Pyridine, 3-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas103.6 ± 1.3kJ/molCcbGerasimov, Gubareva, et al., 1992%hf298_condensed[kJ/mol]=-61.1±1.3; ALS
Δfgas106.1 ± 0.71kJ/molCcbScott, Good, et al., 1963ALS
Δfgas113.6 ± 1.0kJ/molCmAndon, Cox, et al., 1957ALS
Δfgas113.6 ± 1.0kJ/molCcbCox, Challoner, et al., 1954ALS
Δfgas75.5kJ/molN/AConstam and White, 1903Value computed using ΔfHliquid° value of 33.0 kj/mol from Constam and White, 1903 and ΔvapH° value of 42.5 kj/mol from Gerasimov, Gubareva, et al., 1992.; DRB

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid61.1 ± 1.3kJ/molCcbGerasimov, Gubareva, et al., 1992%hf298_condensed[kJ/mol]=-61.1±1.3; ALS
Δfliquid61.71 ± 0.59kJ/molCcbScott, Good, et al., 1963ALS
Δfliquid68.3 ± 1.0kJ/molCcbCox, Challoner, et al., 1954ALS
Δfliquid33.kJ/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
Δcliquid-3300.4 ± 1.3kJ/molCcbGerasimov, Gubareva, et al., 1992%hf298_condensed[kJ/mol]=-61.1±1.3; ALS
Δcliquid-3423.2 ± 0.50kJ/molCcbScott, Good, et al., 1963ALS
Δcliquid-3429.8 ± 1.0kJ/molCcbCox, Challoner, et al., 1954ALS
Δcliquid-3402.kJ/molCcbConstam and White, 1903ALS
Quantity Value Units Method Reference Comment
liquid216.31J/mol*KN/AScott, Good, et al., 1963DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
158.69298.15Scott, Good, et al., 1963T = 12 to 400 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil417.0 ± 0.7KAVGN/AAverage of 20 out of 22 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus255. ± 2.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple255.010KN/AScott, Good, et al., 1963, 2Uncertainty assigned by TRC = 0.06 K; by extrapolation of 1/f, from calorimeter, to zero; TRC
Quantity Value Units Method Reference Comment
Tc645.KN/AMajer and Svoboda, 1985 
Tc644.85KN/AAmbrose and Grant, 1957Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Δvap44. ± 2.kJ/molAVGN/AAverage of 10 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
37.35417.3N/AMajer and Svoboda, 1985 
43.2 ± 0.1320.EBChirico, Knipmeyer, et al., 1999Based on data from 314. - 457. K.; AC
40.9 ± 0.1360.EBChirico, Knipmeyer, et al., 1999Based on data from 314. - 457. K.; AC
38.6 ± 0.1400.EBChirico, Knipmeyer, et al., 1999Based on data from 314. - 457. K.; AC
36.1 ± 0.2440.EBChirico, Knipmeyer, et al., 1999Based on data from 314. - 457. K.; AC
40.1389.AStephenson and Malanowski, 1987Based on data from 374. - 458. K.; AC
37.7465.AStephenson and Malanowski, 1987Based on data from 450. - 570. K.; AC
36.8576.AStephenson and Malanowski, 1987Based on data from 561. - 645. K.; AC
41.3362.EB,IPStephenson and Malanowski, 1987Based on data from 347. - 458. K. See also Osborn and Douslin, 1968.; AC
41.3362.EBStephenson and Malanowski, 1987Based on data from 347. - 458. K. See also Scott, Good, et al., 1963.; AC
43.6 ± 0.1313.CMajer, Svoboda, et al., 1984AC
42.7 ± 0.1328.CMajer, Svoboda, et al., 1984AC
42.0 ± 0.1343.CMajer, Svoboda, et al., 1984AC
40.4 ± 0.1368.CMajer, Svoboda, et al., 1984AC
40.2 ± 0.1372.CScott, Good, et al., 1963AC
38.9 ± 0.1393.CScott, Good, et al., 1963AC
37.4 ± 0.1417.CScott, Good, et al., 1963AC
41.0369.MGHerington and Martin, 1953Based on data from 354. - 418. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
298. - 417.61.060.2913645.Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference
347.19 - 457.724.178791484.307-61.606Osborn and Douslin, 1968

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Reference Comment
62.2240.Stephenson and Malanowski, 1987Based on data from 225. - 255. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
14.180255.01Scott, Good, et al., 1963DH
14.18255.Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
55.61255.01Scott, Good, et al., 1963DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H6N- + Hydrogen cation = Pyridine, 3-methyl-

By formula: C6H6N- + H+ = C6H7N

Quantity Value Units Method Reference Comment
Δr1581. ± 13.kJ/molG+TSDePuy, Kass, et al., 1988gas phase; Acid: 3-methylpyridine. Comparable to EtOH.; B
Quantity Value Units Method Reference Comment
Δr1552. ± 13.kJ/molIMRBDePuy, Kass, et al., 1988gas phase; Acid: 3-methylpyridine. Comparable to EtOH.; B

