Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Pyrrole

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Deltafgas143.2kJ/molN/AZaheeruddin and Lodhi, 1991Value computed using «DELTA»fHliquid° value of 98.0 kj/mol from Zaheeruddin and Lodhi, 1991 and «DELTA»vapH° value of 45.2 kj/mol from Scott, Berg, et al., 1967.; DRB
Deltafgas108.3 ± 0.50kJ/molCcbScott, Berg, et al., 1967ALS

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Deltafliquid  CcbZaheeruddin and Lodhi, 1991uncertain value: 98.02 kJ/mol; ALS
Deltafliquid63.1 ± 0.4kJ/molCcbScott, Berg, et al., 1967ALS
Quantity Value Units Method Reference Comment
Deltacliquid  CcbZaheeruddin and Lodhi, 1991uncertain value: -2386.66 kJ/mol; ALS
Deltacliquid-2351.7 ± 0.3kJ/molCcbScott, Berg, et al., 1967ALS
Deltacliquid-2350.kJ/molCcbZimmerman and Geisenfelder, 1961ALS
Quantity Value Units Method Reference Comment
liquid156.44J/mol*KN/AScott, Berg, et al., 1967DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
127.74298.15Scott, Berg, et al., 1967T = 11 to 365 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny, director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil403. ± 1.KAVGN/AAverage of 15 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus250.15KN/ARosso and Carbonnel, 1973Uncertainty assigned by TRC = 0.6 K; TRC
Tfus254.7KN/ATimmermans and Hennaut-Roland, 1955Uncertainty assigned by TRC = 0.5 K; TRC
Tfus249.7KN/AAnonymous, 1942Uncertainty assigned by TRC = 0.2 K; TRC
Tfus238.8KN/AMilazzo, 1941Uncertainty assigned by TRC = 0.4 K; TRC
Quantity Value Units Method Reference Comment
Ttriple249.7300KN/AScott, Berg, et al., 1967, 2Uncertainty assigned by TRC = 0.07 K; by extrapolation of 1/f to zero; TRC
Ttriple249.74KN/AHelm, Lanum, et al., 1958Uncertainty assigned by TRC = 0.03 K; measured in calorimeter at U.S. Bur. Mines, Bartlesville, OK; TRC
Ttriple249.74KN/AMcCullough and Waddington, 1957Uncertainty assigned by TRC = 0.06 K; IPTS-48, from freezing curve; TRC
Ttriple249.74KN/AMcCullough and Waddington, 1957Uncertainty assigned by TRC = 0.06 K; IPTS-48, from heating curve; TRC
Ttriple249.75KN/AAnonymous, 1956Uncertainty assigned by TRC = 0.08 K; TRC
Quantity Value Units Method Reference Comment
Tc639.8KN/AMajer and Svoboda, 1985 
Tc639.7KN/ACheng, McCoubrey, et al., 1962Uncertainty assigned by TRC = 1.5 K; extrapolated to zero time to correct for decomposition cal. vs NPL thermometer.; TRC
Tc625.15KN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 2. K; TRC
Quantity Value Units Method Reference Comment
Pc56.742barN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 3.0398 bar; TRC
Quantity Value Units Method Reference Comment
Deltavap43. ± 6.kJ/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

DeltavapH (kJ/mol) Temperature (K) Method Reference Comment
38.75403.N/AMajer and Svoboda, 1985 
42.5300.N/AKimizuka and Szydlowski, 1992Based on data from 285. - 329. K.; AC
42.5353.A,EB,IPStephenson and Malanowski, 1987Based on data from 338. - 440. K. See also Osborn and Douslin, 1968 and Scott, Berg, et al., 1967.; AC
41.9328.IEon, Pommier, et al., 1971Based on data from 313. - 373. K.; AC
41.9348.N/AStull, 1947Based on data from 333. - 373. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) beta Tc (K) Reference Comment
362. - 403.62.70.2964639.8Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
333.4 - 373.55.320912074.447-9.186Eon, Pommier, et al., 1971Coefficents calculated by NIST from author's data.
338.82 - 439.264.427651506.877-62.155Osborn and Douslin, 1968 

