Hydroxyl radical

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas9.319kcal/molReviewChase, 1998Data last reviewed in June, 1977
Quantity Value Units Method Reference Comment
gas,1 bar43.908cal/mol*KReviewChase, 1998Data last reviewed in June, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 1300.1300. - 6000.
A 7.7145516.870701
B -2.7158011.126790
C 3.251781-0.194724
D -0.9193320.013085
E -0.000319-0.656747
F 7.1106916.313191
G 53.9145151.17510
H 9.3181319.318131
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1977 Data last reviewed in June, 1977

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

O- + Hydrogen cation = Hydroxyl radical

By formula: O- + H+ = HO

Quantity Value Units Method Reference Comment
Δr382.600 ± 0.010kcal/molD-EANeumark, Lykke, et al., 1985gas phase; Given: 1.461122(3) eV; revised to 1.4611107(17) eV, 95BLO, based on missing term+86CODATA
Quantity Value Units Method Reference Comment
Δr376.73 ± 0.15kcal/molH-TSNeumark, Lykke, et al., 1985gas phase; Given: 1.461122(3) eV; revised to 1.4611107(17) eV, 95BLO, based on missing term+86CODATA

Fluorine anion + Hydroxyl radical = HFO-

By formula: F- + HO = HFO-

Quantity Value Units Method Reference Comment
Δr32.4 ± 2.3kcal/molLPESDeyerl and Continetti, 2005gas phase; affinity at 0 K

Hydrogen anion + Hydroxyl radical = (Hydrogen anion • Hydroxyl radical)

By formula: H- + HO = (H- • HO)

Quantity Value Units Method Reference Comment
Δr51.8 ± 4.1kcal/molTherde Koening and Nibbering, 1984gas phase

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through May, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 16O1H
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Theoretical potential functions for 48 states Easson and Pryce, 1973; for X 2Π and A 2Σ+ see Stevens, Das, et al., 1974 Chu, Yoshimine, et al., 1974 Meyer and Rosmus, 1975.
C 2Σ+ 89459.1 1232.9 Z 19.1  4.247 1 2 0.078  2E-4  2.0461 C → A 3 4 R 55820.7 Z
Michel, 1957; Felenbok, 1963; missing citation
C 2Σ+ 5           (C → X) 3 (88223)
Michel, 1957; missing citation
D 2Σ- (82130) (2954)   [15.2179] 6   [16.16E-4]  [1.08093] D ← X 7 R 81759.78 8 Z
Douglas, 1974
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
B 2Σ+ 69774 [660.0] Z 9  [5.086] 10 2 11  [9.29E-4] 12  [1.8698] B → A 4 R 35965.5 Z
Barrow, 1956; Michel, 1957; Herman, Felenbok, et al., 1961; missing citation; missing citation; missing citation; Czarny, Felenbok, et al., 1971
A 2Σ+ 32684.1 3178.86 Z 92.917 13  17.358 14 15 16 2 0.7868 17 -0.016 [20.39E-4] 18  1.0121 A ↔ X 19 20 R 32402.39 8 Z
Dieke and Crosswhite, 1948; Stoebner and Delbourgo, 1967; missing citation
X 2Πi 0 21 3737.761 Z 84.8813 22  18.9108 23 2 0.7242 24  19.38E-4 25  0.96966 1/2 ← 3/2 26 126.23
Evenson, Wells, et al., 1970; Mizushima, 1972
Rotational-vibration band 27 28
1-0 sequence
Allen, Blaine, et al., 1957; Charters and Polanyi, 1960; Maillard, Chauville, et al., 1976
2-0 sequence
Benedict, Plyler, et al., 1953; Charters and Polanyi, 1960; Rogge, Yarger, et al., 1960; Maillard, Chauville, et al., 1976
3-0 sequence
Bass and Garvin, 1962; Maillard, Chauville, et al., 1976
4-0 sequence
Herman and Hornbeck, 1953; Chamberlain and Roesler, 1955; McKinley, Garvin, et al., 1955; Bass and Garvin, 1962
other sequences
Chamberlain and Roesler, 1955; McKinley, Garvin, et al., 1955; Blackwell, Ingham, et al., 1960; Bass and Garvin, 1962
Rotation sp.
Madden and Benedict, 1955; Ducas and Javan, 1974; Downey, Robinson, et al., 1977
Hf Λ-doubling sp. 29 30 31
Dousmanis, Sanders, et al., 1955; Ehrenstein, 1963; Poynter and Beaudet, 1968; Destombes, Marliere, et al., 1974; Destombes and Marliere, 1975; Meerts and Dymanus, 1975; Meerts, 1977
EPR sp. 32
Radford, 1961; Churg and Levy, 1970; Clough, Curran, et al., 1971; Lee, Tam, et al., 1971; Hinkley, Walker, et al., 1973; Lee and Tam, 1974