Lithium ion (1+) + Pyridine, 3-methyl- = (Lithium ion (1+) • Pyridine, 3-methyl-)

By formula: Li+ + C6H7N = (Li+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr197. ± 15.kJ/molCIDTRodgers, 2001RCD

Sodium ion (1+) + Pyridine, 3-methyl- = (Sodium ion (1+) • Pyridine, 3-methyl-)

By formula: Na+ + C6H7N = (Na+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr133. ± 4.2kJ/molCIDTRodgers, 2001RCD

Potassium ion (1+) + Pyridine, 3-methyl- = (Potassium ion (1+) • Pyridine, 3-methyl-)

By formula: K+ + C6H7N = (K+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr100. ± 3.kJ/molCIDTRodgers, 2001RCD

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
54. QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
130.6400.MN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C6H7N+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.0eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)943.4kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity911.6kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
8.9PEModelli and Distefano, 1981LLK
9.43 ± 0.05EIZaretskii, Oren, et al., 1976LLK
9.4 ± 0.1EIStefanovic and Grutzmacher, 1974LLK
9.04 ± 0.03PIWatanabe, Nakayama, et al., 1962RDSH
9.3PEModelli and Distefano, 1981Vertical value; LLK
9.31PEKimura, Katsumata, et al., 1981Vertical value; LLK
9.29PEKlasinc, Novak, et al., 1978Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C5H6+12.94 ± 0.05HCNEIZaretskii, Oren, et al., 1976LLK
C6H6N+12.3 ± 0.1HEIPalmer and Lossing, 1963RDSH

De-protonation reactions

C6H6N- + Hydrogen cation = Pyridine, 3-methyl-

By formula: C6H6N- + H+ = C6H7N

Quantity Value Units Method Reference Comment
Δr1581. ± 13.kJ/molG+TSDePuy, Kass, et al., 1988gas phase; Acid: 3-methylpyridine. Comparable to EtOH.; B
Quantity Value Units Method Reference Comment
Δr1552. ± 13.kJ/molIMRBDePuy, Kass, et al., 1988gas phase; Acid: 3-methylpyridine. Comparable to EtOH.; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Potassium ion (1+) + Pyridine, 3-methyl- = (Potassium ion (1+) • Pyridine, 3-methyl-)

By formula: K+ + C6H7N = (K+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr100. ± 3.kJ/molCIDTRodgers, 2001 

Lithium ion (1+) + Pyridine, 3-methyl- = (Lithium ion (1+) • Pyridine, 3-methyl-)

By formula: Li+ + C6H7N = (Li+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr197. ± 15.kJ/molCIDTRodgers, 2001 

Sodium ion (1+) + Pyridine, 3-methyl- = (Sodium ion (1+) • Pyridine, 3-methyl-)

By formula: Na+ + C6H7N = (Na+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr133. ± 4.2kJ/molCIDTRodgers, 2001 

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-5548
NIST MS number 228545

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Alexander N. Yermakov, Alexy A. Usov, Antonina A. Goncharova, Axlexander N. Leskin, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Coulson and Ditcham, 1952
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 12161
Instrument n.i.g.
Melting point - 18.1
Boiling point 144.1

