Lithium bromide


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-153.97kJ/molReviewChase, 1998Data last reviewed in June, 1966
Quantity Value Units Method Reference Comment
gas,1 bar224.33J/mol*KReviewChase, 1998Data last reviewed in June, 1966

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 2000. - 6000.
A 36.87263
B 1.099125
C -0.124519
D 0.010609
E -0.295577
F -166.0035
G 266.9626
H -153.9712
ReferenceChase, 1998
Comment Data last reviewed in June, 1966

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfliquid-338.23kJ/molReviewChase, 1998Data last reviewed in June, 1966
Quantity Value Units Method Reference Comment
liquid,1 bar84.60J/mol*KReviewChase, 1998Data last reviewed in June, 1966
Quantity Value Units Method Reference Comment
Δfsolid-350.91kJ/molReviewChase, 1998Data last reviewed in June, 1966
Quantity Value Units Method Reference Comment
solid74.04J/mol*KReviewChase, 1998Data last reviewed in June, 1966

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 823. - 2000.
A 65.26998
B 1.710215×10-9
C -1.312539×10-9
D 3.215501×10-10
E 3.014573×10-11
F -357.6864
G 163.5911
H -338.2262
ReferenceChase, 1998
Comment Data last reviewed in June, 1966

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 823.
A 71.38155
B -81.89008
C 118.8879
D -32.37918
E -0.689063
F -371.8563
G 175.9673
H -350.9125
ReferenceChase, 1998
Comment Data last reviewed in June, 1966

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
1021. - 1583.4.720686978.079-102.451Stull, 1947Coefficents calculated by NIST from author's data.

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H9Li (l) + Hydrogen bromide (g) = Butane (l) + Lithium bromide (cr)

By formula: C4H9Li (l) + HBr (g) = C4H10 (l) + BrLi (cr)

Quantity Value Units Method Reference Comment
Δr-374.0 ± 2.0kJ/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

Hydrogen bromide (g) + methyllithium (cr) = Methane (g) + Lithium bromide (cr)

By formula: HBr (g) + CH3Li (cr) = CH4 (g) + BrLi (cr)

Quantity Value Units Method Reference Comment
Δr-317.3 ± 2.0kJ/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

Hydrogen bromide (g) + ethyllithium (cr) = Ethane (g) + Lithium bromide (cr)

By formula: HBr (g) + C2H5Li (cr) = C2H6 (g) + BrLi (cr)

Quantity Value Units Method Reference Comment
Δr-345.7 ± 2.0kJ/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

Hydrogen bromide (g) + C4H9Li (l) = Butane (l) + Lithium bromide (cr)

By formula: HBr (g) + C4H9Li (l) = C4H10 (l) + BrLi (cr)

Quantity Value Units Method Reference Comment
Δr-352.7 ± 2.0kJ/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

Benzene, (bromomethyl)- + C4H9Li = Benzene, pentyl- + Lithium bromide

By formula: C7H7Br + C4H9Li = C11H16 + BrLi

Quantity Value Units Method Reference Comment
Δr-338. ± 11.kJ/molCmFowell and Mortimer, 1961liquid phase; ALS

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through January, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 7Li79Br
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Peaks in the electron energy loss spectrum at 6.9 and 8.5 eV Geiger and Pfeiffer, 1968. Continuous absorption above 33000 cm-1, first maximum at ~39000 cm-1. 1
A 2           A ← X 
Berry and Klemperer, 1957
X 1Σ+ 0 563.16 3.53 3 0.02 0.5553990 0.0056442 4 0.0000244 2.159E-6  2.170427 5  
Klemperer and Rice, 1957; Klemperer, Norris, et al., 1960
Rotation sp.
Honig, Mandel, et al., 1954; Rusk and Gordy, 1962; Hebert, Breivogel, et al., 1964
Mol. beam rf electric reson. 6
Hebert, Breivogel, et al., 1964; Hebert and Street, 1969; Hilborn, Gallagher, et al., 1972
Mol. beam magn. reson. 7
Mehran, Brooks, et al., 1966

Notes

1Absorption cross sections Davidovits and Brodhead, 1967.
2Diffuse absorption bands at 31560, 31018, 30467, 29879, (29442) cm-1
3Vibrational constants from the infrared spectrum of the natural isotopic mixture.
4Rotational constants evaluated Hebert, Breivogel, et al., 1964 from the microwave results for 6Li79Br.
5Rot.-vibr. Sp. 10
6Dipole moment of 6Li79Br: μel[D] = 7.2262 + 0.0832(v+1/2) + 0.00057(v+1/2)2 Hebert, Breivogel, et al., 1964. For electric quadrupole and other hyperfine coupling constants of the various isotopes see Hebert, Breivogel, et al., 1964, Hebert and Street, 1969, Hilborn, Gallagher, et al., 1972. The Zeeman spectrum was studied by the electric resonance method Cecchi and Ramsey, 1974; gJ(7Li79Br) = 0.11206 superseding an earlier value by the magnetic resonance method Mehran, Brooks, et al., 1966; also 79,81Br nuclear magnetic moments.
7Li nuclear reorientation spectrum Kusch, 1949, Logan, Cote, et al., 1952, Kusch, 1959.
8Thermochemical value Brewer and Brackett, 1961, Bulewicz, Phillips, et al., 1961.
9Maximum of a very broad photoelectron peak with two additional ill-defined peaks at 10.6 and 11.6 eV, the latter possibly due to the dimer (LiBr)2 Goodman, Allen, et al., 1974.
10For IR spectrum in inert gas matrices see Schlick and Schnepp, 1964.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Holm, 1974
Holm, T., J. Organometal. Chem., 1974, 77, 27. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W., In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]