Notes

1Spin splitting constants γ0 ...γ3 = +1.09...+0.67 Michel, 1957, Carlone and Dalby, 1969.
2RKR potential functions Fallon, Tobias, et al., 1961, Horsley and Richards, 1969.
3Lifetime of the upper state of the C→A system ~ 6 ns; measurements in the 1700-1900 region give τ ~2 ns which, in spite of the poor agreement, is not inconsistent with the assignment of at least part of these bands to C→X Smith and Stella, 1975. Much longer lifetimes (~ 80 ns) have been reported by Remy, 1971.
4Franck-Condon factors Felenbok, 1963.
5Strong many-line spectrum 1900-1700 Å, tentative identification.
6Spin splitting constant γ0 = -0.293.
7Theoretical oscillator strength f00 = 0.0036 Ray and Kelly, 1975.
8Energy of N'=0 relative to the zero-point of the Hill-Van Vleck expression for the ground state.
9Using isotope relations Barrow, 1956 estimates ωe = 940, ωexe = 105, ωeye = -21.5.
10Spin splitting constant γ<0.03 Carlone and Dalby, 1969. Predissociation by rotation in v=0 above N=15, in v=1 above N=9; dissociation products 1S + 2S Felenbok, 1963, Carlone and Dalby, 1969.
11B1 = 4.119. Constants for the B state are from Carlone and Dalby, 1969.
12D1 ~ 29.1E-4, H1= -15E-5.
13-1.7915(v+1/2)3 + 0.32362(v+1/2)4 - 0.03585(v+1/2)5 Barrow, 1956. Energy levels and improved ΔG(v+1/2) values are listed in Carlone and Dalby, 1969.
14Spin splitting constants γ0 ... γ3 = 0.201, 0.196, 0.192, 0.193 Moore and Richards, 1971; see also Dieke and Crosswhite, 1948.
15Predissociation in v=0 above N=23, in v=1 above N=14, and of all levels in v=2; from the lifetime measurements of Elmergreen and Smith, 1972, Anderson and Sutherland, 1973, German, 1975. A sharp decrease in the intensity of emission lines originating from the predissociated levels has been observed at or slightly above threshold in low pressure flames and discharges Gaydon and Wolfhard, 1951, Broida and Kane, 1953, Naegeli and Palmer, 1967; Charton and Gaydon, 1958 report corresponding intensity increases due to inverse predissociation in hydrogen flames; see also Gutman, Lutz, et al., 1968. The predissociation is noticeably stronger for the F1 than for the F2 levels; according to Palmer and Naegeli, 1968, Michels and Harris, 1969, Gaydon and Kopp, 1971, Anderson and Sutherland, 1973, Palmer and Naegeli, 1973, Smith, Elmergreen, et al., 1974, German, 1975 it is caused by the 4Σ- state arising from 3P + 2S, but the possibility of predissociation by the 2Π ground state has also been considered Durmaz and Murrell, 1971, Julienne, Krauss, et al., 1971. A much stronger predissociation of A 2Σ+ leading to diffuseness in the B→A bands has been observed Michel, 1957, Czarny and Felenbok, 1968, Carlone and Dalby, 1969 for v=5, 6, 7 at all N levels and for v=8 above N=6; according to Czarny, Felenbok, et al., 1971 it is produced by the 4Π state arising from 3P + 2S.
16μel(v=0) = 1.98 D from high-field Stark effects on the A→X transition Scarl and Dalby, 1971.
17The equilibrium constants were derived by Barrow, 1956 to fit Bv from v=0 to 4. Improved Bv values (v=0.. .3) have been obtained by Moore and Richards, 1971 from the data of Dieke and Crosswhite, 1948; additional Bv values for v≤9 are listed in Barrow, 1956, Michel, 1957, Felenbok, 1963, Carlone and Dalby, 1969. For term values (v=0...3) see Moore and Richards, 1971.
18Other Dv values in Moore and Richards, 1971 and Barrow, 1956, Michel, 1957, Felenbok, 1963, Carlone and Dalby, 1969; H0 = 8.71E-8 Moore and Richards, 1971.
19Radiative lifetimes τ(v=0,N=1) = 693 ± 10 ns, τ(v=l,N=1) = 736 ± 11 ns German, 1975. The increase from v=0 to v=1 and a similar variation with increasing rotation in v=0 [ German, 1975, see also Elmergreen and Smith, 1972, Anderson and Sutherland, 1973] are explained by the dependence on r of the transition moment [see German, 1975 and references given there]. Hogan and Davis, 1974 using a method very similar to German, 1975 obtain 720 765 ns for the average lifetimes of several low-lying rotational levels in v=0 and 1, respectively. Earlier apparently less accurate determinations Elmergreen and Smith, 1972, Becker and Haaks, 1973, Anderson and Sutherland, 1973, Becker, Haaks, et al., 1974, Brophy, Silver, et al., 1974 gave somewhat higher τ values [see also Bennett and Dalby, 1964]; Hanle effect measurements de Zafra, Marshall, et al., 1971, German, Bergeman, et al., 1973 are slightly lower. The decay time of the predissociated v=2 level (see 15) is 203 ± 13 ns for N=0 and decreases rapidly at higher N German, 1975; estimated non- radiative lifetime for N=1 ~ 270 ns. High-resolution line absorption measurements by Rouse and Engleman, 1973 [see also Golden, Del Greco, et al., 1963] give f00 = 0.00095 for the rotationless molecule in reasonable agreement with lifetime measurements but in sharp contrast to f00 = 0.00148 obtained by Anketell and Pery-Thorne, 1967 using the hook method; f10 values are, respectively, 0.00024 and 0.00089.