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedC78, Branched paraffin130.844.9Dallos, Sisak, et al., 2000He; Column length: 3.3 m
CapillaryOV-101110.852.Zhuravleva, 200050. m/0.3 mm/0.4 μm, He
CapillaryOV-101150.877.Terenina, Zhuravieva, et al., 199750. m/0.3 mm/0.4 μm, He
PackedC78, Branched paraffin130.843.4Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
PackedApolane130.846.Dutoit, 1991Column length: 3.7 m
CapillaryOV-170.857.Nabivach, 1989 
CapillarySE-30110.852.Samusenko and Golovnya, 198825. m/0.32 mm/1. μm, He
CapillarySE-3080.845.Samusenko and Golovnya, 198825. m/0.32 mm/1. μm, He
CapillaryOV-101150.859.Morishita, Morimoto, et al., 1986N2; Column length: 20. m; Column diameter: 0.23 mm
PackedOV-101130.841.Osmialowski, Halkiewicz, et al., 1985Ar, Chromosorb W HP; Column length: 1. m
PackedApiezon L130.874.Shatts, Avots, et al., 1977He, Chromosorb W AW-DMCS; Column length: 2.4 m
PackedApolane70.826.8Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
PackedApiezon L100.856.Zhuravleva, Kapustin, et al., 1976N2 or He, Chromosorb G, AW; Column length: 2.7 m
PackedApiezon L110.863.Bark and Wheatstone, 1974N2, Chromosorb W AW-DCMS; Column length: 2. m
PackedApiezon L130.871.Bark and Wheatstone, 1974N2, Chromosorb W AW-DCMS; Column length: 2. m
PackedPMS-100130.850.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPMS-100150.849.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPMS-100180.849.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryPEG-40M150.1310.Terenina, Zhuravieva, et al., 199750. m/0.3 mm/0.4 μm, He
CapillaryPEG-40M110.1303.Golovnya, Samusenko, et al., 1987He; Column length: 50. m; Column diameter: 0.3 mm
CapillaryPEG-40M80.1284.Golovnya, Samusenko, et al., 1987He; Column length: 50. m; Column diameter: 0.3 mm
PackedCarbowax 20M100.1297.Bark and Wheatstone, 1974N2, Chromosorb W AW-DCMS; Column length: 2. m
PackedCarbowax 20M110.1302.Bark and Wheatstone, 1974N2, Chromosorb W AW-DCMS; Column length: 2. m
PackedCarbowax 20M90.1289.Bark and Wheatstone, 1974N2, Chromosorb W AW-DCMS; Column length: 2. m
PackedPEG-2000150.1347.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCP-Sil 8CB-MS869.Hierro, de la Hoz, et al., 200460. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 280. C @ 5. min
CapillaryDB-1838.Kim, 200160. m/0.32 mm/1. μm, He, 40. C @ 5. min, 2. K/min; Tend: 220. C
CapillarySE-54860.Li, Wang, et al., 1998H2, 35. C @ 3. min, 4. K/min; Column length: 25. m; Column diameter: 0.31 mm; Tend: 250. C
CapillaryOV-1831.0Gautzsch and Zinn, 19968. K/min; Tstart: 35. C; Tend: 300. C
CapillaryOV-101852.Golovnya, Samusenko, et al., 1988He, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 100. C
CapillaryOV-101850.Golovnya, Samusenko, et al., 1988He, 8. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 70. C
CapillaryOV-101850.Golovnya, Samusenko, et al., 1988He, 4. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 80. C
CapillaryDB-5861.Premecz and Ford, 1987He, 60. C @ 10. min, 10. K/min, 280. C @ 3. min; Column length: 30. m; Column diameter: 0.32 mm
CapillaryDB-5857.Rostad and Pereira, 198630. m/0.26 mm/0.25 μm, He, 50. C @ 4. min, 6. K/min, 300. C @ 20. min

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCP-Sil 8CB-MS868.Elmore, Mottram, et al., 200060. m/0.25 mm/0.25 μm, He; Program: 0C(5min) => 40C/min => 40C (2min) => 4C/min => 280C
CapillarySE-54859.Li, Wang, et al., 1998H2; Column length: 25. m; Column diameter: 0.31 mm; Program: not specified

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryFFAP1289.Calvo-Gómez, Morales-López, et al., 200430. m/0.25 mm/0.25 μm, He, 40. C @ 3. min, 5. K/min; Tend: 220. C
CapillarySupelcowax-101290.Chung, Yung, et al., 200260. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillarySupelcowax-101290.Chung, Yung, et al., 200160. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryDB-Wax1292.Kim, 200160. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 200. C @ 30. min
CapillaryDB-Wax1319.Le Guen, Prost, et al., 200060. m/0.32 mm/0.5 μm, He, 40. C @ 2. min, 4. K/min, 250. C @ 10. min
CapillarySupelcowax-101291.Chung, 199960. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillarySupelcowax-101290.Chung, 1999, 260. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryPEG-40M1303.Golovnya, Samusenko, et al., 198825. m/0.32 mm/0.80 μm, He, 2. K/min; Tstart: 100. C
CapillaryPEG-40M1304.Golovnya, Samusenko, et al., 198825. m/0.32 mm/0.80 μm, He, 8. K/min; Tstart: 70. C
CapillaryPEG-40M1304.Golovnya, Samusenko, et al., 198825. m/0.32 mm/0.80 μm, He, 8. K/min; Tstart: 70. C
CapillaryPEG-40M1298.Golovnya, Samusenko, et al., 198825. m/0.32 mm/0.80 μm, He, 4. K/min; Tstart: 80. C
CapillaryCAM1284.Premecz and Ford, 1987He, 60. C @ 5. min, 5. K/min, 240. C @ 21. min; Column length: 15. m; Column diameter: 0.24 mm

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-101130.841.Qi, Yang, et al., 2000 

