Methyl Alcohol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-205. ± 10.kJ/molAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δcgas-763.68 ± 0.20kJ/molCmRossini, 1932Flame Calorimetry; Corresponding Δfgas = -201.49 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.0050.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with other statistically calculated values [ Ivash E.V., 1955, Zhuravlev E.Z., 1959, Chen S.S., 1977, Chao J., 1986, Gurvich, Veyts, et al., 1989]. Please also see Chao J., 1986, 2.; GT
36.95100.
38.64150.
39.71200.
42.59273.15
44.06 ± 0.03298.15
44.17300.
51.63400.
59.70500.
67.19600.
73.86700.
79.76800.
84.95900.
89.541000.
93.571100.
97.121200.
100.241300.
102.981400.
105.401500.
110.21750.
113.82000.
116.52250.
118.62500.
120.2750.
121.3000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
42.4 ± 1.3279.Stromsoe E., 1970Heat capacity at 279 K was obtained by thermal conductivity [ Halford J.O., 1957]. Vapor heat capacities from calorimetric measurements [ De Vries T., 1941] were converted to the ideal gas heat capacities by corrections for the gas imperfection effects [ Chen S.S., 1977, Chao J., 1986, 2]. Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.17 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see De Vries T., 1941, Weltner W., 1951, Halford J.O., 1957.; GT
48.0 ± 1.3345.6
46.8 ± 1.2347.35
46.1 ± 1.3349.65
47.6 ± 1.2356.55
46.7 ± 1.3358.15
48.2 ± 1.3358.85
48.8 ± 1.3359.85
50.3 ± 1.3368.15
49.0 ± 1.2373.35
51.3 ± 1.3382.15
51.1 ± 1.2398.95
52.3 ± 1.3401.15
51.3 ± 1.2401.35
52.01 ± 0.42403.2
53.2 ± 1.3420.15
53.9 ± 1.2431.45
54.8 ± 1.2442.15
55.9 ± 1.3442.65
56.0 ± 1.2457.35
57.20 ± 0.42464.0
57.8 ± 1.2477.75
58.4 ± 1.2485.05
59.5 ± 1.2498.95
60.4 ± 1.3521.2
61.4 ± 1.2521.35
64.3 ± 1.2555.95
66.4 ± 1.2581.35
66.8 ± 1.2585.35