20Observed in emission in all kinds of electric discharges (often as an impurity), in flames Krishnamachari and Broida, 1961 and in the heads of comets; in absorption in H2O vapour at high temperature Bonhoeffer and Reichardt, 1928 and in electric discharges Oldenberg, 1935, in flames Gaydon, Spokes, et al., 1960, in the flash photolysis of H2O, O3 + H2O, and other mixtures Basco and Norrish, 1961, Black and Porter, 1962, Horne and Norrish, 1967, and in stellar spectra, especially the solar spectrum Moore and Broida, 1959. Emission and absorption in solid neon Tinti, 1968. Atlas of A-X bands Bass and Broida, 1953, new measurements of the 0-0 and 1-0 bands Engleman, 1972. Magnetic rotation spectrum Nanes and Robinson, 1971. Franck-Condon factors Nicholls, 1956, Nicholls, Fraser, et al., 1959, Felenbok, 1963. Vibrational intensity distribution Dieke and Crosswhite, 1948, Crosley and Lengel, 1975; rotational intensity distribution Learner, 1962, Meinel, 1967; effect of variation of transition moment with r and dependence on J Anketell and Learner, 1967, Crosley and Lengel, 1975.
21Av = -139.21 - 0.275v Maillard, Chauville, et al., 1976.
22+0.5409(v+1/2)3 - 0.02134(v+1/2)4 - 0.00113(v+1/2)5, representing the vibrational levels up to v=5 Maillard, Chauville, et al., 1976; see also Herman and Hornbeck, 1953, Chamberlain and Roesler, 1955. ΔG(1/2) = 3569.640 Maillard, Chauville, et al., 1976.
23Λ-type doubling parameters pv = 0.235 - 0.006v, qv = -0.0391 + 0.0018v, see Maillard, Chauville, et al., 1976 who give also centrifugal distortion terms. See 24.
24+0.00706(v+1/2)2 - 0.00050(v+1/2)3, representing B0 ...B5 Maillard, Chauville, et al., 1976; slightly different constants in Herman and Hornbeck, 1953, Moore and Richards, 1971, Veseth, 1971, Mizushima, 1972. Term values for v≤3 tabulated in Dieke and Crosswhite, 1948, Moore and Richards, 1971, for v=4, 5, 6 in Herman and Hornbeck, 1953, for v=7, 8, 9 in Bass and Garvin, 1962.
25-0.432E-4(v+1/2) + 0.024E-4(v+1/2)2; H0 = 14.2E-8 Maillard, Chauville, et al., 1976, see 24.
26The 79 μm electric dipole spectrum (2Π1/2,J=1/2 ← 2Π3/2, J=3/2) has been measured by the laser magnetic resonance method.
27Observed in emission in the spectrum of the night sky Meinel, 1950, Chamberlain and Roesler, 1955, Jones, 1955, Connes and Gush, 1959, Blackwell, Ingham, et al., 1960, in the H + O3 reaction McKinley, Garvin, et al., 1955, Kraus, 1957, Bass and Garvin, 1962, Murphy, 1971, in the H + O2 reaction Charters and Polanyi, 1960, and in oxyacetylene flames Benedict, Plyler, et al., 1953, Allen, Blaine, et al., 1957, Rogge, Yarger, et al., 1960, Maillard, Chauville, et al., 1976. In absorption in rare gas matrices Acquista, Schoen, et al., 1968.
28Radiative lifetimes derived from observed intensities: τ(v=1) = 24 ms, τ(v=2) = 12 ms Roux, d'Incan, et al., 1973; from the decay rate of the 9→7 radiation: τ(v=9) = 64 ms Potter, Coltharp, et al., 1971. The dipole moment function has been studied by many authors, most recently by Ferguson and Parkinson, 1963, d'Incan, Effantin, et al., 1971, Murphy, 1971 and Roux, d'Incan, et al., 1973 from measured band strengths and transition probabilities. An extensive ab initio calculation of the dipole moment function is given by Stevens, Das, et al., 1974 [see also Chu, Yoshimine, et al., 1974]. Mies, 1974 has used this ab initio function to predict absolute intensities of a large array of vibration-rotation transitions taking account of spin uncoupling and vibration-rotation interaction [see also the early work of Heaps and Herzberg, 1952 and Cashion, 1963].
29The 18 cm transition (2Π3/2,J=3/2) consists of four components Ehrenstein, Townes, et al., 1959, Radford, 1964, ter Meulen and Dymanus, 1972: F'=1←F"=2 1612.23101 MHz F'=1←F"=1 1665.40184 MHz F'=2←F"=2 1667.35903 MHz F'=2←F"=1 1720.52998 MHz Einstein A coefficients for these transitions have been calculated by Turner, 1966. Calculated frequencies for 17OH Valtz and Soglasnova, 1973.
30Hfs and Λ-doubling constants. From Stark shifts of the hf Λ-doubling transitions Powell and Lide, 1965, Meerts and Dymanus, 1973 determine μel(v=0) = 1.6676 D.
31Also observed in interstellar clouds, see the reviews in Barrett, 1967, Robinson and McGee, 1967, Cook, 1969. In some clouds there is strong evidence for maser action. In the laboratory population inversion between Λ-doublet states was recently observed by ter Meulen, Meerts, et al., 1976.
32Observed in v=0...9. Hyperfine and Λ-doubling constants. EPR spectrum of 17OH Carrington and Lucas, 1970.
33Short extrapolation of the vibrational levels in A 2Σ+, assuming that this state has no potential maximum; confirmed by the observed predissociation in B 2Σ+ Carlone and Dalby, 1969. De = 4.621 eV, in complete agreement with the most recent theoretical value Arnold, Whiting, et al., 1976.
34Photoionization mass-spectrometry of HOF Berkowitz, Appelman, et al., 1973; 13.01 eV from the photoelectron spectrum Katsumata and Lloyd, 1977.