Fowell and Mortimer, 1961
Fowell, P.A.; Mortimer, C.T., 735. Heats of formation and bond energies. Part V. n-Butyl-lithium, J. Chem. Soc., 1961, 3793-3796. [all data]

Geiger and Pfeiffer, 1968
Geiger, J.; Pfeiffer, H.-C., Untersuchung der Anregung innerer Elektronen von Alkalihalogenidmolekulen im Energieverlustspektrum von 25 keV-Elektronen, Z. Phys., 1968, 208, 105. [all data]

Berry and Klemperer, 1957
Berry, R.S.; Klemperer, W., Spectra of the alkali halides. III. Electronic spectra of lithium chloride, lithium bromide, and lithium iodide, J. Chem. Phys., 1957, 26, 724. [all data]

Klemperer and Rice, 1957
Klemperer, W.; Rice, S.A., Infrared spectra of the alkali halides. I. Lithium halides, J. Chem. Phys., 1957, 26, 618. [all data]

Klemperer, Norris, et al., 1960
Klemperer, W.; Norris, W.G.; Buchler, A.; Emslie, A.G., Infrared spectra of lithium halide monomers, J. Chem. Phys., 1960, 33, 1534. [all data]

Honig, Mandel, et al., 1954
Honig, A.; Mandel, M.; Stitch, M.L.; Townes, C.H., Microwave spectra of the alkali halides, Phys. Rev., 1954, 96, 629. [all data]

Rusk and Gordy, 1962
Rusk, J.R.; Gordy, W., Millimeter wave molecular beam spectroscopy: alkali bromides and iodides, Phys. Rev., 1962, 127, 817. [all data]

Hebert, Breivogel, et al., 1964
Hebert, A.J.; Breivogel, F.W., Jr.; Street, K., Jr., Radio-frequency and microwave spectra of LiBr by the molecular-beam electric-resonance method, J. Chem. Phys., 1964, 41, 2368. [all data]

Hebert and Street, 1969
Hebert, A.J.; Street, K., Jr., Nuclear-quadrupole ratio of bromine isotopes in molceular LiBr, Phys. Rev., 1969, 178, 205. [all data]

Hilborn, Gallagher, et al., 1972
Hilborn, R.C.; Gallagher, T.F., Jr.; Ramsey, N.F., Hyperfine structure of 7Li79,81Br by molecular-beam electric resonance, J. Chem. Phys., 1972, 56, 855. [all data]

Mehran, Brooks, et al., 1966
Mehran, F.; Brooks, R.A.; Ramsey, N.F., Rotational magnetic moments of alkali-halide molecules, Phys. Rev., 1966, 141, 93. [all data]

Davidovits and Brodhead, 1967
Davidovits, P.; Brodhead, D.C., Ultraviolet absorption cross sections for the alkali halide vapors, J. Chem. Phys., 1967, 46, 2968. [all data]

Cecchi and Ramsey, 1974
Cecchi, J.L.; Ramsey, N.F., Molecular Zeeman spectra of 6,7Li 79,81Br, J. Chem. Phys., 1974, 60, 53. [all data]

Kusch, 1949
Kusch, P., On the nuclear electric quadrupole moment of Li6, Phys. Rev., 1949, 75, 887. [all data]

Logan, Cote, et al., 1952
Logan, R.A.; Cote, R.E.; Kusch, P., The sign of the quadrupole interaction energy in diatomic molecules, Phys. Rev., 1952, 86, 280. [all data]

Kusch, 1959
Kusch, P., Nuclear reorientation spectrum of Li7 in the gaseous monomers and dimers of the lithium halides, J. Chem. Phys., 1959, 30, 52. [all data]

Brewer and Brackett, 1961
Brewer, L.; Brackett, E., The dissociation energies of gaseous alkali halides, Chem. Rev., 1961, 61, 425. [all data]

Bulewicz, Phillips, et al., 1961
Bulewicz, E.M.; Phillips, L.F.; Sugden, T.M., Determination of dissociation constants and heats of formation of simple molecules by flame photometry. Part 8. Stabilities of the gaseous diatomic halides of certain metals, Trans. Faraday Soc., 1961, 57, 921. [all data]

Goodman, Allen, et al., 1974
Goodman, T.D.; Allen, J.D., Jr.; Cusachs, L.C.; Schweitzer, G.K., The photoelectron spectra of gaseous alkali halides, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 289. [all data]

Schlick and Schnepp, 1964
Schlick, S.; Schnepp, O., Infrared spectra of the lithium halide monomers and dimers in inert matrices at low temperature, J. Chem. Phys., 1964, 41, 463. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Constants of diatomic molecules, References