Cyano radical


Gas phase thermochemistry data

Go To: Top, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas435.14kJ/molReviewChase, 1998Data last reviewed in June, 1969
Quantity Value Units Method Reference Comment
gas,1 bar202.64J/mol*KReviewChase, 1998Data last reviewed in June, 1969

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 1100.1100. - 6000.
A 26.3287821.01661
B 3.3227049.770603
C 8.590883-1.022633
D -4.8754900.013773
E 0.1070554.541439
F 427.4333435.9017
G 233.7785232.6902
H 435.1360435.1360
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1969 Data last reviewed in June, 1969

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to CN+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)13.598eVN/AN/AL
Quantity Value Units Method Reference Comment
Δf(+) ion1750. ± 4.kJ/molN/AN/A 

Electron affinity determinations

EA (eV) Method Reference Comment
3.8620 ± 0.0050LPESBradforth, Kim, et al., 1993B
3.835 ± 0.091D-EABartmess, Scott, et al., 1979value altered from reference due to change in acidity scale; B
3.820 ± 0.020PDBerkowitz, Chupka, et al., 1969B
5.64 ± 0.20R-ADeCorpo, Bafus, et al., 1971From MeCN; B
3.16124SIChamberlin, Page, et al., 1974The Magnetron method, lacking mass analysis, is not considered reliable.; B
2.78398SIPage, 1972The Magnetron method, lacking mass analysis, is not considered reliable.; B
2.800 ± 0.020SINapper and Page, 1963New DH(H-CN) used The Magnetron method, lacking mass analysis, is not considered reliable.; B

Ionization energy determinations

IE (eV) Method Reference Comment
14.17EVALHuber and Herzberg, 1979LLK
14.03 ± 0.02DERBerkowitz, Chupka, et al., 1969RDSH
≤14.20 ± 0.02DERDibeler and Liston, 1967RDSH
14.2 ± 0.3EIBerkowitz, 1962RDSH
14.5 ± 0.2EIDibeler, Reese, et al., 1961RDSH

Anion protonation reactions

CN- + Hydrogen cation = Hydrogen cyanide

By formula: CN- + H+ = CHN

Quantity Value Units Method Reference Comment
Δr1464. ± 4.2kJ/molCIDTAkin and Ervin, 2006gas phase; B
Δr1466.5 ± 0.71kJ/molD-EABradforth, Kim, et al., 1993gas phase; B
Δr1469. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1433. ± 4.6kJ/molH-TSAkin and Ervin, 2006gas phase; B
Δr1435.8 ± 1.1kJ/molH-TSBradforth, Kim, et al., 1993gas phase; B
Δr1438. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through September, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 12C14N
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Theoretical work Purcell, 1967 Heil and Schaefer, 1971 Schaefer and Heil, 1971 Green, 1972 Das, Janis, et al., 1974. RKR Potential curves Fallon, Vanderslice, et al., 1962 Brocklehurst, Hebert, et al., 1971 Rao and Lakshman, 1972.Franck-Condon factors Halmann and Laulicht, 1966 Rao and Lakshman, 1972, and ref. In Ortenberg and Antropov, 1967 Brocklehurst, Hebert, et al., 1971.
J 2ΔI 65258.19 1 1121.76 Z 14.203 0.180 1.3052 0.0208  5.8E-6  1.4137 J → A R 55667.14 2 Z
missing citation
H 2Π(r) [61969.7] 3    [1.520]     [1.310] H → B R 35140.84 2 Z
Douglas and Routly, 1955
G 2Π [61655.0] 4 5    [1.085] 4     [1.551] G → B R 34826.10 4 Z
Douglas and Routly, 1955; Lutz, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
F 2Δr 60095.64 $I 1239.50 Z 12.75  1.3834 0.0187  7E-6  1.3732 F → A R 50563.80 2 Z
missing citation; Jha and Rao, 1966; Lutz, 1971
E 2Σ+ 59151.18 1681.43 Z 3.60 -1.02 1.4871 0.00643 -0.00077 5.0E-6  1.3245 E → A R 49842.47
missing citation; Lutz, 1971
           E ↔ X R 58959.85 Z
missing citation; missing citation
D 2ΠI 54486.3 6 1004.71 7 Z 8.78  1.162 7 0.013  7E-6  1.498 D → A R 44838.08 2 z
missing citation
           D → X R 53955.46
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
a 4Σ(+) (32400) 8           
B 2Σ+ 25752.0 2163.9 9 Z 20.2 10  1.973 9 0.023 10  [6.6E-6]  1.15 B → A V 16680.46
LeBlanc, 1968; missing citation
11          B ↔ X 12 13 VR 25797.84 14
missing citation; missing citation; White, 1940; Feast, 1949; Douglas and Routly, 1955; Kiess and Broida, 1961; LeBlanc, 1968, 2; Engleman, 1974
A 2ΠI 9245.28 15 1812.56 16 Z 12.609 -0.0118 1.7151 16 0.01708 -0.0000364 5.93E-6 16 0.0425E-6 1.2333 A ↔ X 17 18 R 9117.38 2 Z
missing citation; Parker, 1932; Herzberg and Phillips, 1948; Douglas and Routly, 1955; Kiess and Broida, 1961; Davis and Phillips, 1963; Weinberg, Fishburne, et al., 1967; LeBlanc, 1968, 2; missing citation
19           
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
X 2Σ+ 0 2068.59 Z 13.087 20 -0.009093 1.89974 14 0.017369 -0.00003107 21 6.40E-6 0.000000012 22 1.17182 23  
Phillips, 1973; Treffers, 1975
Microwave sp. 24
Penzias, Wilson, et al., 1974; Turner and Gammon, 1975
ESR sp. 25
Easley and Weltner, 1970; Adrian and Bowers, 1976