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS863.Radulovic, Blagojevic, et al., 201030. m/0.25 mm/0.25 μm, Helium, 5. K/min, 290. C @ 10. min; Tstart: 70. C
CapillarySLB-5MS874.Risticevic, Carasek, et al., 200810. m/0.18 mm/0.18 μm, Helium, 40. C @ 1.5 min, 10. K/min; Tend: 295. C
CapillaryHP-5866.4Leffingwell and Alford, 200560. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min
CapillaryHP-5864.Kubec, Drhová, et al., 199930. m/0.25 mm/0.25 μm, N2, 40. C @ 3. min, 4. K/min, 240. C @ 10. min
CapillaryHP-5864.Kubec, Drhová, et al., 199830. m/0.25 mm/0.25 μm, N2, 40. C @ 3. min, 4. K/min, 240. C @ 10. min
CapillaryDB-1845.Yu and Ho, 199560. m/0.25 mm/1. μm, He, 40. C @ 5. min, 2. K/min, 260. C @ 60. min
CapillarySE-30850.Bur'yan and Nabivach, 19921.7 K/min; Tstart: 82. C; Tend: 177. C
CapillaryDB-5868.Lee, Macku, et al., 199160. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min; Tend: 250. C
CapillaryOV-101841.Misharina, Golovnya, et al., 199150. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 50. C; Tend: 250. C
CapillaryMethyl Silicone832.Lorenz, Stern, et al., 19834. K/min, 200. C @ 15. min; Column length: 25. m; Column diameter: 0.2 mm; Tstart: 50. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySLB-5MS871.Risticevic, Carasek, et al., 200810. m/0.18 mm/0.18 μm, Helium; Program: not specified
CapillarySE-30872.Li, Gao, et al., 2000Program: not specified
CapillaryDB-1834.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryDB-1835.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.832.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.832.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-Innowax1284.Puvipirom and Chaisei, 201215. m/0.32 mm/0.50 μm, Helium, 3. K/min; Tstart: 40. C; Tend: 250. C
CapillaryFFAP1306.Nebesny, Budryn, et al., 200730. m/0.32 mm/0.5 μm, N2, 35. C @ 5. min, 4. K/min, 320. C @ 45. min
CapillaryTC-Wax1305.Ishizaki, Tachihara, et al., 200560. m/0.25 mm/0.25 μm, N2, 3. K/min, 220. C @ 40. min; Tstart: 70. C
CapillaryRTX-Wax1338.Galindo-Cuspinera, Lubran, et al., 200260. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 5. K/min, 180. C @ 20. min
CapillaryHP-Wax1323.Sanz, Maeztu, et al., 200260. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryHP-Innowax1292.Kubec, Drhová, et al., 199930. m/0.25 mm/0.25 μm, He, 40. C @ 3. min, 4. K/min, 190. C @ 10. min
CapillaryDB-Wax1289.Horiuchi, Umano, et al., 199860. m/0.25 mm/1. μm, He, 3. K/min, 200. C @ 40. min; Tstart: 50. C
CapillaryHP-Innowax1292.Kubec, Drhová, et al., 199830. m/0.25 mm/0.25 μm, N2, 40. C @ 3. min, 4. K/min, 190. C @ 10. min
CapillaryPEG-20M1264.Kubota, Matsujage, et al., 199650. m/0.25 mm/0.25 μm, Nitrogen, 2. K/min; Tstart: 60. C; Tend: 180. C
CapillaryDB-Wax1291.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryCarbowax 20M1288.Liardon and Ledermann, 1980H2, 2. K/min; Column length: 39. m; Column diameter: 0.30 mm; Tstart: 60. C; Tend: 220. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-FFAP1301.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 50 0C 2 0C/min -> 100 0C (5 min) 5 0C/min -> 250 0C
CapillaryDB-FFAP1319.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryTC-Wax1305.Kraft and Switt, 2005Program: not specified
CapillaryTC-Wax1305.Tachihara, Ishizaki, et al., 2004Program: not specified
CapillarySupelcowax-101311.Jung, Kim, et al., 2001Program: not specified
CapillaryDB-Wax1283.Peng, Yang, et al., 1991Program: not specified
CapillaryCarbowax1285.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1286.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1287.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1287.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1287.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1288.Baltes and Bochmann, 1987Program: not specified
CapillaryCarbowax1288.Baltes and Bochmann, 1987Program: not specified

Lee's RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-5133.54Rostad and Pereira, 198630. m/0.26 mm/0.25 μm, He, 50. C @ 4. min, 6. K/min, 300. C @ 20. min

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Gerasimov, Gubareva, et al., 1992
Gerasimov, P.A.; Gubareva, A.I.; Tarbeeva, N.A.; Kunderenko, V.M., Physicochemical characteristics of β-picoline, J. Appl. Chem. USSR, 1992, 65, 388-390. [all data]

Scott, Good, et al., 1963
Scott, D.W.; Good, W.D.; Guthrie, G.B.; Todd, S.S.; Hossenlopp, I.A.; Osborn, A.G.; McCullough, J.P., Chemical thermodynamic properties and internal rotation of methylpyridines. II. 3-methylpyridine, J. Phys. Chem., 1963, 67, 685-689. [all data]