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Neumark, Lykke, et al., 1985
Neumark, D.M.; Lykke, K.R.; Andersen, T.; Lineberger, W.C., Laser photodetachment measurement of the electron affinity of atomic oxygen, Phys. Rev. A:, 1985, 32, 1890. [all data]

Deyerl and Continetti, 2005
Deyerl, H.J.; Continetti, R.E., Photoelectron-photofragment coincidence study of OHF-: transition state dynamics of the reaction OH+F - O+HF, Phys. Chem. Chem. Phys., 2005, 7, 5, 855-860, https://doi.org/10.1039/b414604b . [all data]

de Koening and Nibbering, 1984
de Koening, L.J.; Nibbering, N.M.M., Formation of the Long-Lived H2O-. Ion in the Gas Phase, J. Am. Chem. Soc., 1984, 106, 25, 7971, https://doi.org/10.1021/ja00337a054 . [all data]

Easson and Pryce, 1973
Easson, I.; Pryce, M.H.L., Calculated potential energy curves of OH, Can. J. Phys., 1973, 51, 518. [all data]

Stevens, Das, et al., 1974
Stevens, W.J.; Das, G.; Wahl, A.C.; Krauss, M.; Neumann, D., Study of the ground state potential curve and dipole moment of OH by the method of optimized valence configurations, J. Chem. Phys., 1974, 61, 3686. [all data]

Chu, Yoshimine, et al., 1974
Chu, S.-I.; Yoshimine, M.; Liu, B., Ab initio study of the X2Π and A2Σ+ states of OH. I. Potential curves and properties, J. Chem. Phys., 1974, 61, 5389. [all data]

Meyer and Rosmus, 1975
Meyer, W.; Rosmus, P., PNO-Cl and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first-row and second-row diatomic hydrides, J. Chem. Phys., 1975, 63, 2356. [all data]

Michel, 1957
Michel, A., Das C2Σ+ → A2Σ+-Bandensystem von OH, Z. Naturforsch. A, 1957, 12, 887. [all data]

Felenbok, 1963
Felenbok, P., Contribution a l'etude du spectre moleculaire des radicaux OH et OD, Ann. Astrophys., 1963, 26, 393. [all data]

Douglas, 1974
Douglas, A.E., Absorption of OH in the 1200 Å region, Can. J. Phys., 1974, 52, 318. [all data]

Barrow, 1956
Barrow, R.F., The B2Σ+-A2Σ+ band-systems of OH and OD, Ark. Fys., 1956, 11, 281. [all data]

Herman, Felenbok, et al., 1961
Herman, L.; Felenbok, P.; Herman, R., Spectre d'emission des radicaux OH et OD, J. Phys. Radium, 1961, 22, 83. [all data]

Czarny, Felenbok, et al., 1971
Czarny, J.; Felenbok, P.; Lefebvre-Brion, H., High vibrational level predissociation in the A2Σ+ state of OD, J. Phys. B:, 1971, 4, 124. [all data]

Dieke and Crosswhite, 1948
Dieke; Crosswhite, Bumblebee Series, Johns Hopkins University (reference not verified), Rpt. No. 87, 1948, 1. [all data]

Stoebner and Delbourgo, 1967
Stoebner, A.; Delbourgo, R., Contribution a l'etude spectrographique de la sequence 0=2 de la transition A2Σ+ - X2Π du radical OH, J. Chim. Phys. Phys.-Chim. Biol., 1967, 64, 1115. [all data]

Evenson, Wells, et al., 1970
Evenson, K.M.; Wells, J.S.; Radford, H.E., Infrared resonance of OH with the H2O laser: a galactic maser pump?, Phys. Rev. Lett., 1970, 25, 199. [all data]

Mizushima, 1972
Mizushima, M., Molecular parameters of OH free radical, Phys. Rev. A: Gen. Phys., 1972, 5, 143. [all data]

Allen, Blaine, et al., 1957
Allen, H.C., Jr.; Blaine, L.R.; Plyler, E.K., The emission spectrum of OH from 2-8 to 4-1 μ, Spectrochim. Acta, 1957, 9, 126. [all data]

Charters and Polanyi, 1960
Charters, P.E.; Polanyi, J.C., An improved technique for the observation of infrared chemiluminescence: resolved infrared emission of OH arising from the system H + O2, Can. J. Chem., 1960, 38, 1742. [all data]

Maillard, Chauville, et al., 1976
Maillard, J.P.; Chauville, J.; Mantz, A.W., High-resolution emission spectrum of OH in an oxyacetylene flame from 3.7 to 0.9 μm, J. Mol. Spectrosc., 1976, 63, 120. [all data]

Benedict, Plyler, et al., 1953
Benedict, W.S.; Plyler, E.K.; Humphreys, C.J., The emission spectrum of OH from 1.4 to 1.7 μ, J. Chem. Phys., 1953, 21, 398. [all data]

Rogge, Yarger, et al., 1960
Rogge, W.H.; Yarger, F.L.; Dickey, F.P., Emission spectrum of the OH radical in an oxyacetylene flame in the 1.5-μ region, J. Chem. Phys., 1960, 33, 453. [all data]

Bass and Garvin, 1962
Bass, A.M.; Garvin, D., Analysis of the hydroxyl radical vibration rotation spectrum between 3900 Å and 11500 Å, J. Mol. Spectrosc., 1962, 9, 114. [all data]

Herman and Hornbeck, 1953
Herman, R.C.; Hornbeck, G.A., Vibration-rotation bands of OH, Astrophys. J., 1953, 118, 214. [all data]