Notes

1A0 = -26.90, A1 = -25.67, A2 = -25.40, A3 = -24.97; recalculated from Carroll, 1956 with an improved A0 for A 2Πi.
2Refers to the zero point of the Hill-Van Vleck formula for Λ ≠ 0 states.
3A0 = (+)49.57.
4Vibrational numbering unknown; only the v'>1 band at 32702.60 cm-1 was identified. See also Schaefer and Heil, 1971.
5|A| smaller than in the D state.
6A0 = -3.03.
7Vibrational numbering uncertain.
8Predicted by ab initio calculations Heil and Schaefer, 1971, Schaefer and Heil, 1971. This state is probably responsible for the small perturbation in v=11, N = 20 of B 2Σ+ Coxon, Ramsay, et al., 1975; see also Coxon, Setser, et al., 1973.
9From Douglas and Routly, 1955; much improved ΔG(v+1/2), Bv, Dv values for v≤7 in Engleman, 1974, but no equilibrium constants given. Spin-rotation interaction constant γ0= +0.01565 [from the magnetic resonance spectrum Cook and Levy, 1973], for higher v see Engleman, 1974. Perturbations by A 2Π (in v=0 at N=4, 7, 11, 15; see 16), and by a 4Σ(+) (see 8). From Stark effect of the P(1) and R(0) lines in the B-X, 0-0 band Thomson and Dalby, 1968 determine for the B state μel (-CN+) = 1.15 D.
10The ΔG and Bv curves are strongly non-linear.
11[For a comprehensive review of molecular data on the B-X system including a bibliography of references prior to 1972 see Brocklehurst, Hebert, et al., 1971].
12Radiative lifetime τ(v=0)= 65.6 ns for the unperturbed levels and 72 ns for the perturbed N=4 level [tunable laser excitation Jackson, 1974]. Phase shift measurements give 59 ns for v=0-2, in good agreement with the direct decay measurements, 60.8 ns, of Luk and Bersohn, 1973. From the zero-electric-field-limit linewidth of the anticrossing spectrum Cook and Levy, 1972 derive 39 ns. The electronic f value for the B-X system at 3860 , f = 0.033, is primarily based on shock tube emission and absorption measurements; for a review see Arnold and Nicholls, 1973.
13For 0-0, 0-1, 0-2 bands of 13C14N see Jenkins and Wooldridge, 1938.
14Spin-splitting constant γ0 = +0.00725, from the microwave spectrum Penzias, Wilson, et al., 1974 Turner and Gammon, 1975; see also Poletto and Rigutti, 1965, Engleman, 1974. μel(+CN-) = 1.45 D from Stark effect in the B-X, 0-0 band Thomson and Dalby, 1968.
15Av = -52.64 + 0.0365v + 0.0086v2, v≤12 Poletto and Rigutti, 1965.
16The vibrational and rotational constants given here are those of Poletto and Rigutti, 1965 based on the measurements of Davis and Phillips, 1963; see also Douglas and Routly, 1955. More elaborate evaluations, primarily intended to assist in the identification of CN lines in the solar spectrum, have been published by Swensson, Benedict, et al., 1970 and Fay, Marenin, et al., 1971; note, however, that the constants tabulated in Swensson, Benedict, et al., 1970 are not the usual Dunham coefficients. An extension of the system to bands with v'≤ 25 LeBlanc, 1968, 2 requires the use of slightly different vibrational constants. Λ-type doubling, for details see Jenkins, Roots, et al., 1932, Poletto and Rigutti, 1965. The rotational perturbations by B 2Σ+ in v=10 have been the subject of many