Andon, Cox, et al., 1957
Andon, R.J.L.; Cox, J.D.; Herington, E.F.G.; Martin, J.F., The second virial coefficients of pyridine and benzene, and certain of their methyl homologues, Trans. Faraday Soc., 1957, 53, 1074. [all data]

Cox, Challoner, et al., 1954
Cox, J.D.; Challoner, A.R.; Meetham, A.R., The heats of combustion of pyridine and certain of its derivatives, J. Chem. Soc., 1954, 265-271. [all data]

Constam and White, 1903
Constam, E.J.; White, J., Physico-chemical investigations in the pyridine series, Am. Chem. J., 1903, 29, 1-49. [all data]

Scott, Good, et al., 1963, 2
Scott, D.W.; Good, W.D.; Guthrie, G.B.; Todd, S.S.; Hossenlopp, I.A.; Osborn, A.G.; McCullough, J.P., Chemical Thermodynamic Properties and Internal Rotation of Methylpyridines II. 3-Methylpyridine, J. Phys. Chem., 1963, 67, 685. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ambrose and Grant, 1957
Ambrose, D.; Grant, D.G., The Critical Temperatures of Some Hydrocarbons and Pyridine Bases, Trans. Faraday Soc., 1957, 53, 771. [all data]

Chirico, Knipmeyer, et al., 1999
Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Steele, W.V., Thermodynamic properties of the methylpyridines. Part 2. Vapor pressures, heat capacities, critical properties, derived thermodynamic functions between the temperatures 250 K and 560 K, and equilibrium isomer distributions for all temperatures ≥250 K, The Journal of Chemical Thermodynamics, 1999, 31, 3, 339-378, https://doi.org/10.1006/jcht.1998.0451 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Osborn and Douslin, 1968
Osborn, Ann G.; Douslin, Donald R., Vapor pressure relations of 13 nitrogen compounds related to petroleum, J. Chem. Eng. Data, 1968, 13, 4, 534-537, https://doi.org/10.1021/je60039a024 . [all data]

Majer, Svoboda, et al., 1984
Majer, V.; Svoboda, V.; Lencka, M., Enthalpies of vaporization and cohesive energies of pyridine and isomeric methylpyridines, J. Chem. Thermodyn., 1984, 16, 1019-1024. [all data]

Herington and Martin, 1953
Herington, E.F.G.; Martin, J.F., Vapour pressures of pyridine and its homologues, Trans. Faraday Soc., 1953, 49, 154, https://doi.org/10.1039/tf9534900154 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P., Formation and Reactions of Heteroaromatic Anions in the Gas Phase, J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001 . [all data]

Rodgers, 2001
Rodgers, M.T., Substituent Effects in the Binding of Alkali Metal Ions to Pyridines, Studied by Threshold Collision-Induced Dissociation and ab Initio Theory: The Methylpyridines, J. Phys. Chem. A, 2001, 105, 11, 2374, https://doi.org/10.1021/jp004055z . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Modelli and Distefano, 1981
Modelli, A.; Distefano, G., He(I) photoelectron spectra of chloro-, vinyl- and acetyl-pyridines, J. Electron Spectrosc. Relat. Phenom., 1981, 23, 323. [all data]

Zaretskii, Oren, et al., 1976
Zaretskii, Z.V.I.; Oren, D.; Kelner, L., Automatic method for the measurement of the electron impact ionization and appearance potentials, Appl. Spectrosc., 1976, 30, 366. [all data]

Stefanovic and Grutzmacher, 1974
Stefanovic, D.; Grutzmacher, H.F., The ionisation potential of some substituted pyridines, Org. Mass Spectrom., 1974, 9, 1052. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Klasinc, Novak, et al., 1978
Klasinc, L.; Novak, I.; Scholz, M.; Kluge, G., Photoelektronenspektren substituierter Pyridine und Benzole und ihre Interpretation durch die CNDO/SWW-Methode, Croat. Chem. Acta, 1978, 51, 43. [all data]

Palmer and Lossing, 1963
Palmer, T.F.; Lossing, F.P., Free radicals by mass spectrometry. XXX. Ionization potentials of anilino and 2-, 3-, and 4-pyridylmethyl radicals, J. Am. Chem. Soc., 1963, 85, 1733. [all data]

Coulson and Ditcham, 1952
Coulson, E.A.; Ditcham, J.B., J. Appli. Chem. (London), 1952, 2, 71. [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Zhuravleva, 2000
Zhuravleva, I.L., Evaluation of the polarity and boiling points of nitrogen-containing heterocyclic compounds by gas chromatography, Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 325-328, https://doi.org/10.1007/BF02494682 . [all data]

Terenina, Zhuravieva, et al., 1997
Terenina, M.B.; Zhuravieva, I.L.; Golovnya, R.V., Peculiar features of sorption of positional isomers of formyl-, acetyl-, and aminopyridines in capillary gas-liquid chromatography, Russ. Chem. Bull. (Engl. Transl.), 1997, 46, 1, 86-89, https://doi.org/10.1007/BF02495353 . [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Dutoit, 1991
Dutoit, J., Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases, J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X . [all data]