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-238.4kJ/molCcrBaroody and Carpenter, 1972ALS
Δfliquid-239.5 ± 0.2kJ/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Δfliquid-238.9 ± 3.6kJ/molCcbGreen, 1960Reanalyzed by Cox and Pilcher, 1970, Original value = -238.5 ± 0.2 kJ/mol; ALS
Δfliquid-250.6kJ/molCcbParks, 1925ALS
Δfliquid-251.3 ± 5.0kJ/molCcbRichards and Davis, 1920DRB
Quantity Value Units Method Reference Comment
Δcliquid-725.7 ± 0.1kJ/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding Δfliquid = -239.5 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-726.5 ± 0.2kJ/molCcbGreen, 1960Corresponding Δfliquid = -238.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-726.34 ± 0.20kJ/molCcbRossini, 1931Corresponding Δfliquid = -238.83 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-715.05kJ/molCcbParks, 1925Corresponding Δfliquid = -250.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-713.83kJ/molCcbRichards and Davis, 1920At 291 K; Corresponding Δfliquid = -251.34 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid127.19J/mol*KN/ACarlson and Westrum, 1971DH
liquid126.8J/mol*KN/AKelley, 1929DH
liquid129.7J/mol*KN/AParks, Kelley, et al., 1929Extrapolation below 90 K, 34.3 J/mol*K. Revision of previous data.; DH
liquid136.4J/mol*KN/AParks, 1925Extrapolation below 90 K, 40.75 J/mol*K.; DH
Quantity Value Units Method Reference Comment
solid,1 bar1.117J/mol*KN/AAhlberg, Blanchard, et al., 1937DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
79.5298.15Filatov and Afanas'ev, 1992DH
81.11298.15Khasanshin and Zykova, 1989T = 175 to 338 K. Unsmoothed experimental datum.; DH
80.24298.15Andreoli-Ball, Patterson, et al., 1988DH
80.35298.15Okano, Ogawa, et al., 1988DH
81.0298.15Lankford and Criss, 1987DH
81.32298.Korolev, Kukharenko, et al., 1986DH
80.28298.15Ogawa and Murakami, 1986DH
81.56298.15Tanaka, Toyama, et al., 1986DH
80.22298.15Costas and Patterson, 1985T = 298.15, 313.15 K.; DH
81.47298.15Zegers and Somsen, 1984DH
78.90288.15Benson and D'Arcy, 1982DH
81.92298.15Villamanan, Casanova, et al., 1982DH
80.8293.15Atalla, El-Sharkawy, et al., 1981DH
81.13298.15Carlson and Westrum, 1971T = 5 to 332 K.; DH
83.7298.Deshpande and Bhatagadde, 1971T = 298 to 318 K.; DH
85.8313.2Paz Andrade, Paz, et al., 1970DH
85.8298.2Katayama, 1962T = 10 to 60°C.; DH
80.8311.Swietoslawski and Zielenkiewicz, 1960Mean value 21 to 56°C.; DH
86.2323.Hough, Mason, et al., 1950T = 323 to 353 K.; DH
75.77270.Staveley and Gupta, 1949T = 90 to 270 K.; DH
86.6300.8Phillip, 1939DH
83.56313.15Fiock, Ginnings, et al., 1931T = 40 to 110°C.; DH
79.9292.0Kelley, 1929T = 16 to 293 K. Value is unsmoothed experimental datum.; DH
78.2270.Mitsukuri and Hara, 1929T = 190 to 270 K.; DH
79.9290.1Parks, 1925T = 89 to 290 K. Value is unsmoothed experimental datum.; DH
83.3298.von Reis, 1881T = 288 to 335 K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
68.39120.Sugisaki, Suga, et al., 1968glass phase; T = 20 to 120 K.; DH
5.4020.5Ahlberg, Blanchard, et al., 1937T = 5 to 28 K.; DH
105.173.Maass and Walbauer, 1925T = 93 to 173 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil337.8 ± 0.3KAVGN/AAverage of 154 out of 171 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus176. ± 1.KAVGN/AAverage of 13 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple175.5 ± 0.5KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Tc513. ± 1.KAVGN/AAverage of 27 out of 31 values; Individual data points
Quantity Value Units Method Reference Comment
Pc81. ± 1.barAVGN/AAverage of 17 out of 20 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.117l/molN/AGude and Teja, 1995 
Vc0.113024l/molN/ACraven and de Reuck, 1986TRC
Vc0.118l/molN/AFrancesconi, Lentz, et al., 1981Uncertainty assigned by TRC = 0.004 l/mol; TRC
Vc0.11663l/molN/AZubarev and Bagdonas, 1969Uncertainty assigned by TRC = 0.0035 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc8.51 ± 0.07mol/lAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap37.6 ± 0.5kJ/molAVGN/AAverage of 11 out of 12 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
35.21337.7N/AMajer and Svoboda, 1985 
39.2258.AStephenson and Malanowski, 1987Based on data from 175. - 273. K.; AC
36.9353.AStephenson and Malanowski, 1987Based on data from 338. - 487. K.; AC
43.7213.AStephenson and Malanowski, 1987Based on data from 188. - 228. K.; AC
38.9275.AStephenson and Malanowski, 1987Based on data from 224. - 290. K.; AC
38.3300.AStephenson and Malanowski, 1987Based on data from 285. - 345. K.; AC
37.0350.AStephenson and Malanowski, 1987Based on data from 335. - 376. K.; AC
36.1388.AStephenson and Malanowski, 1987Based on data from 373. - 458. K.; AC
35.1468.AStephenson and Malanowski, 1987Based on data from 453. - 513. K.; AC
32.7373.CYerlett and Wormald, 1986AC
28.1423.CYerlett and Wormald, 1986AC
20.6473.CYerlett and Wormald, 1986AC
7.4510.CYerlett and Wormald, 1986AC
37.5331.EBCervenkova and Boublik, 1984Based on data from 316. - 336. K.; AC
38.3303.N/AGibbard and Creek, 1974Based on data from 288. - 337. K. See also Boublik, Fried, et al., 1984.; AC
35.2 ± 0.1338.CCounsell and Lee, 1973AC
35.6 ± 0.1331.CCounsell and Lee, 1973AC
36.2 ± 0.1321.CCounsell and Lee, 1973AC
37.0 ± 0.1306.CCounsell and Lee, 1973AC
36.7 ± 0.1313.CSvoboda, Veselý, et al., 1973AC
36.2 ± 0.1323.CSvoboda, Veselý, et al., 1973AC
35.6 ± 0.1333.CSvoboda, Veselý, et al., 1973AC
35.3 ± 0.1338.CSvoboda, Veselý, et al., 1973AC
34.7 ± 0.1343.CSvoboda, Veselý, et al., 1973AC
37.0352.N/AWilhoit and Zwolinski, 1973Based on data from 337. - 383. K.; AC
38.7290.EBBoublík and Aim, 1972Based on data from 275. - 336. K. See also Stephenson and Malanowski, 1987.; AC
38.3303.EBAmbrose and Sprake, 1970Based on data from 288. - 357. K.; AC
36.3368.N/AHirata, Suda, et al., 1967Based on data from 353. - 483. K.; AC
38.4293.N/AKlyueva, Mischenko, et al., 1960Based on data from 278. - 323. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. - 477.
A (kJ/mol) 45.3
α -0.31
β 0.4241
Tc (K) 512.6
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
353.5 - 512.635.158531569.613-34.846Ambrose, Sprake, et al., 1975Coefficents calculated by NIST from author's data.
288.1 - 356.835.204091581.341-33.50Ambrose and Sprake, 1970Coefficents calculated by NIST from author's data.
353. - 483.5.313011676.569-21.728Hirata and Suda, 1967Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
3.18175.3Domalski and Hearing, 1996AC
2.196176.Maass and Walbauer, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
12.5176.Maass and Walbauer, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
3.7161.1Domalski and Hearing, 1996CAL
18.1175.3
4.0157.3
18.3175.6

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.6360157.34crystaline, IIcrystaline, ICarlson and Westrum, 1971DH
3.2154175.59crystaline, IliquidCarlson and Westrum, 1971DH
1.540103.crystalineglassSugisaki, Suga, et al., 1968Glass transition.; DH
0.711157.8crystaline, IIcrystaline, IStaveley and Gupta, 1949DH
3.159175.4crystaline, IliquidStaveley and Gupta, 1949DH
0.6456157.4crystaline, IIcrystaline, IKelley, 1929DH
3.167175.2crystaline, IliquidKelley, 1929DH
0.590161.1crystaline, IIcrystaline, IParks, 1925DH
3.176175.3crystaline, IliquidParks, 1925DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
4.04157.34crystaline, IIcrystaline, ICarlson and Westrum, 1971DH
18.31175.59crystaline, IliquidCarlson and Westrum, 1971DH
14.95103.crystalineglassSugisaki, Suga, et al., 1968Glass; DH
4.51157.8crystaline, IIcrystaline, IStaveley and Gupta, 1949DH
18.01175.4crystaline, IliquidStaveley and Gupta, 1949DH
4.10157.4crystaline, IIcrystaline, IKelley, 1929DH
18.08175.2crystaline, IliquidKelley, 1929DH
3.66161.1crystaline, IIcrystaline, IParks, 1925DH
18.12175.3crystaline, IliquidParks, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Chlorine anion + Methyl Alcohol = (Chlorine anion • Methyl Alcohol)

By formula: Cl- + CH4O = (Cl- • CH4O)

Quantity Value Units Method Reference Comment
Δr69. ± 10.kJ/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Δr94.6J/mol*KHPMSEvans and Keesee, 1991gas phase; M
Δr101.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr92.0J/mol*KPHPMSSieck, 1985gas phase; M
Δr95.8J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr61.9J/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr42. ± 3.kJ/molAVGN/AAverage of 10 values; Individual data points