experimental and theoretical investigations Radford and Broida, 1962, Batt and Benson, 1962; microwave-optical double resonance missing citation Evenson, Dunn, et al., 1964 Radford, 1964 Evenson, 1968 Evenson, 1969 Pratt and Broida, 1969 Meakin and Harris, 1972, level anticrossing spectroscopy Levy, 1972 Cook and Levy, 1972 Cook and Levy, 1973, 2, magnetic resonance Cook and Levy, 1973. Hyperfine structure constants in Meakin and Harris, 1972, μel(+CN-) = 0.56 D Cook and Levy, 1973, 2, Π ~ Σ interaction parameters Cook and Levy, 1973.
17Radiative lifetime τ = 0.68 μs (average for 1≤v≤9), corresponding to f00 = 0.0034 Jeunehomme, 1965, in good agreement with Treffers, 1975. A shock tube emission study Arnold and Nicholls, 1972 gives fel = 0.0045 at 10970 . See also Gippius, Kudryavtsev, et al., 1967 Jain, 1975. A considerably shorter lifetime for v=10, τ = 0.14 μs; v=10, was derived by Cook and Levy, 1972 from the anticrossing and microwave linewidths. Calculated relative absorption coefficients at three different temperatures in Phillips and Leung, 1973.
18Rotational analyses of the 0-0, 1-0, 2-0, 2-1, 3-1 bands of 13C14N in Wyller, 1966 Hosinsky and Lindgren, 1976.
19[For a useful compilation of molecular data on the A-X system and a bibliography of references prior to 1971 see Brocklehurst, Hebert, et al., 1971.]
20Vibrational constants from Douglas and Routly, 1955, slightly different constants in Poletto and Rigutti, 1965.
21Rotational constants from Engleman, 1974 who gives γe = -0.0003107 which appears to be a misprint; see also Douglas and Routly, 1955, Poletto and Rigutti, 1965.
22 Poletto and Rigutti, 1965, Engleman, 1974.
23IR fundamental b.
24In emission from interstellar sources; eqQ and other hyperfine structure constants.
25in rare gas matrices at 4K.
26Based on ΔHof0(CN) = 103.2 ± 2.5 kcal/mole recommended in missing citation. It represents an average value obtained from mass-spectrometric Berkowitz, 1962 and shock tube studies Knight and Rink, 1961, Tsang, Bauer, et al., 1962, Levitt and Parsons, 1969, Arnold and Nicholls, 1973 and from the photo-ionization Dibeler and Liston, 1967, Dibeler and Liston, 1968, Berkowitz, Chupka, et al., 1969 and photo-dissociation Davis and Okabe, 1968 of CN containing molecules and their decomposition in collisions with Ar metastable atoms Setser and Stedman, 1968. The most recent quantitative absorption measurements by Engleman and Rouse, 1975 together with lifetime measurements in the B-X system (see 12) tend to support the slightly higher value ΔHof0 = 105.5 ± 2 kcal/mole, of Berkowitz, Chupka, et al., 1969, giving D00 = 7.66 eV. Gaydon Gaydon, 1968 recommends 7.75 eV.
27Indirectly from a combination of photo-ionization Dibeler and Liston, 1967, Dibeler and Liston, 1968 and photo-dissociation Davis and Okabe, 1968 threshold energies for HCN and ClCN; in good agreement with an electron impact appearance potential of 14.2 eV Berkowitz, 1962. Similar photoionization data for HCN Berkowitz, Chupka, et al., 1969 suggest, however, 14.03 eV. Theory predicts 14.10 eV Moffat, 1975.
28A0 = +28.77, A1 = +27.86, A2 = +27.06.