Chamberlain and Roesler, 1955
Chamberlain, J.W.; Roesler, F.L., The OH bands in the infrared airglow, Astrophys. J., 1955, 121, 541. [all data]

McKinley, Garvin, et al., 1955
McKinley, J.D., Jr.; Garvin, D.; Boudart, M.J., Production of excited hydroxyl radicals in the hydrogen atom-ozone reaction, J. Chem. Phys., 1955, 23, 784. [all data]

Blackwell, Ingham, et al., 1960
Blackwell, D.E.; Ingham, M.F.; Rundle, H.N., The night-sky spectrum λλ 5000-6500 A, Astrophys. J., 1960, 131, 15. [all data]

Madden and Benedict, 1955
Madden, R.P.; Benedict, W.S., Pure rotation lines of OH, J. Chem. Phys., 1955, 23, 408. [all data]

Ducas and Javan, 1974
Ducas, T.W.; Javan, A., Measurement of microwave fine structure in OH infrared transitions using frequency mixing with metal-to-metal infrared diodes, J. Chem. Phys., 1974, 60, 1677. [all data]

Downey, Robinson, et al., 1977
Downey, G.D.; Robinson, D.W.; Smith, J.H., A pure-rotational collisionally pumped OH laser, J. Chem. Phys., 1977, 66, 1685. [all data]

Dousmanis, Sanders, et al., 1955
Dousmanis, G.C.; Sanders, T.M., Jr.; Townes, C.H., Microwave spectra of the free radicals OH and OD, Phys. Rev., 1955, 100, 1735. [all data]

Ehrenstein, 1963
Ehrenstein, G., Hyperfine structure in O17H and the OH dipole moment, Phys. Rev., 1963, 130, 669. [all data]

Poynter and Beaudet, 1968
Poynter, R.L.; Beaudet, R.A., Predictions of several OH λ doubling transitions suitable for radio astronomy, Phys. Rev. Lett., 1968, 21, 305. [all data]

Destombes, Marliere, et al., 1974
Destombes, J.-L.; Marliere, C.; Rohart, F.; Burie, J., Nouvelle analyse du spectre hertzien du radical hydroxyl, C.R. Acad. Sci. Paris, Ser. B, 1974, 278, 275. [all data]

Destombes and Marliere, 1975
Destombes, J.L.; Marliere, C., Measurement of hyperfine splitting in the OH radical by a radio-frequency microwave double resonance method, Chem. Phys. Lett., 1975, 34, 532. [all data]

Meerts and Dymanus, 1975
Meerts, W.L.; Dymanus, A., A molecular beam electric resonance study of the hyperfine Λ doubling spectrum of OH, OD, SH, and SD, Can. J. Phys., 1975, 53, 2123. [all data]

Meerts, 1977
Meerts, W.L., On the microwave spectrum of the X2Π state of the hydroxyl radical, Chem. Phys. Lett., 1977, 46, 24. [all data]

Radford, 1961
Radford, H.E., Microwave Zeeman effect of free hydroxyl radicals, Phys. Rev., 1961, 122, 114. [all data]

Churg and Levy, 1970
Churg, A.; Levy, D.H., The magnetic resonance spectrum of vibrationally excited OH and A prediciton of the radio-astronomy spectrum, Astrophys. J., 1970, 162, 161. [all data]

Clough, Curran, et al., 1971
Clough, P.N.; Curran, A.H.; Thrush, B.A., The e.p.r. spectrum of vibrationally excited hydroxyl radicals, Proc. R. Soc. London A, 1971, 323, 541. [all data]

Lee, Tam, et al., 1971
Lee, K.P.; Tam, W.G.; Larouche, R.; Woonton, G.A., Electron resonance of vibrationally excited OH radicals, Can. J. Phys., 1971, 49, 2207. [all data]

Hinkley, Walker, et al., 1973
Hinkley, R.K.; Walker, T.E.H.; Richards, W.G., On the e.p.r. spectrum of vibrationally excited hydroxyl radicals, Proc. R. Soc. London A, 1973, 331, 553. [all data]

Lee and Tam, 1974
Lee, K.P.; Tam, W.G., Molecular constants of vibrationally excited hydroxyl radical from electron paramagnetic resonance, Chem. Phys., 1974, 4, 434. [all data]

Carlone and Dalby, 1969
Carlone, C.; Dalby, F.W., Spectrum of the hydroxyl radical, Can. J. Phys., 1969, 47, 1945. [all data]

Fallon, Tobias, et al., 1961
Fallon, R.J.; Tobias, I.; Vanderslice, J.T., Potential energy curves for OH, J. Chem. Phys., 1961, 34, 167. [all data]

Horsley and Richards, 1969
Horsley, J.A.; Richards, W.G., Les forces interatomiques a grandes distances dans les etats excites du radical OH, J. Chim. Phys. Phys.-Chim. Biol., 1969, 66, 41. [all data]

Smith and Stella, 1975
Smith, Wm.H.; Stella, G., Lifetimes for OH and OD electronic states with resonance transitions in the region between 1700 and 1950 Å, J. Chem. Phys., 1975, 63, 2395. [all data]

Remy, 1971
Remy, F., Time resolved spectroscopy of a pulsed discharge through water vapor: observation of emissions from the C2Σ+ state of OH, Spectrosc. Lett., 1971, 4, 319. [all data]

Ray and Kelly, 1975
Ray, S.; Kelly, H.P., Oscillator strength for the D2Σ--X2Π transition in OH, Astrophys. J., 1975, 202, 57. [all data]