Enthalpy of fusion

DeltafusH (kJ/mol) Temperature (K) Reference Comment
7.9078249.74Scott, Berg, et al., 1967DH
7.91249.7Domalski and Hearing, 1996AC

Entropy of fusion

DeltafusS (J/mol*K) Temperature (K) Reference Comment
31.66249.74Scott, Berg, et al., 1967DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

pyrrolide anion + Hydrogen cation = Pyrrole

By formula: C4H4N- + H+ = C4H5N

Quantity Value Units Method Reference Comment
Deltar1504.3 ± 1.0kJ/molD-EAGianola, Ichino, et al., 2004gas phase; B
Deltar1500. ± 9.2kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Deltar1505. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Deltar1500. ± 21.kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Deltar1468. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Deltar1472. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

CN- + Pyrrole = (CN- bullet Pyrrole)

By formula: CN- + C4H5N = (CN- bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar97.9 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Deltar82. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar113.J/mol*KPHPMSMeot-ner, 1988gas phase; M
Deltar99.6J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Deltar64.0 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B
Deltar51.5 ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

Fluorine anion + Pyrrole = (Fluorine anion bullet Pyrrole)

By formula: F- + C4H5N = (F- bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar143. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar107.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Deltar111. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

Chlorine anion + Pyrrole = (Chlorine anion bullet Pyrrole)

By formula: Cl- + C4H5N = (Cl- bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar78.7 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B
Quantity Value Units Method Reference Comment
Deltar49.4 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B
Deltar58.58kJ/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
48.5421.PHPMSFrench, Ikuta, et al., 1982gas phase; M

HS- + Pyrrole = (HS- bullet Pyrrole)

By formula: HS- + C4H5N = (HS- bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar96.2 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar102.J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Deltar65.7 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

pyrrolide anion + Pyrrole = (pyrrolide anion bullet Pyrrole)

By formula: C4H4N- + C4H5N = (C4H4N- bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar111. ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar147.J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar68.2 ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B

MeCO2 anion + Pyrrole = (MeCO2 anion bullet Pyrrole)

By formula: C2H3O2- + C4H5N = (C2H3O2- bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar100. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar105.J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Deltar69.0 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

(C4H5N+ bullet Pyrrole) + Pyrrole = (C4H5N+ bullet 2Pyrrole)

By formula: (C4H5N+ bullet C4H5N) + C4H5N = (C4H5N+ bullet 2C4H5N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Deltar57.7kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Deltar122.J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

C4H5N+ + Pyrrole = (C4H5N+ bullet Pyrrole)

By formula: C4H5N+ + C4H5N = (C4H5N+ bullet C4H5N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Deltar69.0kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Deltar84.9J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(C4H6N+ bullet Pyrrole) + Pyrrole = (C4H6N+ bullet 2Pyrrole)

By formula: (C4H6N+ bullet C4H5N) + C4H5N = (C4H6N+ bullet 2C4H5N)

Quantity Value Units Method Reference Comment
Deltar51.5kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Deltar127.J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(pyrrolide anion bullet Pyrrole) + Pyrrole = (pyrrolide anion bullet 2Pyrrole)

By formula: (C4H4N- bullet C4H5N) + C4H5N = (C4H4N- bullet 2C4H5N)

Quantity Value Units Method Reference Comment
Deltar71.5kJ/molPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Deltar131.J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M

C4H6N+ + Pyrrole = (C4H6N+ bullet Pyrrole)

By formula: C4H6N+ + C4H5N = (C4H6N+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar70.3kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Deltar103.J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(MeCO2 anion bullet Pyrrole) + Pyrrole = (MeCO2 anion bullet 2Pyrrole)

By formula: (C2H3O2- bullet C4H5N) + C4H5N = (C2H3O2- bullet 2C4H5N)

Quantity Value Units Method Reference Comment
Deltar74.9kJ/molPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Deltar101.J/mol*KPHPMSMeot-ner, 1988gas phase; M

CH6N+ + Pyrrole = (CH6N+ bullet Pyrrole)

By formula: CH6N+ + C4H5N = (CH6N+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar77.8kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Deltar87.9J/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