Nabivach, 1989
Nabivach, V.M., Calculation of gas chromatographic retention indices for alkylpyridines from their structural characteristics, Zh. Anal. Khim., 1989, 44, 9, 1615-1621. [all data]

Samusenko and Golovnya, 1988
Samusenko, A.L.; Golovnya, R.V., Prediction of the retention indices of methyl pyridines and pyrazines in capillary gas chromatography based on the non-linear additivity of the sorption energy, Chromatographia, 1988, 25, 6, 531-535, https://doi.org/10.1007/BF02324828 . [all data]

Morishita, Morimoto, et al., 1986
Morishita, F.; Morimoto, S.; Kojima, T., Prediction of molecular structures of aza-arenes by retention indices and fluorescence spectra, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 11, 688-692, https://doi.org/10.1002/jhrc.1240091120 . [all data]

Osmialowski, Halkiewicz, et al., 1985
Osmialowski, K.; Halkiewicz, J.; Radecki, A.; Kaliszan, R., Quantum chemical parameters in correlation analysis of gas-liquid chromatographic retention indices of amines, J. Chromatogr., 1985, 346, 53-60, https://doi.org/10.1016/S0021-9673(00)90493-X . [all data]

Shatts, Avots, et al., 1977
Shatts, V.D.; Avots, A.A.; Belikov, V.A., Retention indices of alkylpyridines, Zh. Anal. Khim., 1977, 32, 4, 631-638. [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Zhuravleva, Kapustin, et al., 1976
Zhuravleva, I.L.; Kapustin, Yu.P.; Golovnya, P.B., Retention indices of some isoaliphatic and heterocyclic nitrogenous bases, Zh. Anal. Khim., 1976, 31, 1378-1380. [all data]

Bark and Wheatstone, 1974
Bark, L.S.; Wheatstone, K.C., Studies in the relationship between molecular structure and chromatographic behaviour. Gas chromatographic study of monoalkylpyridines, J. Chromatogr., 1974, 92, 2, 281-289, https://doi.org/10.1016/S0021-9673(00)85738-6 . [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Golovnya, Samusenko, et al., 1987
Golovnya, R.V.; Samusenko, A.L.; Dmitriev, L.B., Predicting retention indices of methyl-substituted pyridines in gas capillary chromatogrpahy on the basis of the principle of the nonadditive change in the energy of sorption, Izv. Akad. Nauk SSSR Ser. Khim., 1987, 10, 2234-2239. [all data]

Hierro, de la Hoz, et al., 2004
Hierro, E.; de la Hoz, L.; Ordóñez, J.A., Headspace volatile compounds from salted and occasionally smoked dried meats (cecinas) as affected by animal species, Food Chem., 2004, 85, 4, 649-657, https://doi.org/10.1016/j.foodchem.2003.07.001 . [all data]

Kim, 2001
Kim, J.S., Einfluss der Temperatur beim Rösten von Sesam auf Aroma und antioxidative Eigenschaften des Öls, PhD Thesis, Technischen Universität Berlin zur Erlangung des akademischen Grades, Berlin, 2001, 151. [all data]

Li, Wang, et al., 1998
Li, W.; Wang, H.; Sun, Y.; Huang, A.; Sun, Y., Capillary gas chromatographic analysis of volatile components in goat feces, Fenxi Huaxue, 1998, 26, 8, 935-939. [all data]

Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P., Use of incremental models to estimate the retention indexes of aromatic compounds, Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946 . [all data]

Golovnya, Samusenko, et al., 1988
Golovnya, R.V.; Samusenko, A.L.; Lyapin, V.A., Prediction of linear temperature programmed retention indices of methylpyridines in capillary gas chromatography, Zh. Anal. Khim., 1988, 63, 2, 311-317. [all data]

Premecz and Ford, 1987
Premecz, J.E.; Ford, M.E., Gas chromatographic separation of substituted pyridines, J. Chromatogr., 1987, 388, 23-35, https://doi.org/10.1016/S0021-9673(01)94463-2 . [all data]

Rostad and Pereira, 1986
Rostad, C.E.; Pereira, W.E., Kovats and Lee retention indices determined by gas chromatography/mass spectrometry for organic compounds of environmental interest, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 6, 328-334, https://doi.org/10.1002/jhrc.1240090603 . [all data]

Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D., The effects of diet and breed on the volatile compounds of cooked lamb, Meat Sci., 2000, 55, 2, 149-159, https://doi.org/10.1016/S0309-1740(99)00137-0 . [all data]

Calvo-Gómez, Morales-López, et al., 2004
Calvo-Gómez, O.; Morales-López, J.; López, M.G., Solid-phase microextraction-gas chromatographic-mass spectrometric analysis of garlic oil obtained by hydrodistillation, J. Chromatogr. A, 2004, 1036, 1, 91-93, https://doi.org/10.1016/j.chroma.2004.02.072 . [all data]