Moore and Richards, 1971
Moore, E.A.; Richards, W.G., A reanalysis of the A2Σ+ - X2Πi system of OH, Phys. Scr., 1971, 3, 223. [all data]

Elmergreen and Smith, 1972
Elmergreen, B.G.; Smith, W.H., Direct measurement of the lifetimes and predissociation probabilities for rotational levels of the OH and OD A2Σ+ states, Astrophys. J., 1972, 178, 557. [all data]

Anderson and Sutherland, 1973
Anderson, R.A.; Sutherland, R.A., Erratum: Radiative and predissociative lifetimes of the A2Σ+ state of OH [Ref.: J. Chem. Phys., 1973, Vol. 58, 1226], J. Chem. Phys., 1973, 59, 6690. [all data]

German, 1975
German, K.R., Direct measurement of the radiative lifetimes of the A2Σ+ (V' = 0) states of OH and OD, J. Chem. Phys., 1975, 62, 2584. [all data]

Gaydon and Wolfhard, 1951
Gaydon, A.G.; Wolfhard, H.G., Predissociation in the spectrum of OH; the vibrational and rotational intensity distribution in flames, Proc. R. Soc. London A, 1951, 208, 63. [all data]

Broida and Kane, 1953
Broida, H.P.; Kane, W.R., Rotational intensity distributions of OH and OD in an electrodeless discharge through water vapor, Phys. Rev., 1953, 89, 1053. [all data]

Naegeli and Palmer, 1967
Naegeli, D.W.; Palmer, H.B., Predissociation in the chemiluminescent emission spectrum of OH, J. Mol. Spectrosc., 1967, 23, 44. [all data]

Charton and Gaydon, 1958
Charton, M.; Gaydon, A.G., Excitation of spectra of OH in hydrogen flames and its relation to excess concentrations of free atoms, Proc. R. Soc. London A, 1958, 245, 84. [all data]

Gutman, Lutz, et al., 1968
Gutman, D.; Lutz, R.W.; Jacobs, N.F.; Hardwidge, E.A., Shock-tube study of OH chemiluminescence in the hydrogen-oxygen reaction, J. Chem. Phys., 1968, 48, 5689. [all data]

Palmer and Naegeli, 1968
Palmer, H.B.; Naegeli, D.W., Predissociation of chemiluminescent OH and OD, J. Mol. Spectrosc., 1968, 28, 417-421. [all data]

Michels and Harris, 1969
Michels, H.H.; Harris, F.E., Predissociation effects in the A2Σ+ state of the OH radical, Chem. Phys. Lett., 1969, 3, 441. [all data]

Gaydon and Kopp, 1971
Gaydon, A.G.; Kopp, I., Predissociation in the spectrum of OH; a reinterpretation, J. Phys. B:, 1971, 4, 752. [all data]

Palmer and Naegeli, 1973
Palmer, H.B.; Naegeli, D.W., On the crossing of the 4Σ- and A2Σ+ states of OH, J. Chem. Phys., 1973, 59, 994. [all data]

Smith, Elmergreen, et al., 1974
Smith, W.H.; Elmergreen, B.G.; Brooks, N.H., Interactions among the lower valence states of the OH radical, J. Chem. Phys., 1974, 61, 2793. [all data]

Durmaz and Murrell, 1971
Durmaz, S.; Murrell, J.N., Predissociation by the continuum of a bound state without curve crossing. Application to the spectrum of OH, Trans. Faraday Soc., 1971, 67, 3395. [all data]

Julienne, Krauss, et al., 1971
Julienne, P.S.; Krauss, M.; Donn, B., Formation of OH through inverse predissociation, Astrophys. J., 1971, 170, 65. [all data]

Czarny and Felenbok, 1968
Czarny, J.; Felenbok, P., Etude a tres haute resolution de la transition B2Σ+ → A2Σ+ de OH et OD a l'aide d'une source haute frequence mise au point a cet effet, Ann. Astrophys., 1968, 31, 141. [all data]

Scarl and Dalby, 1971
Scarl, E.A.; Dalby, F.W., High-field Stark effects on the near ultraviolet spectrum of the hydroxyl radical, Can. J. Phys., 1971, 49, 2825. [all data]

Hogan and Davis, 1974
Hogan, P.; Davis, D.D., OH lifetime measurements of several K levels in the v' = 1 manifold of the A2Σ+ electronic state: excitation via A tunable UV laser, Chem. Phys. Lett., 1974, 29, 555. [all data]

Becker and Haaks, 1973
Becker, K.H.; Haaks, D., Measurement of the natural lifetimes and quenching rate constants of OH(2Σ+, v = 0,1) and OD(2Σ+, v = 0,1) radicals, Z. Naturforsch. A, 1973, 28, 249. [all data]

Becker, Haaks, et al., 1974
Becker, K.H.; Haaks, D.; Tatarczyk, T., The natural lifetime of OH (2Σ+, v=0, N=2, J=3/2) and its quenching by atomic hydrogen, Chem. Phys. Lett., 1974, 25, 564. [all data]

Brophy, Silver, et al., 1974
Brophy, J.H.; Silver, J.A.; Kinsey, J.L., Direct measurement of the radiative lifetime of the A2Σ+(v' = 0, K' = 1, J' = 3/2) state of OH and OD, Chem. Phys. Lett., 1974, 28, 418. [all data]