CH3CONHCH(CH3)COOCH3 + Pyrrole = (CH3CONHCH(CH3)COOCH3 bullet Pyrrole)

By formula: C6H11NO3 + C4H5N = (C6H11NO3 bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar100.kJ/molPHPMSMeot-Ner (Mautner), 1988gas phase; M
Quantity Value Units Method Reference Comment
Deltar134.J/mol*KPHPMSMeot-Ner (Mautner), 1988gas phase; M

(Iron ion (1+) bullet Pyrrole) + Pyrrole = (Iron ion (1+) bullet 2Pyrrole)

By formula: (Fe+ bullet C4H5N) + C4H5N = (Fe+ bullet 2C4H5N)

Quantity Value Units Method Reference Comment
Deltar174.kJ/molRAKGapeev and Yang, 2000RCD

(Chromium ion (1+) bullet Pyrrole) + Pyrrole = (Chromium ion (1+) bullet 2Pyrrole)

By formula: (Cr+ bullet C4H5N) + C4H5N = (Cr+ bullet 2C4H5N)

Quantity Value Units Method Reference Comment
Deltar146.kJ/molRAKGapeev and Yang, 2000RCD

(Manganese ion (1+) bullet Pyrrole) + Pyrrole = (Manganese ion (1+) bullet 2Pyrrole)

By formula: (Mn+ bullet C4H5N) + C4H5N = (Mn+ bullet 2C4H5N)

Quantity Value Units Method Reference Comment
Deltar113.kJ/molRAKGapeev and Yang, 2000RCD

(Nickel ion (1+) bullet Pyrrole) + Pyrrole = (Nickel ion (1+) bullet 2Pyrrole)

By formula: (Ni+ bullet C4H5N) + C4H5N = (Ni+ bullet 2C4H5N)

Quantity Value Units Method Reference Comment
Deltar197.kJ/molRAKGapeev and Yang, 2000RCD

(Cobalt ion (1+) bullet Pyrrole) + Pyrrole = (Cobalt ion (1+) bullet 2Pyrrole)

By formula: (Co+ bullet C4H5N) + C4H5N = (Co+ bullet 2C4H5N)

Quantity Value Units Method Reference Comment
Deltar194.kJ/molRAKGapeev and Yang, 2000RCD

(Copper ion (1+) bullet Pyrrole) + Pyrrole = (Copper ion (1+) bullet 2Pyrrole)

By formula: (Cu+ bullet C4H5N) + C4H5N = (Cu+ bullet 2C4H5N)

Quantity Value Units Method Reference Comment
Deltar184.kJ/molRAKGapeev and Yang, 2000RCD

Lithium ion (1+) + Pyrrole = (Lithium ion (1+) bullet Pyrrole)

By formula: Li+ + C4H5N = (Li+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar177. ± 17.kJ/molCIDTHuang and Rodgers, 2002RCD

Sodium ion (1+) + Pyrrole = (Sodium ion (1+) bullet Pyrrole)

By formula: Na+ + C4H5N = (Na+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar102. ± 4.6kJ/molCIDTHuang and Rodgers, 2002RCD

Potassium ion (1+) + Pyrrole = (Potassium ion (1+) bullet Pyrrole)

By formula: K+ + C4H5N = (K+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar83.7 ± 4.2kJ/molCIDTHuang and Rodgers, 2002RCD

Vanadium ion (1+) + Pyrrole = (Vanadium ion (1+) bullet Pyrrole)

By formula: V+ + C4H5N = (V+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar>170.kJ/molRAKGapeev and Yang, 2000RCD

Nickel ion (1+) + Pyrrole = (Nickel ion (1+) bullet Pyrrole)

By formula: Ni+ + C4H5N = (Ni+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar>280.kJ/molRAKGapeev and Yang, 2000RCD

Tungsten ion (1+) + Pyrrole = (Tungsten ion (1+) bullet Pyrrole)

By formula: W+ + C4H5N = (W+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar>210.kJ/molRAKGapeev and Yang, 2000RCD

Cobalt ion (1+) + Pyrrole = (Cobalt ion (1+) bullet Pyrrole)

