan, R.; Birza, P.; Maier, J.P., Electronic spectrum of the hydrocarbon cation, Mol. Phys.104, 2006, 104, 18, 2885, https://doi.org/10.1080/00268970600866694 . [all data]

Uy, Davis, et al., 1998
Uy, D.; Davis, S.; Nesbitt, D.J., High-resolution infrared spectroscopy of jet-cooled allyl radical (CH[sub 2]--CH--CH[sub 2]): In-phase («nu»[sub 1]) and out-of-phase («nu»[sub 13]) antisymmetric CH[sub 2] stretching vibrations, J. Chem. Phys., 1998, 109, 18, 7793, https://doi.org/10.1063/1.477425 . [all data]

DeSain, Thompson, et al., 1998
DeSain, J.D.; Thompson, R.I.; Sharma, S.D.; Curl, R.F., The rotationally resolved infrared spectrum of the «nu»[sub 1] stretch of the allyl radical, J. Chem. Phys., 1998, 109, 18, 7803, https://doi.org/10.1063/1.477426 . [all data]

Mal'tsev, Korolov, et al., 1982
Mal'tsev, A.K.; Korolov, V.A.; Nefedov, O.M., Izv. Akad. Nauk SSSR, 1982, Ser. Khim., 2415. [all data]

Mal'tsev, Korolev, et al., 1984
Mal'tsev, A.K.; Korolev, V.A.; Nefedov, O.M., Izv. Akad. Naul SSSR, 1984, Ser. Khim., 555. [all data]

Nandi, Arnold, et al., 2001
Nandi, S.; Arnold, P.A.; Carpenter, B.K.; Nimlos, M.R.; Dayton, D.C.; Ellison, G.B., Polarized Infrared Absorption Spectra of Matrix-Isolated Allyl Radicals, J. Phys. Chem. A, 2001, 105, 32, 7514, https://doi.org/10.1021/jp011163s . [all data]

Han, Utkin, et al., 2002
Han, J.-X.; Utkin, Yu.G.; Chen, H.-B.; Hunt, N.T.; Curl, R.F., High-resolution infrared spectra of jet-cooled allyl radical (CH[sub 2]--CH--CH[sub 2]): «nu»[sub 2], «nu»[sub 3], and «nu»[sub 14] C--H stretch vibrations, J. Chem. Phys., 2002, 116, 15, 6505, https://doi.org/10.1063/1.1459417 . [all data]

Getty, Burmeister, et al., 1991
Getty, J.D.; Burmeister, M.J.; Westre, S.G.; Kelly, P.B., Examination of allyl radical excited-state dynamics and ground-state vibrational frequencies by ultraviolet resonance Raman spectroscopy, M. Am. Chem. Soc., 1991, 113, 3, 801, https://doi.org/10.1021/ja00003a011 . [all data]

Getty and Kelly, 1992
Getty, J.D.; Kelly, P.B., Vibrational analysis of the X 2A2 state of the allyl radical, Chem. Phys., 1992, 168, 2-3, 357, https://doi.org/10.1016/0301-0104(92)87169-A . [all data]

Getty, Liu, et al., 1993
Getty, J.D.; Liu, X.; Kelly, P.B., Anomalous polarization: evidence for vibronic coupling in the allyl radical, Chem. Phys. Lett., 1993, 201, 1-4, 236, https://doi.org/10.1016/0009-2614(93)85062-S . [all data]

Holtzhauer, Cometta-Morini, et al., 1990
Holtzhauer, K.; Cometta-Morini, C.; Oth, J.F.M., Photochemical electrocyclization of the allyl radical into the cyclopropyl radical, J. Phys. Org. Chem., 1990, 3, 4, 219, https://doi.org/10.1002/poc.610030403 . [all data]

Hirota, Yamada, et al., 1992
Hirota, E.; Yamada, C.; Okunishi, M., Infrared diode laser spectroscopy of the allyl radical. The «nu»11 band, J. Chem. Phys., 1992, 97, 5, 2963, https://doi.org/10.1063/1.463037 . [all data]

Jacox and Milligan, 1974
Jacox, M.E.; Milligan, D.E., Matrix isolation study of the vacuum ultraviolet photolysis of allene and methylacetylene. Vibrational and electronic spectra of the species C3, C3H, C3H2, and C3H3, Chem. Phys., 1974, 4, 1, 45, https://doi.org/10.1016/0301-0104(74)80047-9 . [all data]

Huang and Graham, 1990
Huang, J.W.; Graham, W.R.M., Fourier transform infrared study of tricarbon hydride radicals trapped in Ar at 10 K, J. Chem. Phys., 1990, 93, 3, 1583, https://doi.org/10.1063/1.459137 . [all data]

DeSain and Curl, 1999
DeSain, J.D.; Curl, R.F., Rotational Analysis of «nu»13 of Allyl Radical, J. Mol. Spectrosc., 1999, 196, 2, 324, https://doi.org/10.1006/jmsp.1999.7868 . [all data]

Jacox, 1994
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]

Liu, Getty, et al., 1993
Liu, X.; Getty, J.D.; Kelly, P.B., Resonance Raman spectrum of the allyl-d5 radical and the force field analysis of the allyl radical, J. Chem. Phys., 1993, 99, 3, 1522, https://doi.org/10.1063/1.465320 . [all data]

Schultz and Fischer, 1998
Schultz, T.; Fischer, I., Time-resolved photoelectron spectroscopy of the allyl radical: The lifetimes of the ultraviolet bands, J. Chem. Phys., 1998, 109, 14, 5812, https://doi.org/10.1063/1.477203 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, NIST Free Links, References