Bennett and Dalby, 1964
Bennett, R.G.; Dalby, F.W., Experimental determination of the oscillator strength of the violet system of OH, J. Chem. Phys., 1964, 40, 1414. [all data]

de Zafra, Marshall, et al., 1971
de Zafra, R.L.; Marshall, A.; Metcalf, H., Measurement of lifetime and g factors by level crossing and optical double resonance in the OH and OD free radicals, Phys. Rev. A: Gen. Phys., 1971, 3, 1557. [all data]

German, Bergeman, et al., 1973
German, K.R.; Bergeman, T.H.; Weinstock, E.M.; Zare, R.N., Zero-field level crossing and optical radio-frequency double resonance studies of the A2Σ+ states of OH and OD, J. Chem. Phys., 1973, 58, 4304. [all data]

Rouse and Engleman, 1973
Rouse, P.E.; Engleman, R., Jr., Oscillator strengths from line absorption in a high-temperature furnace. I. The (0,0) and (1,0) bands of the A2Σ+-X2Πi transition in OH and OD, J. Quant. Spectrosc. Radiat. Transfer, 1973, 13, 1503. [all data]

Golden, Del Greco, et al., 1963
Golden, D.M.; Del Greco, F.P.; Kaufman, F., Experimental oscillator strength of OH, 2Σ+2Π, by a chemical method, J. Chem. Phys., 1963, 39, 3034. [all data]

Anketell and Pery-Thorne, 1967
Anketell, J.; Pery-Thorne, A., Oscillator strengths in the 2Σ+-2Π band system of OH by the hook method, Proc. R. Soc. London A, 1967, 301, 343. [all data]

Krishnamachari and Broida, 1961
Krishnamachari, S.L.N.G.; Broida, H.P., Effect of molecular oxygen on the emission spectra of atomic oxygen-acetylene flames, J. Chem. Phys., 1961, 34, 1709. [all data]

Bonhoeffer and Reichardt, 1928
Bonhoeffer, K.F.; Reichardt, H., Zerfall von erhitztem wasserdampf in wasserstoff und freies hydroxyl, Z. Phys. Chem. Abt. A, 1928, 139, 75. [all data]

Oldenberg, 1935
Oldenberg, O., The lifetime of free hydroxyl, J. Chem. Phys., 1935, 3, 266. [all data]

Gaydon, Spokes, et al., 1960
Gaydon, A.G.; Spokes, G.N.; Suchtelen, J.V., Absorption spectra of low-pressure flames, Proc. R. Soc. London A, 1960, 256, 323. [all data]

Basco and Norrish, 1961
Basco, N.; Norrish, R.G.W., The production of vibrationally excited hydroxyl radicals under isothermal conditions by flash photolysis, Proc. R. Soc. London A, 1961, 260, 293. [all data]

Black and Porter, 1962
Black, G.; Porter, G., Vacuum ultra-violet flash photolysis of water vapour, Proc. R. Soc. London A, 1962, 266, 185. [all data]

Horne and Norrish, 1967
Horne, D.G.; Norrish, R.G.W., Rate of H-abstraction by OH from hydrocarbons, Nature (London), 1967, 215, 1373. [all data]

Moore and Broida, 1959
Moore, C.E.; Broida, H.P., OH in the solar spectrum, J. Res. Nat. Bur. Stand. Sect. A, 1959, 63, 279. [all data]

Tinti, 1968
Tinti, D.S., Absorption and emission spectra of OH and OD in solid Ne. Evidence for rotation, J. Chem. Phys., 1968, 48, 1459. [all data]

Bass and Broida, 1953
Bass, A.M.; Broida, H.P., A spectrophotometric atlas of the 2Σ+-2Π transition of OH, National Bureau of Standards Circular 541, Washington, D.C., 1953, 1. [all data]

Engleman, 1972
Engleman, R., Jr., Accurate wavenumbers of the A2Σ → X2Π (0, 0) and (1, 0) bands of OH and OD, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 1347. [all data]

Nanes and Robinson, 1971
Nanes, R.; Robinson, D.W., Magnetic rotation spectra of the A2Σ+-X2Πi transition of OH and OD, J. Chem. Phys., 1971, 55, 963. [all data]

Nicholls, 1956
Nicholls, R.W., The interpretation of intensity distributions in the CN violet, C2 Swan, OH violet and O2 Schumann-Runge band systems by use of their r-Centroids and Franck-Condon factors, Proc. Phys. Soc. London Sect. A, 1956, 69, 741. [all data]

Nicholls, Fraser, et al., 1959
Nicholls, R.W.; Fraser, P.A.; Jarmain, W.R., Transition probability parameters of molecular spectra arising from combustion processes, Combust. Flame, 1959, 3, 13. [all data]

Crosley and Lengel, 1975
Crosley, D.R.; Lengel, R.K., Relative transition probabilities and the electronic transition moment in the A-X system of OH, J. Quant. Spectrosc. Radiat. Transfer, 1975, 15, 579. [all data]

Learner, 1962
Learner, R.C.M., The influence of vibration-rotation interaction on intensities in the electronic spectra of diatomic molecules. I. The hydroxyl radical, Proc. R. Soc. London A, 1962, 269, 311. [all data]

Meinel, 1967
Meinel, H., Spektroskopischer Nachweis zweier OH-Gruppen bei nichtthermischer Anregugn, Z. Naturforsch. A, 1967, 22, 977. [all data]

Anketell and Learner, 1967
Anketell, J.; Learner, R.C.M., Vibration rotation interaction in OH and the transition moment, Proc. R. Soc. London A, 1967, 301, 355. [all data]