CH3O- + Hydrogen cation = Methyl Alcohol

By formula: CH3O- + H+ = CH4O

Quantity Value Units Method Reference Comment
Δr1597. ± 8.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1573.3 ± 2.6kJ/molH-TSNee, Osterwalder, et al., 2006gas phase; B
Δr1573.4 ± 2.3kJ/molH-TSOsborn, Leahy, et al., 1998gas phase; B
Δr1565. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale; B
Δr1567. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1569.4 ± 2.5kJ/molTDEqMeot-ner and Sieck, 1986gas phase; Experimental entropy: 21.5 eu, 0.6 less than H2O; B

CH5O+ + Methyl Alcohol = (CH5O+ • Methyl Alcohol)

By formula: CH5O+ + CH4O = (CH5O+ • CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr136.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr135.kJ/molPHPMSSzulejko and McMahon, 1992gas phase; M
Δr134.kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; M
Δr138.kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Δr141.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr121.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr122.J/mol*KPHPMSSzulejko and McMahon, 1992gas phase; M
Δr111.J/mol*KPHPMSMeot-Ner(Mautner), 1986gas phase; M
Δr128.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M
Δr119.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr105.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

CH3O- + Methyl Alcohol = (CH3O- • Methyl Alcohol)

By formula: CH3O- + CH4O = (CH3O- • CH4O)

Quantity Value Units Method Reference Comment
Δr123. ± 4.2kJ/molTDAsPaul and Kebarle, 1990gas phase; B,M
Δr120.5 ± 1.3kJ/molTDAsMeot-ner and Sieck, 1986gas phase; B,M
Δr123. ± 10.kJ/molTDAsCaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Δr79.5 ± 8.4kJ/molN/AMoylan, Dodd, et al., 1985gas phase; B
Quantity Value Units Method Reference Comment
Δr133.J/mol*KPHPMSPaul and Kebarle, 1990gas phase; M
Δr112.J/mol*KPHPMSMeot-Ner(Mautner), 1986gas phase; n; M
Quantity Value Units Method Reference Comment
Δr84.94kJ/molIMREMustanir, Matsuoka, et al., 2006gas phase; B
Δr82.8 ± 4.2kJ/molTDAsPaul and Kebarle, 1990gas phase; B
Δr87.0 ± 2.1kJ/molTDAsMeot-ner and Sieck, 1986gas phase; B
Δr84.9 ± 6.7kJ/molTDAsCaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
79.9296.FAMacKay and Bohme, 1978gas phase; From thermochemical cycle,switching reaction(CH3O-)H2O; Meot-Ner(Mautner), 1986; M

C4H9O- + Methyl Alcohol = (C4H9O- • Methyl Alcohol)

By formula: C4H9O- + CH4O = (C4H9O- • CH4O)

Quantity Value Units Method Reference Comment
Δr107. ± 4.2kJ/molTDEqMeot-Ner and Sieck, 1986gas phase; B,M
Δr97.9 ± 9.2kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Δr109. ± 10.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; B,M
Quantity Value Units Method Reference Comment
Δr117.J/mol*KN/AMeot-Ner and Sieck, 1986gas phase; Entropy change calculated or estimated; M
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr42.68kJ/molIMREMustanir, Matsuoka, et al., 2006gas phase; B
Δr71.5 ± 6.7kJ/molTDEqMeot-Ner and Sieck, 1986gas phase; B
Δr72.4 ± 6.7kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; B,M

C2H5O- + Methyl Alcohol = (C2H5O- • Methyl Alcohol)

By formula: C2H5O- + CH4O = (C2H5O- • CH4O)

Quantity Value Units Method Reference Comment
Δr114. ± 12.kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Δr107. ± 7.9kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr77.8 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
56.1296.FAMackay, Rakshit, et al., 1982gas phase; From thermochemical cycle,switching reaction(CH3O-)CH3OH; Caldwell and Kebarle, 1986, Taft, 1983; M

(Chlorine anion • Methyl Alcohol) + Methyl Alcohol = (Chlorine anion • 2Methyl Alcohol)

By formula: (Cl- • CH4O) + CH4O = (Cl- • 2CH4O)

Quantity Value Units Method Reference Comment
Δr59.0 ± 1.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr57.32 ± 0.84kJ/molTDAsEvans and Keesee, 1991gas phase; B,M
Δr59.0 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Δr54.4 ± 2.9kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr101.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr92.0J/mol*KHPMSEvans and Keesee, 1991gas phase; M
Δr81.2J/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr30.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr29.7kJ/molTDAsEvans and Keesee, 1991gas phase; B
Δr28. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr30.1 ± 1.7kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

(Chlorine anion • 2Methyl Alcohol) + Methyl Alcohol = (Chlorine anion • 3Methyl Alcohol)

By formula: (Cl- • 2CH4O) + CH4O = (Cl- • 3CH4O)

Quantity Value Units Method Reference Comment
Δr48.12 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr45.2 ± 1.3kJ/molTDAsEvans and Keesee, 1991gas phase; B,M
Δr49.4 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Δr51.5 ± 2.5kJ/molN/AYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr95.8J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr95.0J/mol*KHPMSEvans and Keesee, 1991gas phase; M
Δr98.7J/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr21.2kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr16.7kJ/molTDAsEvans and Keesee, 1991gas phase; B
Δr21. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr21.8 ± 1.3kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

C8H5- + Methyl Alcohol = (C8H5- • Methyl Alcohol)

By formula: C8H5- + CH4O = (C8H5- • CH4O)

Quantity Value Units Method Reference Comment
Δr90.0 ± 8.4kJ/molIMREChabinyc and Brauman, 1999gas phase; B
Δr90. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr46.0 ± 8.4kJ/molIMREChabinyc and Brauman, 1999gas phase; B
Δr53.1 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

CN- + Methyl Alcohol = (CN- • Methyl Alcohol)

By formula: CN- + CH4O = (CN- • CH4O)

Quantity Value Units Method Reference Comment
Δr65.7 ± 3.3kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B,M
Δr69.5 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B
Δr69. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr96.J/mol*KPHPMSLarson, Szulejko, et al., 1988gas phase; M
Δr102.J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr36.8 ± 0.84kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B
Δr43.5 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B
Δr38. ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

Lithium ion (1+) + Methyl Alcohol = (Lithium ion (1+) • Methyl Alcohol)

By formula: Li+ + CH4O = (Li+ • CH4O)