Chung, Yung, et al., 2002
Chung, H.-Y.; Yung, I.K.S.; Ma, W.C.J.; Kim, J.-S., Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry, Food Res. Int., 2002, 35, 1, 43-53, https://doi.org/10.1016/S0963-9969(01)00107-7 . [all data]

Chung, Yung, et al., 2001
Chung, H.Y.; Yung, I.K.S.; Kim, J.-S., Comparison of volatile components in dried scallops (Chlamys farreri and Patinopecten yessoensis) prepared by boiling and steaming methods, J. Agric. Food Chem., 2001, 49, 1, 192-202, https://doi.org/10.1021/jf000692a . [all data]

Le Guen, Prost, et al., 2000
Le Guen, S.; Prost, C.; Demaimay, M., Characterization of odorant compounds of mussels (Mytilus edulis) according to their origin using gas chromatography-olfactometry and gas chromatography-mass spectrometry, J. Chromatogr. A, 2000, 896, 1-2, 361-371, https://doi.org/10.1016/S0021-9673(00)00729-9 . [all data]

Chung, 1999
Chung, H.Y., Volatile components in crabmeats of Charybdis feriatus, J. Agric. Food Chem., 1999, 47, 6, 2280-2287, https://doi.org/10.1021/jf981027t . [all data]

Chung, 1999, 2
Chung, H.Y., Volatile components in fermented soybean (Glycine max) curds, J. Agric. Food Chem., 1999, 47, 7, 2690-2696, https://doi.org/10.1021/jf981166a . [all data]

Qi, Yang, et al., 2000
Qi, Y.; Yang, J.; Xu, L., correlation analysis of the structures and gas liquid chromatographic retention indices of amines, Chin. J. Anal. Chem., 2000, 28, 2, 223-227. [all data]

Radulovic, Blagojevic, et al., 2010
Radulovic, N.; Blagojevic, P.; Palic, R., Comparative study of the leaf volatiles of Arctostaphylos uva-ursi (L.) Spreng. and Vaccinium vitis-idaea L. (Ericaceae), Molecules, 2010, 15, 9, 6168-6185, https://doi.org/10.3390/molecules15096168 . [all data]

Risticevic, Carasek, et al., 2008
Risticevic, S.; Carasek, E.; Pawliszyn, J., Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee, Anal. Chim. Acta, 2008, 617, 1-2, 72-84, https://doi.org/10.1016/j.aca.2008.04.009 . [all data]

Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D., Volatile constituents of Perique tobacco, Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]

Kubec, Drhová, et al., 1999
Kubec, R.; Drhová, V.; Velísek, J., Volatile compounds thermally generated from S-propylcysteine and S-propylcysteine sulfoxide - aroma precursors of Allium vegetables, J. Agric. Food Chem., 1999, 47, 3, 1132-1138, https://doi.org/10.1021/jf980974z . [all data]

Kubec, Drhová, et al., 1998
Kubec, R.; Drhová, V.; Velísek, J., Thermal degradation of S-methylcysteine and its sulfoxide-important flavor precursors of Bassica and Allium vegetables, J. Agric. Food Chem., 1998, 46, 10, 4334-4340, https://doi.org/10.1021/jf980379x . [all data]

Yu and Ho, 1995
Yu, T.-H.; Ho, C.-T., Volatile compounds generated from thermal reaction of methionine and methionine sulfoxide with or without glucose, J. Agric. Food Chem., 1995, 43, 6, 1641-1646, https://doi.org/10.1021/jf00054a043 . [all data]

Bur'yan and Nabivach, 1992
Bur'yan, P.; Nabivach, V.M., Investigation of composition of higher heterocnitrogen bases of brown coal tar, Coke Chem. (Engl. Transl.), 1992, 5, 29-33. [all data]

Lee, Macku, et al., 1991
Lee, S.-R.; Macku, C.; Shibamoto, T., Isolation and identification of headspace volatiles formed in heated butter, J. Agric. Food Chem., 1991, 39, 11, 1972-1975, https://doi.org/10.1021/jf00011a017 . [all data]

Misharina, Golovnya, et al., 1991
Misharina, T.A.; Golovnya, R.V.; Charnomskii, V.V., Volatile components of boiled shrimp funchalia woodwardi and crab geryon maritae, Zh. Anal. Khim., 1991, 46, 1421-1429. [all data]

Lorenz, Stern, et al., 1983
Lorenz, G.; Stern, D.J.; Flath, R.A.; Haddon, W.F.; Tillin, S.J.; Teranishi, R., Identification of sheep liver volatiles, J. Agric. Food Chem., 1983, 31, 5, 1052-1057, https://doi.org/10.1021/jf00119a033 . [all data]