References

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Bradforth, Kim, et al., 1993
Bradforth, S.E.; Kim, E.H.; Arnold, D.W.; Neumark, D.M., Photoelectron Spectroscopy of CN-, NCO-, and NCS-, J. Chem. Phys., 1993, 98, 2, 800, https://doi.org/10.1063/1.464244 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Berkowitz, Chupka, et al., 1969
Berkowitz, J.; Chupka, W.A.; Walter, T.A., Photoionization of HCN: the electron affinity and heat of formation of CN, J. Chem. Phys., 1969, 50, 1497. [all data]

DeCorpo, Bafus, et al., 1971
DeCorpo, J.J.; Bafus, D.A.; Franklin, J.L., Correlation of excess energies of dissociative electron attachment processes with the translational energies of their products, J. Chem. Phys., 1971, 54, 1592. [all data]

Chamberlin, Page, et al., 1974
Chamberlin, A.T.; Page, F.M.; Painter, M.R., A Study of the Negative Ions Produced during Surface Ionization on Hot Metal Filaments, Adv. Mass Spectrom., 1974, 6, 311. [all data]

Page, 1972
Page, F.M., Experimental determination of the electron affinities of inorganic radicals, Adv. Chem. Ser., 1972, 36, 68. [all data]

Napper and Page, 1963
Napper, R.; Page, F.M., Determination of Electron Affinities. Part 5. Cyanide and Thiocyanate Radicals, Trans. Farad. Soc., 1963, 59, 1086, https://doi.org/10.1039/tf9635901086 . [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules,, Van Nostrand Reinhold Co., 1979, ,1. [all data]

Dibeler and Liston, 1967
Dibeler, V.H.; Liston, S.K., Mass-spectrometric study of photoionization. VIII.Dicyanogen and the cyanogen halides, J. Chem. Phys., 1967, 47, 4548. [all data]

Berkowitz, 1962
Berkowitz, J., Heat of formation of the CN radical, J. Chem. Phys., 1962, 36, 2533. [all data]

Dibeler, Reese, et al., 1961
Dibeler, V.H.; Reese, R.M.; Franklin, J.L., Mass spectrometric study of cyanogen and cyanoacetylenes, J. Am. Chem. Soc., 1961, 83, 1813. [all data]

Akin and Ervin, 2006
Akin, F.A.; Ervin, K.M., Collision-induced dissociation of HS-(HCN): Unsymmetrical hydrogen bonding in a proton-bound dimer anion, J. Phys. Chem. A, 2006, 110, 4, 1342-1349, https://doi.org/10.1021/jp0540454 . [all data]

Purcell, 1967
Purcell, K.F., 14N Quadrupole coupling in the ground and excited states of CN, J. Chem. Phys., 1967, 47, 1198-1199. [all data]

Heil and Schaefer, 1971
Heil, T.G.; Schaefer, H.F., III, Four new bound, low-lying states of cyanogen: 4Σ+, 4Σ-, 4Π, 4Δ, Astrophys. J., 1971, 163, 425. [all data]

Schaefer and Heil, 1971
Schaefer, H.F., III; Heil, T.G., Electronic structures and potential energy curves for the low-lying states of CN radical, J. Chem. Phys., 1971, 54, 2573. [all data]

Green, 1972
Green, S., Electric dipole moment of diatomic molecules by configuration interaction. V. Two states of 2Σ+ symmetry in CN, J. Chem. Phys., 1972, 57, 4694. [all data]

Das, Janis, et al., 1974
Das, G.; Janis, T.; Wahl, A.C., Ground and excited states of the diatoms CN and A1O, J. Chem. Phys., 1974, 61, 1274. [all data]

Fallon, Vanderslice, et al., 1962
Fallon, R.J.; Vanderslice, J.T.; Cloney, R.D., Potential curves and rotational perturbations of CN, J. Chem. Phys., 1962, 37, 1097. [all data]

Brocklehurst, Hebert, et al., 1971
Brocklehurst, B.; Hebert, G.R.; Innanen, S.H.; Seel, R.M.; Nicholls, R.W., Identification atlas of molecular spectra. 8. The CN A2Π - X2Σ+ red system, Pub. York University, Centre for Research in Experimental Space Science, Toronto, Ontario, 1971, 0. [all data]

Rao and Lakshman, 1972
Rao, T.V.R.; Lakshman, S.V.J., The true potential energy curves, morse r-centroids and Franck-Condon factors for the bands of the E2Σ+-X2Σ+ system of CN, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 1063. [all data]