Quantity Value Units Method Reference Comment
Δr154. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD
Δr159.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Δr160.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr127.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

Iodide + Methyl Alcohol = (Iodide • Methyl Alcohol)

By formula: I- + CH4O = (I- • CH4O)

Quantity Value Units Method Reference Comment
Δr49.79 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr47.3 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Δr46.9kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Δr46.kJ/molPHPMSCaldwell, Masucci, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr71.5J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Δr74.5J/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr24.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr25. ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B
Δr24. ± 8.4kJ/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..I- of Caldwell and Kebarle, 1984; B

C2H5O+ + Methyl Alcohol = (C2H5O+ • Methyl Alcohol)

By formula: C2H5O+ + CH4O = (C2H5O+ • CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr127.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr93.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C2H7O+ + Methyl Alcohol = (C2H7O+ • Methyl Alcohol)

By formula: C2H7O+ + CH4O = (C2H7O+ • CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr124.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr111.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr90.8kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H7O- + Methyl Alcohol = (C3H7O- • Methyl Alcohol)

By formula: C3H7O- + CH4O = (C3H7O- • CH4O)

Quantity Value Units Method Reference Comment
Δr113. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr76.1 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

Fluorine anion + Methyl Alcohol = (Fluorine anion • Methyl Alcohol)

By formula: F- + CH4O = (F- • CH4O)

Quantity Value Units Method Reference Comment
Δr124. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Δr123. ± 9.2kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Δr97.5 ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Δr94.6J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr95.4 ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Δr66.1 ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Chlorine anion • 3Methyl Alcohol) + Methyl Alcohol = (Chlorine anion • 4Methyl Alcohol)

By formula: (Cl- • 3CH4O) + CH4O = (Cl- • 4CH4O)

Quantity Value Units Method Reference Comment
Δr43.9 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Δr43.93kJ/molTDAsEvans and Keesee, 1991gas phase; B
Δr46.9 ± 2.5kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr95.8J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr110.J/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr15. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr15.5kJ/molTDAsEvans and Keesee, 1991gas phase; B
Δr13.8 ± 0.84kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

Bromine anion + Methyl Alcohol = (Bromine anion • Methyl Alcohol)

By formula: Br- + CH4O = (Br- • CH4O)

Quantity Value Units Method Reference Comment
Δr60.67 ± 0.42kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr58.2 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr73.6J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr33.5 ± 0.42kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr36. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B
Δr35. ± 8.4kJ/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B

C3H9Si+ + Methyl Alcohol = (C3H9Si+ • Methyl Alcohol)

By formula: C3H9Si+ + CH4O = (C3H9Si+ • CH4O)

Quantity Value Units Method Reference Comment
Δr164.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
106.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Sodium ion (1+) + Methyl Alcohol = (Sodium ion (1+) • Methyl Alcohol)

By formula: Na+ + CH4O = (Na+ • CH4O)

Quantity Value Units Method Reference Comment
Δr97.1 ± 5.4kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr91.6 ± 5.9kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr100. ± 0.8kJ/molHPMSHoyau, Norrman, et al., 1999RCD
Δr111. ± 0.8kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr85800.J/mol*KHPMSHoyau, Norrman, et al., 1999RCD
Δr102.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
72.4298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(Chlorine anion • 4Methyl Alcohol) + Methyl Alcohol = (Chlorine anion • 5Methyl Alcohol)

By formula: (Cl- • 4CH4O) + CH4O = (Cl- • 5CH4O)

Quantity Value Units Method Reference Comment
Δr38. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Δr43.9 ± 2.1kJ/molN/AYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr107.J/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr11. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr12.1 ± 0.42kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

Water + Propane, 2,2-dimethoxy- = 2Methyl Alcohol + Acetone

By formula: H2O + C5H12O2 = 2CH4O + C3H6O

Quantity Value Units Method Reference Comment
Δr20.3 ± 0.04kJ/molCmWiberg, Morgan, et al., 1994liquid phase; ALS
Δr20.43 ± 0.04kJ/molCmWiberg and Squires, 1979liquid phase; Heat of hydrolysis; ALS
Δr20.433 ± 0.028kJ/molCmWiberg and Squires, 1979, 2liquid phase; solvent: Water; Hydrolysis; ALS
Δr-16.5 ± 0.2kJ/molCmStern and Dorer, 1962liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 15.4 ± 0.2 kJ/mol; Heat of hydrolysis; ALS

(CH5O+ • Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 2Methyl Alcohol)

By formula: (CH5O+ • CH4O) + CH4O = (CH5O+ • 2CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr88.7kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr87.9kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; M
Δr89.1kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr108.J/mol*KPHPMSMeot-Ner(Mautner), 1986gas phase; M
Δr118.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

C5H11O- + Methyl Alcohol = (C5H11O- • Methyl Alcohol)

By formula: C5H11O- + CH4O = (C5H11O- • CH4O)

Quantity Value Units Method Reference Comment
Δr108. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr71.1 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

C6H11S2- + Methyl Alcohol = (C6H11S2- • Methyl Alcohol)

By formula: C6H11S2- + CH4O = (C6H11S2- • CH4O)

Quantity Value Units Method Reference Comment
Δr92. ± 10.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr55.2 ± 6.7kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

(Copper ion (1+) • Methyl Alcohol) + Methyl Alcohol = (Copper ion (1+) • 2Methyl Alcohol)

By formula: (Cu+ • CH4O) + CH4O = (Cu+ • 2CH4O)

Quantity Value Units Method Reference Comment
Δr57.7kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr26.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M

(CH5O+ • 2Water • 3Methyl Alcohol) + Water = (CH5O+ • 3Water • 3Methyl Alcohol)

By formula: (CH5O+ • 2H2O • 3CH4O) + H2O = (CH5O+ • 3H2O • 3CH4O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr38.kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
13.272.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

(CH5O+ • 3Water • 2Methyl Alcohol) + Water = (CH5O+ • 4Water • 2Methyl Alcohol)

By formula: (CH5O+ • 3H2O • 2CH4O) + H2O = (CH5O+ • 4H2O • 2CH4O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr39.kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
13.272.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

(CH5O+ • 4Water • Methyl Alcohol) + Water = (CH5O+ • 5Water • Methyl Alcohol)