Li, Gao, et al., 2000
Li, R.; Gao, S.-G.; Xiang, B.-R., Using improved BP neural network in predicting GC retention indices, Computers appl. chem. (Chinese), 2000, 17, 1-2, 113-114. [all data]

Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S., Flavor components of dried squid, J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031 . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Puvipirom and Chaisei, 2012
Puvipirom, J.; Chaisei, S., Contribution of roasted grains and seeds in aroma of oleang (Thai coffee drink), Int. Food Res. J., 2012, 19, 2, 583-588. [all data]

Nebesny, Budryn, et al., 2007
Nebesny, E.; Budryn, G.; Kula, J.; Majda, T., The effect of roasting method on headspace composition of robusta coffee bean aroma, Eur. Food Res. Technol., 2007, 225, 1, 9-19, https://doi.org/10.1007/s00217-006-0375-0 . [all data]

Ishizaki, Tachihara, et al., 2005
Ishizaki, S.; Tachihara, T.; Tamura, H.; Yanai, T.; Kitahara, T., Evaluation of odour-active compounds in roasted shrimp (Sergia lucens Hansen) by aroma extract dilution analysis, Flavour Fragr. J., 2005, 20, 6, 562-566, https://doi.org/10.1002/ffj.1484 . [all data]

Galindo-Cuspinera, Lubran, et al., 2002
Galindo-Cuspinera, V.; Lubran, M.B.; Rankin, S.A., Comparison of volatile compounds in water- and oil-soluble annatto (Bixa orellana L.) extracts, J. Agric. Food Chem., 2002, 50, 7, 2010-2015, https://doi.org/10.1021/jf011325h . [all data]

Sanz, Maeztu, et al., 2002
Sanz, C.; Maeztu, L.; Zapelena, M.J.; Bello, J.; Cid, C., Profiles of volatile compounds and sensory analysis of three blends of coffee: influence of different proportions of Arabica and Robusta and influence of roasting coffee with sugar, J. Sci. Food Agric., 2002, 82, 8, 840-847, https://doi.org/10.1002/jsfa.1110 . [all data]

Horiuchi, Umano, et al., 1998
Horiuchi, M.; Umano, K.; Shibamoto, T., Analysis of volatile compounds formed from fish oil heated with cysteine and trimethylamine oxide, J. Agric. Food Chem., 1998, 46, 12, 5232-5237, https://doi.org/10.1021/jf980482m . [all data]

Kubota, Matsujage, et al., 1996
Kubota, K.; Matsujage, Y.; Sekiwa, Y.; Kobayashi, A., Identification of the characteristic volatile flavor compounds formed by cooking squid (Todarodes pacificus Steenstrup), Food Sci. Technol., 1996, 2, 3, 163-166. [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Liardon and Ledermann, 1980
Liardon, R.; Ledermann, S., volatile components of fermented soya hydrolysate. II. Composition of basic fraction, Z. Lebensm. Unters. Forsch., 1980, 170, 3, 208-213, https://doi.org/10.1007/BF01042542 . [all data]

Mebazaa, Mahmoudi, et al., 2009
Mebazaa, R.; Mahmoudi, A.; Fouchet, M.; Dos Santos, M.; Kamissoko, F.; Nafti, A.; Ben Cheikh, R.; Rega, B.; Camel, V., Characterization of volatile compounds in Tunisian fenugreek seeds, Food Chem., 2009, 115, 4, 1326-1336, https://doi.org/10.1016/j.foodchem.2009.01.066 . [all data]

Kraft and Switt, 2005
Kraft, P.; Switt, K.A.D. (Eds), Perspectives in Flavor and Fragrance Research, Wiley-VCH, Weinheim, Germany, 2005, 251. [all data]

Tachihara, Ishizaki, et al., 2004
Tachihara, T.; Ishizaki, S.; Ishikawa, M.; Kitahara, T., Studies on the volatile compounds of roasted spotted shrimp, Chemistry Biodiversity, 2004, 1, 12, 2024-2033, https://doi.org/10.1002/cbdv.200490155 . [all data]

Jung, Kim, et al., 2001
Jung, E.-J.; Kim, J.-P.; Cho, J.-E.; Lee, J.-W.; Lee, Y.-B.; Kim, W.-J., effect of extraction solvent on volatile compounds of garlic oleoresin, J. Korean Soc. Food Sci. Nutr., 2001, 30, 6, 1033-1037. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]

Baltes and Bochmann, 1987
Baltes, W.; Bochmann, G., Model reactions on roast aroma formations, V. Mass spectrometric identification of pyrifines, oxazoles, and carbocyclic compounds from the reaction of serine and threonine with sucrose under the conditions of coffee roasting, Z. Lebensm. Unters. Forsch., 1987, 185, 1, 5-9, https://doi.org/10.1007/BF01083331 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, NIST Free Links, References