Halmann and Laulicht, 1966
Halmann, M.; Laulicht, I., Isotope effects on vibrational transition probabilities. IV. Electronic transitions of isotopic C2, CO, CN, H2, and CH molecules, Astrophys. J. Suppl. Ser., 1966, 12, 307. [all data]

Ortenberg and Antropov, 1967
Ortenberg, F.S.; Antropov, E.T., Probability of electron-vibrational transitions in diatomic molecules, Sov. Phys. Usp. Engl. Transl., 1967, 9, 717, In original 237. [all data]

Douglas and Routly, 1955
Douglas, A.E.; Routly, P.M., The spectrum of the CN molecule, Astrophys. J. Suppl. Ser., 1955, 1, 295. [all data]

Lutz, 1970
Lutz, B.L., Spectrum of the CN molecule. I. Absorption in the vacuum ultraviolet, Can. J. Phys., 1970, 48, 1192. [all data]

Jha and Rao, 1966
Jha, B.L.; Rao, D.R., F2Δγ-A2Πi band system of CN, Proc. Indian Acad. Sci. Sect. A, 1966, 63, 316. [all data]

Lutz, 1971
Lutz, B.L., Spectrum of the CN molecule. II. F2Δr-A2Πi, Astrophys. J., 1971, 164, 213. [all data]

LeBlanc, 1968
LeBlanc, F.J., B2Σ → A2Πi bands of CN, J. Chem. Phys., 1968, 48, 1841. [all data]

White, 1940
White, J.U., Spectroscopic measurements of gaseous CN. II. Thermal dissociation of cyanogen, J. Chem. Phys., 1940, 8, 459. [all data]

Feast, 1949
Feast, M.W., The CN tail bands emitted by the carbon arc in air, Proc. Phys. Soc. London Sect. A, 1949, 62, 121. [all data]

Kiess and Broida, 1961
Kiess, N.H.; Broida, H.P., Perturbations and rotational intensities observed in CN bands emitted by reactions of organic molecules with nitrogen atoms, J. Mol. Spectrosc., 1961, 7, 194. [all data]

LeBlanc, 1968, 2
LeBlanc, F.J., Extension of the CN red and violet band systems, J. Chem. Phys., 1968, 48, 1980. [all data]

Engleman, 1974
Engleman, R., Jr., The Δv = O and +1 sequence bands of the CN violet system observed during the flash photolysis of BrCN, J. Mol. Spectrosc., 1974, 49, 106. [all data]

Parker, 1932
Parker, A.E., Analysis of the (O,O) 2Π-2Σ CN band at 9168A, Phys. Rev., 1932, 41, 274. [all data]

Herzberg and Phillips, 1948
Herzberg, G.; Phillips, J.G., Infrared CN bands, Astrophys. J., 1948, 108, 163. [all data]

Davis and Phillips, 1963
Davis, S.P.; Phillips, J.G., Berkeley analyses of molecular spectra. 1. The red system (A2Π-X2Σ) of the CN molecule, Pub. University of California Press, Berkeley and Los Angeles, 1963, 0. [all data]

Weinberg, Fishburne, et al., 1967
Weinberg, J.M.; Fishburne, E.S.; Rao, K.N., Infrared bands of the CN red system (A2Π-X2Σ), J. Mol. Spectrosc., 1967, 22, 406. [all data]

Phillips, 1973
Phillips, J.G., The fundamental rotation-vibration band of CN, Astrophys. J., 1973, 180, 617. [all data]

Treffers, 1975
Treffers, R.R., Observations of the fundamental rotation-vibration band of CN, Astrophys. J., 1975, 196, 883. [all data]

Penzias, Wilson, et al., 1974
Penzias, A.A.; Wilson, R.W.; Jefferts, K.B., Hyperfine structure of the CN radical determined from astronomical observations, Phys. Rev. Lett., 1974, 32, 701. [all data]

Turner and Gammon, 1975
Turner, B.E.; Gammon, R.H., Interstellar CN at radio wavelengths, Astrophys. J., 1975, 198, 71. [all data]

Easley and Weltner, 1970
Easley, W.C.; Weltner, W., Jr., ESR of the CN radical in inert matrices, J. Chem. Phys., 1970, 52, 197. [all data]

Adrian and Bowers, 1976
Adrian, F.J.; Bowers, V.A., g-tensor and spin doubling constants in the 2Σ molecules CN and C2H, Chem. Phys. Lett., 1976, 41, 517. [all data]