By formula: (CH5O+ • 4H2O • CH4O) + H2O = (CH5O+ • 5H2O • CH4O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr39.kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.269.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

(CH5O+ • Water) + Methyl Alcohol = (CH5O+ • Methyl Alcohol • Water)

By formula: (CH5O+ • H2O) + CH4O = (CH5O+ • CH4O • H2O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr103.kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
48.5452.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

C6H5NO2- + Methyl Alcohol = (C6H5NO2- • Methyl Alcohol)

By formula: C6H5NO2- + CH4O = (C6H5NO2- • CH4O)

Quantity Value Units Method Reference Comment
Δr63.18 ± 0.84kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr30.5 ± 1.7kJ/molTDAsSieck, 1985gas phase; B
Δr26. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
26.343.PHPMSChowdhury, 1987gas phase; M

Copper ion (1+) + Methyl Alcohol = (Copper ion (1+) • Methyl Alcohol)

By formula: Cu+ + CH4O = (Cu+ • CH4O)

Quantity Value Units Method Reference Comment
Δr56.1kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr25.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M

(Fluorine anion • Methyl Alcohol) + Methyl Alcohol = (Fluorine anion • 2Methyl Alcohol)

By formula: (F- • CH4O) + CH4O = (F- • 2CH4O)

Quantity Value Units Method Reference Comment
Δr84.9 ± 1.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr80.8 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr97.1J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr54.27kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr51.9 ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Fluorine anion • 2Methyl Alcohol) + Methyl Alcohol = (Fluorine anion • 3Methyl Alcohol)

By formula: (F- • 2CH4O) + CH4O = (F- • 3CH4O)

Quantity Value Units Method Reference Comment
Δr63.2 ± 2.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr60.7 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr33.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr34. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Bromine anion • 2Methyl Alcohol) + Methyl Alcohol = (Bromine anion • 3Methyl Alcohol)

By formula: (Br- • 2CH4O) + CH4O = (Br- • 3CH4O)

Quantity Value Units Method Reference Comment
Δr39.7 ± 2.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr44.4 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr90.4J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr17.8kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr18. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Bromine anion • Methyl Alcohol) + Methyl Alcohol = (Bromine anion • 2Methyl Alcohol)

By formula: (Br- • CH4O) + CH4O = (Br- • 2CH4O)

Quantity Value Units Method Reference Comment
Δr50.21 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr52.3 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr86.6J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr23.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr26. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Iodide • 2Methyl Alcohol) + Methyl Alcohol = (Iodide • 3Methyl Alcohol)

By formula: (I- • 2CH4O) + CH4O = (I- • 3CH4O)

Quantity Value Units Method Reference Comment
Δr32.2 ± 2.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr41. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr93.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr14.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr13. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Iodide • Methyl Alcohol) + Methyl Alcohol = (Iodide • 2Methyl Alcohol)

By formula: (I- • CH4O) + CH4O = (I- • 2CH4O)

Quantity Value Units Method Reference Comment
Δr39.7 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr46.4 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Δr94.6J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr17.8kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr18. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Chlorine anion • 10Methyl Alcohol) + Methyl Alcohol = (Chlorine anion • 11Methyl Alcohol)

By formula: (Cl- • 10CH4O) + CH4O = (Cl- • 11CH4O)

Quantity Value Units Method Reference Comment
Δr31. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka and Mizuse, 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr5.4 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B

(Sodium ion (1+) • Methyl Alcohol) + Methyl Alcohol = (Sodium ion (1+) • 2Methyl Alcohol)

By formula: (Na+ • CH4O) + CH4O = (Na+ • 2CH4O)

Quantity Value Units Method Reference Comment
Δr85.8 ± 5.9kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr89.5 ± 6.7kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr85.8 ± 6.7kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr84.5 ± 0.8kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

H4ClO2- + Methyl Alcohol + 2Water = CH8ClO3-

By formula: H4ClO2- + CH4O + 2H2O = CH8ClO3-

Quantity Value Units Method Reference Comment
Δr43.51 ± 0.84kJ/molTDAsEvans and Keesee, 1991gas phase; B
Δr47.7 ± 1.3kJ/molTDAsEvans and Keesee, 1991gas phase; For solvation by MeOH of core ion; B
Quantity Value Units Method Reference Comment
Δr24.3kJ/molTDAsEvans and Keesee, 1991gas phase; B
Δr25.1kJ/molTDAsEvans and Keesee, 1991gas phase; For solvation by MeOH of core ion; B

(CH5O+ • 2Methyl Alcohol) + Dimethyl ether = (CH5O+ • Dimethyl ether • 2Methyl Alcohol)

By formula: (CH5O+ • 2CH4O) + C2H6O = (CH5O+ • C2H6O • 2CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr72.0kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

(CH5O+ • 3Methyl Alcohol) + Dimethyl ether = (CH5O+ • Dimethyl ether • 3Methyl Alcohol)

By formula: (CH5O+ • 3CH4O) + C2H6O = (CH5O+ • C2H6O • 3CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr57.3kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

(CH5O+ • 2Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 3Methyl Alcohol)

By formula: (CH5O+ • 2CH4O) + CH4O = (CH5O+ • 3CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr58.6kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr67.4kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr121.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ • 3Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 4Methyl Alcohol)

By formula: (CH5O+ • 3CH4O) + CH4O = (CH5O+ • 4CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr47.3kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr56.5kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr93.3J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr120.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ • 4Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 5Methyl Alcohol)

By formula: (CH5O+ • 4CH4O) + CH4O = (CH5O+ • 5CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr42.7kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr52.3kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr98.3J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr130.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ • Methyl Alcohol) + Dimethyl ether = (CH5O+ • Dimethyl ether • Methyl Alcohol)

By formula: (CH5O+ • CH4O) + C2H6O = (CH5O+ • C2H6O • CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr91.6kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

(CH5O+ • 5Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 6Methyl Alcohol)

By formula: (CH5O+ • 5CH4O) + CH4O = (CH5O+ • 6CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr39.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr49.8kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr98.3J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr138.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ • 6Methyl Alcohol) + Methyl Alcohol = (CH5O+ • 7Methyl Alcohol)