By formula: Co+ + C4H5N = (Co+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar>280.kJ/molRAKGapeev and Yang, 2000RCD

Molybdenum ion (1+) + Pyrrole = (Molybdenum ion (1+) bullet Pyrrole)

By formula: Mo+ + C4H5N = (Mo+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar>290.kJ/molRAKGapeev and Yang, 2000RCD

Iron ion (1+) + Pyrrole = (Iron ion (1+) bullet Pyrrole)

By formula: Fe+ + C4H5N = (Fe+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar226.kJ/molRAKGapeev and Yang, 2000RCD

Chromium ion (1+) + Pyrrole = (Chromium ion (1+) bullet Pyrrole)

By formula: Cr+ + C4H5N = (Cr+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar178.kJ/molRAKGapeev and Yang, 2000RCD

Manganese ion (1+) + Pyrrole = (Manganese ion (1+) bullet Pyrrole)

By formula: Mn+ + C4H5N = (Mn+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar177.kJ/molRAKGapeev and Yang, 2000RCD

Magnesium ion (1+) + Pyrrole = (Magnesium ion (1+) bullet Pyrrole)

By formula: Mg+ + C4H5N = (Mg+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar184.kJ/molRAKGapeev and Yang, 2000RCD

Aluminum ion (1+) + Pyrrole = (Aluminum ion (1+) bullet Pyrrole)

By formula: Al+ + C4H5N = (Al+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar184.kJ/molRAKGapeev and Yang, 2000RCD

Copper ion (1+) + Pyrrole = (Copper ion (1+) bullet Pyrrole)

By formula: Cu+ + C4H5N = (Cu+ bullet C4H5N)

Quantity Value Units Method Reference Comment
Deltar247.kJ/molRAKGapeev and Yang, 2000RCD

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin U.S. BUREAU OF MINES, LARAMIE, WYO, USA
NIST MS number 34529

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Zaheeruddin and Lodhi, 1991
Zaheeruddin, M.; Lodhi, Z.H., Enthalpies of formation of some cyclic compounds, Phys. Chem. (Peshawar Pak.), 1991, 10, 111-118. [all data]

Scott, Berg, et al., 1967
Scott, D.W.; Berg, W.T.; Hossenlopp, I.A.; Hubbard, W.N.; Messerly, J.F.; Todd, S.S.; Douslin, D.R.; McCullough, J.P.; Waddington, G., Pyrrole: Chemical thermodynamic properties, J. Phys. Chem., 1967, 71, 2263-2270. [all data]

Zimmerman and Geisenfelder, 1961
Zimmerman, H.; Geisenfelder, H., Uber die Mesomerieenergie von Azolen, Z. Electrochem., 1961, 65, 368-371. [all data]

Rosso and Carbonnel, 1973
Rosso, M.J.-C.; Carbonnel, L., Hydrates + cubic clathrates generated by the nitrogenous meterocycles: the binary systems water + propylene imine and water + pyrrole, C. R. Seances Acad. Sci., Ser. C, 1973, 277, 259. [all data]

Timmermans and Hennaut-Roland, 1955
Timmermans, J.; Hennaut-Roland, M., Work of the International Bureau of Physical-Chemical Standards. IX. The Physical Constants of Twenty Organic Compounds, J. Chim. Phys. Phys.-Chim. Biol., 1955, 52, 223. [all data]

Anonymous, 1942
Anonymous, R., , Am. Pet. Inst. Res. Proj. 6, Natl. Bur. Stand., 1942. [all data]

Milazzo, 1941
Milazzo, G., Boll. Sci. Facolta Chim. Ind. Bologna, 1941, 94. [all data]

Scott, Berg, et al., 1967, 2
Scott, D.W.; Berg, W.T.; Hossenlopp, I.A.; Hubbard, W.N.; Messerly, J.F.; Todd, S.S.; Douslin, D.R.; McCullough, J.P.; Waddington, G., Pyrrole: Chemical Thermodynamic Properties, J. Phys. Chem., 1967, 71, 2263. [all data]