Carroll, 1956
Carroll, P.K., The spectrum of CN in the vacuum ultraviolet, Can. J. Phys., 1956, 34, 83. [all data]

Coxon, Ramsay, et al., 1975
Coxon, J.A.; Ramsay, D.A.; Setser, D.W., A doublet-quartet perturbation in CN, Can. J. Phys., 1975, 53, 1587. [all data]

Coxon, Setser, et al., 1973
Coxon, J.A.; Setser, D.W.; Duewer, W.H., Excitation of CN violet (B2Σ+-X2Σ+) bands by reaction of Ar and Xe metastable atoms with CN-containing compounds, J. Chem. Phys., 1973, 58, 2244. [all data]

Cook and Levy, 1973
Cook, T.J.; Levy, D.H., Optically detected gas phase magnetic resonance spectrum of the CN radical, J. Chem. Phys., 1973, 58, 3547. [all data]

Thomson and Dalby, 1968
Thomson, R.; Dalby, F.W., Experimental determination of the dipole moments of the X(2Σ+) and B(2Σ+) states of the CN molecule, Can. J. Phys., 1968, 46, 2815. [all data]

Jackson, 1974
Jackson, W.M., Laser measurements of the radiative lifetime of the B2Σ+ state of CN, J. Chem. Phys., 1974, 61, 4177. [all data]

Luk and Bersohn, 1973
Luk, C.K.; Bersohn, R., Time dependence of the fluorescence of the B state of CN, J. Chem. Phys., 1973, 58, 2153. [all data]

Cook and Levy, 1972
Cook, T.J.; Levy, D.H., Lifetimes of the A2Π and B2Σ states of the CN radical, J. Chem. Phys., 1972, 57, 5059. [all data]

Arnold and Nicholls, 1973
Arnold, J.O.; Nicholls, R.W., A shock tube determination of the CN ground state dissociation energy and the CN violet electronic transition moment, J. Quant. Spectrosc. Radiat. Transfer, 1973, 13, 115. [all data]

Jenkins and Wooldridge, 1938
Jenkins, F.A.; Wooldridge, D.E., Mass ratio of the carbon istopes from the spectrum of CN, Phys. Rev., 1938, 53, 137. [all data]

Poletto and Rigutti, 1965
Poletto, G.; Rigutti, M., The A2Π and X2Σ states of the CN molecule from the Berkeley analysis of the CN red system, Nuovo Cimento, 1965, 39, 519. [all data]

Swensson, Benedict, et al., 1970
Swensson, J.W.; Benedict, W.S.; Delbouille, L.; Roland, G., The solar spectrum from λ 7498 to λ 12016. A table of measures and identifications, University of Liege, Belgium, 1970, 449. [all data]

Fay, Marenin, et al., 1971
Fay, T.; Marenin, I.; van Citters, W., Perturbation analysis and constants for the red system of the cyanide radical, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1203. [all data]

Jenkins, Roots, et al., 1932
Jenkins, F.A.; Roots, Y.K.; Mulliken, R.S., The red CN band system, Phys. Rev., 1932, 39, 16. [all data]

Radford and Broida, 1962
Radford, H.E.; Broida, H.P., Rotational perturbations in CN. Zero-field theory, optical Zeeman effect, and microwave transition probabilities, Phys. Rev., 1962, 128, 231. [all data]

Batt and Benson, 1962
Batt, L.; Benson, S.W., Erratum: Pyrolysis of di-tertiary butyl peroxide: temperature gradients and chain contribution to the rate, J. Chem. Phys., 1962, 36, 3031. [all data]

Evenson, Dunn, et al., 1964
Evenson, K.M.; Dunn, J.L.; Broida, H.P., Optical detection of microwave transitions between excited electronic states of CN and the identification of the transitions involved, Phys. Rev. A: Gen. Phys., 1964, 136, 1566. [all data]

Radford, 1964
Radford, H.E., Hyperfine structure of the B2Σ+ state of CN, Phys. Rev. A: Gen. Phys., 1964, 136, 1571. [all data]

Evenson, 1968
Evenson, K.M., The optical detection of simulated emission in CN at 20-CM wavelength, Appl. Phys. Lett., 1968, 12, 253. [all data]

Evenson, 1969
Evenson, K.M., Microwave magnetic-dipole transitions between excited electronic states of CN, Phys. Rev., 1969, 178, 1. [all data]