By formula: (CH5O+ • 6CH4O) + CH4O = (CH5O+ • 7CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr38.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr50.2kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr149.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(Fluorine anion • 11Methyl Alcohol) + Methyl Alcohol = (Fluorine anion • 12Methyl Alcohol)

By formula: (F- • 11CH4O) + CH4O = (F- • 12CH4O)

Quantity Value Units Method Reference Comment
Δr36. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; Entropy estimated.; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AHiraoka and Yamabe, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr4.6 ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; Entropy estimated.; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 72
NIST MS number 229809

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Gas     Symmetry:   Cs     Symmetry Number σ = 1


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a' 1 OH str 3681  A 3681 M gas
a' 2 CH3 d-str 3000  C 3000 M gas
a' 3 CH3 s-str 2844  A 2844 S gas
a' 4 CH3 d-deform 1477  B 1477 M gas OV10)
a' 5 CH3 s-deform 1455  A 1455 M gas
a' 6 OH bend 1345  B 1345 S gas
a' 7 CH3 rock 1060  D 1060 W gas OV8)
a' 8 CO str 1033  A 1033 VS gas 1032 gas
a 9 CH3 d-str 2960  C 2960 S gas 2955 gas
a 10 CH3 d-deform 1477  B 1477 M gas OV4)
a 11 CH3 rock 1165  C 1165 liq.
a 12 Torsion 295  A 80~300 gas ?/? Value of ν12 is undefined because of large coupling between internal & overall rotations.
a 12 Torsion 200  E 80~300 gas ?/? Value of ν12 is undefined because of large coupling between internal & overall rotations.

Source: Shimanouchi, 1972

Liquid     Symmetry:   Cs     Symmetry Number σ = 1


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a' 1 OH str 3328  D 3328 vb liq. 3270-3480 liq.
a' 2 CH3 d-str 2980  C 2980 M liq. 2993 liq.
a' 3 CH3 s-str 2834  C 2834 S liq. 2834 liq.
a' 4 CH3 d-deform 1480  C 1480 M liq. 1464 liq. OV10)
a' 5 CH3 s-deform 1450  C 1450 M liq.
a' 6 OH bend 1418  C 1418 M b liq.
a' 7 CH3 rock 1115  C 1115 M liq. 1107 liq.
a' 8 CO str 1030  C 1030 VS liq. 1033 liq.
a 9 CH3 d-str 2946  C 2946 S liq. 2940 liq.
a 10 CH3 d-deform 1480  C 1480 M liq. 1464 liq. OV4)
a 11 CH3 rock 1165  C 1165 liq.
a 12 Torsion 655  D 655 vb liq.

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
bBroad
vbVery broad
OVOverlapped by band indicated in parentheses.
A0~1 cm-1 uncertainty
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Rossini, 1932
Rossini, F.D., The heats of combustion of methyl and ethyl alcohols, J. Res. NBS, 1932, 8, 119-139. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Ivash E.V., 1955
Ivash E.V., Thermodynamic properties of ideal gaseous methanol, J. Chem. Phys., 1955, 23, 1814-1818. [all data]

Zhuravlev E.Z., 1959
Zhuravlev E.Z., Isotopic effect on thermodynamic functions of some organic deuterocompounds in the ideal gas state, Tr. Khim. i Khim. Tekhnol., 1959, 2, 475-485. [all data]

Chen S.S., 1977
Chen S.S., Thermodynamic properties of normal and deuterated methanols, J. Phys. Chem. Ref. Data, 1977, 6, 105-112. [all data]

Chao J., 1986
Chao J., Ideal gas thermodynamic properties of simple alkanols, Int. J. Thermophys., 1986, 7, 431-442. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Chao J., 1986, 2
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

De Vries T., 1941
De Vries T., The heat capacity of organic vapors. I. Methyl alcohol, J. Am. Chem. Soc., 1941, 63, 1343-1346. [all data]

Weltner W., 1951
Weltner W., Jr., Methyl alcohol: the entropy, heat capacity and polymerization equilibria in the vapor, and potential barrier to internal rotation, J. Am. Chem. Soc., 1951, 73, 2606-2610. [all data]

Baroody and Carpenter, 1972
Baroody, E.E.; Carpenter, G.A., Heats of formation of propellant compounds (U), Rpt. Naval Ordnance Systems Command Task No. 331-003/067-1/UR2402-001 for Naval Ordance Station, Indian Head, MD, 1972, 1-9. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Green, 1960
Green, J.H.S., Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Parks, 1925
Parks, G.S., Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols, J. Am. Chem. Soc., 1925, 47, 338-345. [all data]

Richards and Davis, 1920
Richards, T.W.; Davis, H.S., The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds, J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]

Rossini, 1931
Rossini, F.D., The heat of combustion of methyl alcohol, Proc. Nat'l Acad. Sci., 1931, 17, 343-347. [all data]

Carlson and Westrum, 1971
Carlson, H.G.; Westrum, E.F., Jr., Methanol: heat capacity, enthalpies of transition and melting, and thermodynamic properties from 5-300K, J. Chem. Phys., 1971, 54, 1464-1471. [all data]

Kelley, 1929
Kelley, K.K., The heat capacity of methyl alcohol from 16K to 298K and the corresponding entropy and free energy, J. Am. Chem. Soc., 1929, 51, 180-187. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Ahlberg, Blanchard, et al., 1937
Ahlberg, J.E.; Blanchard, E.R.; Lundberg, W.O., The heat capacities of benzene, methyl alcohol and glycerol at very low temperatures, J. Chem. Phys., 1937, 5, 537-551. [all data]

Filatov and Afanas'ev, 1992
Filatov, V.A.; Afanas'ev, V.N., Differential heat-flux calorimeter, Izv. Vysshikh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1992, 35(8), 97-100. [all data]

Khasanshin and Zykova, 1989
Khasanshin, T.S.; Zykova, T.B., Specific heat of saturated monatomic alcohols, Inzh. -Fiz. Zhur., 1989, 56(6), 991-994. [all data]

Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]

Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, S., Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K, Can. J. Chem., 1988, 66, 713-717. [all data]

Lankford and Criss, 1987
Lankford, J.I.; Criss, C.M., Partial molar heat caqpacities of selected electrolytes and benzene in methanol and dimethyldulfoxide at 25, 40 and 80°C, J. Solution Chem., 1987, 16(11), 885-906. [all data]