Helm, Lanum, et al., 1958
Helm, R.V.; Lanum, W.J.; Cook, G.L.; Ball, J.S., Purification and Properties of Pyrrole, Pyrrolidine, Pyridine and 2-Methylpyridine, J. Phys. Chem., 1958, 62, 858. [all data]

McCullough and Waddington, 1957
McCullough, J.P.; Waddington, G., Melting-point purity determinations: limitations as evidenced by calorimetric studies in the melting region, Anal. Chim. Acta, 1957, 17, 80. [all data]

Anonymous, 1956
Anonymous, R., , Physical Properties of Chemical Substances, Dow Chemical Company, 1956. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Cheng, McCoubrey, et al., 1962
Cheng, D.C.H.; McCoubrey, J.C.; Phillips, D.G., Critical Temperatures of Some Organic Cyclic Compounds, Trans. Faraday Soc., 1962, 58, 224. [all data]

Glaser and Ruland, 1957
Glaser, F.; Ruland, H., Untersuchungsen über dampfdruckkurven und kritische daten einiger technisch wichtiger organischer substanzen, Chem. Ing. Techn., 1957, 29, 772. [all data]

Kimizuka and Szydlowski, 1992
Kimizuka, Wieslawa; Szydlowski, Jerzy, Vapor pressure isotope effect of n-deuterated pyrrole, Fluid Phase Equilibria, 1992, 77, 261-267, https://doi.org/10.1016/0378-3812(92)85107-J . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Osborn and Douslin, 1968
Osborn, Ann G.; Douslin, Donald R., Vapor pressure relations of 13 nitrogen compounds related to petroleum, J. Chem. Eng. Data, 1968, 13, 4, 534-537, https://doi.org/10.1021/je60039a024 . [all data]

Eon, Pommier, et al., 1971
Eon, C.; Pommier, C.; Guiochon, G., Vapor pressures and second virial coefficients of some five-membered heterocyclic derivatives, J. Chem. Eng. Data, 1971, 16, 4, 408-410, https://doi.org/10.1021/je60051a008 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Gianola, Ichino, et al., 2004
Gianola, A.J.; Ichino, T.; Hoenigman, R.L.; Kato, S.; Bierbaum, V.M.; Lineberger, W.C., Thermochemistry and electronic structure of the pyrrolyl radical, J. Phys. Chem. A, 2004, 108, 46, 10326-10335, https://doi.org/10.1021/jp047790+ . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Khatymov, R.V.; Mazunov, V.A.; Takhistov, V.V.; Travkin, O.V.; Yakovleva, E.V., Thermochemistry of negatively charged ions. II. Energetics of formation of negative ions from acridanone and some of its derivatives, Rapid Commun. Mass Spectrom., 1999, 13, 10, 912-923, https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<912::AID-RCM585>3.0.CO;2-W . [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Meot-ner, 1988, 2
Meot-ner, M., The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules, J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022 . [all data]

Hiraoka, Takimoto, et al., 1987
Hiraoka, K.; Takimoto, H.; Yamabe, S., Stabilities and Structures in Cluster Ions of Five-Membered Heterocyclic Compounds Containing O, N and S Atoms, J. Am. Chem. Soc., 1987, 109, 24, 7346, https://doi.org/10.1021/ja00258a018 . [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Meot-Ner (Mautner), 1988
Meot-Ner (Mautner), M., Models for Strong Interactions in Proteins and Enzymes. 2. Interactions of Ions with the Peptide Link and Imidazole, J. Am. Chem. Soc., 1988, 110, 10, 3075, https://doi.org/10.1021/ja00218a014 . [all data]

Gapeev and Yang, 2000
Gapeev, A.; Yang, C.-N., Binding Energies of Gas-Phase Ions with Pyrrole. Experimental and Quantum Chemical Results, J. Phys. Chem. A, 2000, 104, 14, 3246, https://doi.org/10.1021/jp992627d . [all data]

Huang and Rodgers, 2002
Huang, H.; Rodgers, M.T., Sigma versus Pi interactions in alkali metal ion binding to azoles: Threshold collision-induced dissociation and ab initio theory studies, J. Phys. Chem. A, 2002, 106, 16, 4277, https://doi.org/10.1021/jp013630b . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References