Pratt and Broida, 1969
Pratt, D.W.; Broida, H.P., Microwave-optical double resonance. Frequencies and linewidths of stimulated emission transitions in the A2Π3/2 state of CN, J. Chem. Phys., 1969, 50, 2181. [all data]

Meakin and Harris, 1972
Meakin, P.; Harris, D.O., The analysis of the hyperfine structure of the A2Π(v = 10) and B2Σ+(v = O) states of the CN radical molecule, J. Mol. Spectrosc., 1972, 44, 219. [all data]

Levy, 1972
Levy, D.H., Molecular level anticrossing in the CN radical, J. Chem. Phys., 1972, 56, 5493. [all data]

Cook and Levy, 1973, 2
Cook, T.J.; Levy, D.H., Electric dipole moment of the A2Π state of CN as measured by level anticrossing spectroscopy, J. Chem. Phys., 1973, 59, 2387. [all data]

Jeunehomme, 1965
Jeunehomme, M., Oscillator strength of the CN red system, J. Chem. Phys., 1965, 42, 4086. [all data]

Arnold and Nicholls, 1972
Arnold, J.O.; Nicholls, R.W., A shock tube determination of the electronic transition moment of the CN red band system, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 1435. [all data]

Gippius, Kudryavtsev, et al., 1967
Gippius, E.F.; Kudryavtsev, E.M.; Pechenov, A.N.; Sobolev, N.N., Electronic transition strength of the red system of CN bands, High Temp. Engl. Transl., 1967, 5, 27, In original 32. [all data]

Jain, 1975
Jain, D.C., Study of the electronic transition moment for the CN red band system, J. Quant. Spectrosc. Radiat. Transfer, 1975, 15, 571. [all data]

Phillips and Leung, 1973
Phillips, J.G.; Leung, C.M., Relative absorptions by the red system of the CN molecule from 4400 Å to 3 microns, Astrophys. J., 1973, 180, 607. [all data]

Wyller, 1966
Wyller, A.A., New C13 indications in stellar spectra, Astrophys. J., 1966, 143, 828. [all data]

Hosinsky and Lindgren, 1976
Hosinsky, G.; Lindgren, B., Laboratory measurments of the (O.O), and (1.0) and (2.1) bands of the red system of the C13N14 molecule, Astron. Astrophys. Suppl. Ser., 1976, 25, 1-8. [all data]

Knight and Rink, 1961
Knight, H.T.; Rink, J.P., Dissociation energy of cyanogen and related quantities by x-ray densitometry of shock waves, J. Chem. Phys., 1961, 35, 199. [all data]

Tsang, Bauer, et al., 1962
Tsang, W.; Bauer, S.H.; Cowperthwaite, M., Dissociation energy and rate of decomposition of C2N2, J. Chem. Phys., 1962, 36, 1768. [all data]

Levitt and Parsons, 1969
Levitt, B.P.; Parsons, A.B., Emissivity and heat of dissociation of CN, Trans. Faraday Soc., 1969, 65, 1199. [all data]

Dibeler and Liston, 1968
Dibeler, V.H.; Liston, S.K., Mass-spectrometric study of photoionization. IX. Hydrogen cyanide and acetonitrile, J. Chem. Phys., 1968, 48, 4765. [all data]

Davis and Okabe, 1968
Davis, D.D.; Okabe, H., Determination of bond dissociation energies in hydrogen cyanide. Cyanogen and cyanogen halides by the photodissociation method, J. Chem. Phys., 1968, 49, 5526. [all data]

Setser and Stedman, 1968
Setser, D.W.; Stedman, D.H., Chemical applications of metastable excited argon atoms. I. The heat of formation of the CN radical, J. Chem. Phys., 1968, 49, 467. [all data]

Engleman and Rouse, 1975
Engleman, R., Jr.; Rouse, P.E., Oscillator strengths from line absorption in a high-temperature furnace. II. The (0,0) band of the B2Σ+-X2Σ+ transition in CN, J. Quant. Spectrosc. Radiat. Transfer, 1975, 15, 831. [all data]

Gaydon, 1968
Gaydon, A.G., Dissociation energies and spectra of diatomic molecules, Chapman and Hall, Ltd., 3rd Edition, London, 1968, 1. [all data]

Moffat, 1975
Moffat, J.B., A comparitive theoretical study from ab initio calculations, of the 1Σ+ states of CN+ and CN-, J. Mol. Struct., 1975, 25, 303. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References