Korolev, Kukharenko, et al., 1986
Korolev, V.P.; Kukharenko, V.A.; Krestov, G.A., Specific heat of binary mixtures of aliphatic alcohols with N,N-dimethylformamide and dimethylsulphoxide, Zhur. Fiz. Khim., 1986, 60, 1854-1857. [all data]

Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S., Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K, Thermochim. Acta, 1986, 109, 145-154. [all data]

Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]

Costas and Patterson, 1985
Costas, M.; Patterson, D., Self-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 635-654. [all data]

Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]

Benson and D'Arcy, 1982
Benson, G.C.; D'Arcy, P.J., Excess isobaric heat capacities of water - n-alcohol mixtures, J. Chem. Eng. Data, 1982, 27, 439-442. [all data]

Villamanan, Casanova, et al., 1982
Villamanan, M.A.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.E., Thermochemical behavior of mixtures of n-alcohol + aliphatic ether: heat capacities and volumes at 298.15 K, Thermochim. Acta, 1982, 52, 279-283. [all data]

Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A., Measurement of thermal properties of liquids with an AC heated-wire technique, Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]

Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G., Heat capacities at constant volume, free volumes, and rotational freedom in some liquids, Aust. J. Chem., 1971, 24, 1817-1822. [all data]

Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]

Katayama, 1962
Katayama, T., Heats of mixing, liquid heat capacities and enthalpy, concentration charts for methanol-water and isopropanol-water systems, Kagaku Kogaku, 1962, 26, 361-372. [all data]

Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]

Hough, Mason, et al., 1950
Hough, E.W.; Mason, D.M.; Sage, B.H., Heat capacities of several organic liquids, J. Am. Chem. Soc., 1950, 72, 5775-5777. [all data]

Staveley and Gupta, 1949
Staveley, L.A.K.; Gupta, A.K., A semi-micro low-temperature calorimeter, and a comparison of some thermodynamic properties of methyl alcohol and methyl deuteroxide, Trans. Faraday Soc., 1949, 45, 50-61. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B., Calorimetric determinations of thermal properties of methyl alcohol, ethyl alcohol, and benzene, J. Res., 1931, NBS 6, 881-900. [all data]

Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K., Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at low temperatures, Bull. Chem. Soc. Japan, 1929, 4, 77-81. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Sugisaki, Suga, et al., 1968
Sugisaki, M.; Suga, H.; Seki, S., Calorimetric study of the glassy state. III. Novel type calorimeter for study of glassy state and heat capacity of glassy methanol, Bull. Chem. Soc. Japan, 1968, 41, 2586-2591. [all data]

Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J., The specific heats and latent heats of fusion of ice and of several organic compounds, J. Am. Chem. Soc., 1925, 47, 1-9. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Craven and de Reuck, 1986
Craven, R.J.B.; de Reuck, K.M., Ideal-Gas and Saturation Properties of Methanol, Int. J. Thermophys., 1986, 7, 541. [all data]

Francesconi, Lentz, et al., 1981
Francesconi, A.Z.; Lentz, H.; Franck, E.U., Phase Equilibriums and PVT Data for the Methane-Methanol System to 300 MPa and 240 degree C, J. Phys. Chem., 1981, 85, 3303. [all data]

Zubarev and Bagdonas, 1969
Zubarev, V.N.; Bagdonas, A., Saturation Curve Properties and Specific Volumes of Methanol, Teploenergetika (Moscow), 1969, 16, 88-91. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Yerlett and Wormald, 1986
Yerlett, T.K.; Wormald, C.J., The enthalpy of methanol, The Journal of Chemical Thermodynamics, 1986, 18, 8, 719-726, https://doi.org/10.1016/0021-9614(86)90105-9 . [all data]

Cervenkova and Boublik, 1984
Cervenkova, Irena; Boublik, Tomas, Vapor pressure, refractive indexes and densities at 20.0.degree.C, and vapor-liquid equilibrium at 101.325 kPa in the tert-amyl methyl ether-methanol system, J. Chem. Eng. Data, 1984, 29, 4, 425-427, https://doi.org/10.1021/je00038a017 . [all data]

Gibbard and Creek, 1974
Gibbard, H. Frank; Creek, Jefferson L., Vapor pressure of methanol from 288.15 to 337.65.deg.K, J. Chem. Eng. Data, 1974, 19, 4, 308-310, https://doi.org/10.1021/je60063a013 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Counsell and Lee, 1973
Counsell, J.F.; Lee, D.A., Thermodynamic properties of organic oxygen compounds 31. Vapour heat capacity and enthalpy of vaporization of methanol, The Journal of Chemical Thermodynamics, 1973, 5, 4, 583-589, https://doi.org/10.1016/S0021-9614(73)80107-7 . [all data]

Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature, Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Boublík and Aim, 1972
Boublík, T.; Aim, K., Heats of vaporization of simple non-spherical molecule compounds, Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513 . [all data]

Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S., Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols, The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8 . [all data]

Hirata, Suda, et al., 1967
Hirata, Mitsuho; Suda, Seijiro; Onodera, Yutaka, Vapor Pressure of Methanol in High Pressure Regions, Chemical engineering, 1967, 31, 4, 339-342,a1, https://doi.org/10.1252/kakoronbunshu1953.31.339 . [all data]

Klyueva, Mischenko, et al., 1960
Klyueva, M.L.; Mischenko, K.P.; Fedorov, M.K., Zh. Prikl. Khim. (S.-Peterburg), 1960, 3, 473. [all data]

Ambrose, Sprake, et al., 1975
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature, J. Chem. Thermodyn., 1975, 7, 2, 185-190, https://doi.org/10.1016/0021-9614(75)90267-0 . [all data]

Hirata and Suda, 1967
Hirata, M.; Suda, S., Vapor Pressure on Methanol in High Pressure Regions, Kagaku Kogaku, 1967, 31, 4, 339-342, https://doi.org/10.1252/kakoronbunshu1953.31.339 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Evans and Keesee, 1991
Evans, D.H.; Keesee, R.G., Thermodynamics of Gas-Phase Mixed-Solvent Cluster Ions - Water and Methanol on K+ and Cl- and Comparison to Liquid Solutions, J. Phys. Chem., 1991, 95, 9, 3558, https://doi.org/10.1021/j100162a024 . [all data]

Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S., Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH, Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4 . [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Yamdagni, Payzant, et al., 1973
Yamdagni, R.; Payzant, J.D.; Kebarle, P., Solvation of Cl- and O2- with H2O, CH3OH, and CH3CN in the gas phase, Can. J. Chem., 1973, 51, 2507. [all data]

Nee, Osterwalder, et al., 2006
Nee, M.J.; Osterwalder, A.; Zhou, J.; Neumark, D.M., Slow electron velocity-map imaging photoelectron spectra of the methoxide anion, J. Chem. Phys., 2006, 125, 1, 014306, https://doi.org/10.1063/1.2212411 . [all data]

Osborn, Leahy, et al., 1998
Osborn, D.L.; Leahy, D.J.; Kim, E.H.; deBeer, E.; Neumark, D.M., Photoelectron spectroscopy of CH3O- and CD3O-, Chem. Phys. Lett., 1998, 292, 4-6, 651-655, https://doi.org/10.1016/S0009-2614(98)00717-9 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Szulejko and McMahon, 1992
Szulejko, J.; McMahon, T.B., personal communication, 1992. [all data]

Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M., Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol, J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P., Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase, J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076 . [all data]

Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E., Anion-alcohol hydrogen bond strengths in the gas phase, J. Am. Chem. Soc., 1984, 106, 4660. [all data]

Moylan, Dodd, et al., 1985
Moylan, C.R.; Dodd, J.A.; Brauman, J.I., Electron photodetachment spectroscopy of Sslvated anions. A probe of structure and energetics, Chem. Phys. Lett., 1985, 118, 38. [all data]

Mustanir, Matsuoka, et al., 2006
Mustanir; Matsuoka, M.; Mishima, M.; Koch, H., Stability of complexes of phenylacetylides and benzyl alkoxides with methanol in the gas phase. Acid-base correlation in the ionic hydrogen-bond strength, Bull. Chem. Soc. Japan, 2006, 79, 7, 1118-1125, https://doi.org/10.1246/bcsj.79.1118 . [all data]

MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K., Proton-Transfer Reactions in Nitromethane at 297K, Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7 . [all data]

Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W., The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions, J. Am. Chem. Soc., 1986, 108, 7525. [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Mackay, Rakshit, et al., 1982
Mackay, G.I.; Rakshit, A.B.; Bohme, D.K., An Experimental Study of the Reactivity and Relative Basicity of the Methoxide Anion in the Gas Phase at Room Temperature, and their Perturbation by Methanol Solvent, Can. J. Chem., 1982, 60, 20, 2594, https://doi.org/10.1139/v82-373 . [all data]

Caldwell and Kebarle, 1986
Caldwell, G.; Kebarle, P., Mobility of Gaseous Ions in Weak Electric Fields in Unpublished results, 1986. [all data]

Taft, 1983
Taft, R.W., Protonic acidities and basicities in the gas phase and in solution: Substiuent and solvent effects, Prog. Phys. Org. Chem., 1983, 14, 247. [all data]

Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B., Stepwise solvation of halides by alcohol molecules in the gas phase, Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5 . [all data]

Chabinyc and Brauman, 1999
Chabinyc, M.L.; Brauman, J.I., Hydrogen bond strength and acidity. Structural and energetic correlations for acetylides and alcohols, J. Phys. Chem. A, 1999, 103, 46, 9163-9166, https://doi.org/10.1021/jp992852v . [all data]

Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B., Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements., J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004 . [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S., Solvation of Halide Ions with CH3OH in the gas Phase, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 133, https://doi.org/10.1016/0168-1176(91)85101-Q . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M., Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR, J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y., Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN, Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B., Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments, Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Hoyau, Norrman, et al., 1999
Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G., A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase, J. Am. Chem. Soc., 1999, 121, 38, 8864, https://doi.org/10.1021/ja9841198 . [all data]

Guo, Conklin, et al., 1989
Guo, B.C.; Conklin, B.J.; Castleman, A.W., Thermochemical Properties of Ion Complexes Na+(M)n in the Gas Phase, J. Am. Chem. Soc., 1989, 111, 17, 6506, https://doi.org/10.1021/ja00199a005 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Wiberg, Morgan, et al., 1994
Wiberg, K.B.; Morgan, K.M.; Maltz, H., Thermochemistry of carbonyl reactions. 6. A study of hydration equilibria, J. Am. Chem. Soc., 1994, 116, 11067-11077. [all data]

Wiberg and Squires, 1979
Wiberg, K.B.; Squires, R.R., Thermodynamics of hydrolysis aliphatic ketals. An entropy component of steric effects, J. Am. Chem. Soc., 1979, 101, 5512-5515. [all data]

Wiberg and Squires, 1979, 2
Wiberg, K.B.; Squires, R.R., A microprocessor-controlled system for precise measurement of temperature changes. Determination of the enthalpies of hydrolysis of some polyoxygenated hydrocarbons, J. Chem. Thermodyn., 1979, 11, 773-786. [all data]

Stern and Dorer, 1962
Stern, J.H.; Dorer, F.H., Standard heats of formation of 2,2-Dimethoxypropane (1), and 2,2 -Diethoxypropane (1). Group additivity theory and calculated heats of formation and five ketals, J. Phys. Chem., 1962, 66, 97-99. [all data]

El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M., Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry, J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002 . [all data]

Chowdhury, Grimsrud, et al., 1987
Chowdhury, S.; Grimsrud, E.P.; Kebarle, P., Bonding of Charged Delocalized Anions to Protic and Dipolar Aprotic Solvent Molecules, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Chowdhury, 1987
Chowdhury, S. Grimsrud, Bonding of Charge Delocalized Anions to Protic and Dipolar Aprotic Solvents, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Hiraoka, Grimsrud, et al., 1974
Hiraoka, K.; Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Hydrogen Ion in Water - Dimethyl Ether and Methanol - Dimethyl Ether Mixtures, J. Am. Chem. Soc., 1974, 96, 11, 3359, https://doi.org/10.1021/ja00818a004 . [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References