Veseth, 1971
Veseth, L., Corrections to the spin-orbit splitting in 2Π states of diatomic molecules, J. Mol. Spectrosc., 1971, 38, 228. [all data]

Meinel, 1950
Meinel, A.B., OH emission bands in the spectrum of the night sky. I., Astrophys. J., 1950, 111, 555. [all data]

Jones, 1955
Jones, A.V., Infra-red spectrum of the night sky near 10000 A, Nature (London), 1955, 175, 950. [all data]

Connes and Gush, 1959
Connes, M.J.; Gush, H.P., Spectroscopie du ciel nocturne dans l'infrarouge par transformation de fourier, J. Phys. Radium, 1959, 20, 915. [all data]

Kraus, 1957
Kraus, F., Uber die Anregungsbedingungen und die Intensitatsverhaltnisse der Infraroten OH-Banden, Z. Naturforsch. A, 1957, 12, 479. [all data]

Murphy, 1971
Murphy, R.E., Infrared emission of OH in the fundamental and first overtone bands, J. Chem. Phys., 1971, 54, 4852. [all data]

Acquista, Schoen, et al., 1968
Acquista, N.; Schoen, L.J.; Lide, D.R., Jr., Infrared spectrum of the matrix-isolated OH radical, J. Chem. Phys., 1968, 48, 1534. [all data]

Roux, d'Incan, et al., 1973
Roux, F.; d'Incan, J.; Cerny, D., Experimental oscillator strengths in the infrared vibration-rotation spectrum of the hydroxyl radical, Astrophys. J., 1973, 186, 1141. [all data]

Potter, Coltharp, et al., 1971
Potter, A.E., Jr.; Coltharp, R.N.; Worley, S.D., Mean radiative lifetime of vibrationally excited (v=9) hydroxyl. Rate of the reaction of vibrationally excited hydroxyl (v=9) with ozone, J. Chem. Phys., 1971, 54, 992. [all data]

Ferguson and Parkinson, 1963
Ferguson, A.F.; Parkinson, D., The hydroxyl bands in the nightglow, Planet. Space Sci., 1963, 11, 149. [all data]

d'Incan, Effantin, et al., 1971
d'Incan, J.; Effantin, C.; Roux, F., Intensites absolues et forces d'oscillateur de quelques raies des bandes de vibration-rotation 1-0 et 2-1 du radical OH, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1215. [all data]

Mies, 1974
Mies, F.H., Calculated vibrational transition probabilities of OH(X2Π), J. Mol. Spectrosc., 1974, 53, 150. [all data]

Heaps and Herzberg, 1952
Heaps, H.S.; Herzberg, G., Intensity distribution in the rotation-vibration spectrum of the OH molecule, Z. Phys., 1952, 133, 48. [all data]

Cashion, 1963
Cashion, K., A method for calculating vibrational transition probabilities, J. Mol. Spectrosc., 1963, 10, 182. [all data]

Ehrenstein, Townes, et al., 1959
Ehrenstein, G.; Townes, C.H.; Stevenson, M.J., Ground state Λ-doubling transitions of OH radical, Phys. Rev. Lett., 1959, 3, 40. [all data]

Radford, 1964
Radford, H.E., 18-cm Spectrum of OH, Phys. Rev. Lett., 1964, 13, 534. [all data]

ter Meulen and Dymanus, 1972
ter Meulen, J.J.; Dymanus, A., Beam-maser measurements of the ground-state transition frequencies of OH, Astrophys. J., 1972, 172, 21. [all data]

Turner, 1966
Turner, B.E., Einstein A coefficient for the λ doublet transitions of the ground state of OH, Nature (London), 1966, 212, 184-185. [all data]

Valtz and Soglasnova, 1973
Valtz, I.E.; Soglasnova, V.A., Lambda-doubling of the O17H molecule at microwave frequencies, Astrophys. Lett., 1973, 13, 23. [all data]

Powell and Lide, 1965
Powell, F.X.; Lide, D.R., Jr., Improved measurement of the electric-dipole moment of the hydroxyl radical, J. Chem. Phys., 1965, 42, 4201. [all data]

Meerts and Dymanus, 1973
Meerts, W.L.; Dymanus, A., Electric dipole moments of OH and OD by molecular beam electric resonance, Chem. Phys. Lett., 1973, 23, 45. [all data]

Barrett, 1967
Barrett, A.H., Radio observations of interstellar hydroxyl radicals, Science, 1967, 157, 881. [all data]

Robinson and McGee, 1967
Robinson, B.J.; McGee, R.X., OH molecules in the interstellar medium, Annu. Rev. Astron. Astrophys., 1967, 5, 183. [all data]

Cook, 1969
Cook, A.H., The hydroxyl molecule in interstellar space, Physica (Amsterdam), 1969, 41, 1. [all data]

ter Meulen, Meerts, et al., 1976
ter Meulen, J.J.; Meerts, W.L.; van Mierlo, G.W.M.; Dymanus, A., Observations of population inversion between the Λ-doublet states of OH, Phys. Rev. Lett., 1976, 36, 1031. [all data]

Carrington and Lucas, 1970
Carrington, A.; Lucas, J.D., Electron resonance of gaseous diatomic hydrides. I. 17O hyperfine and quadrupole interactions in OH and OD, Proc. R. Soc. London A, 1970, 314, 567. [all data]

Arnold, Whiting, et al., 1976
Arnold, J.O.; Whiting, E.E.; Sharbaugh, L.F., A nearly exact MCSCF + Cl calculation of the dissociation energy of OH, J. Chem. Phys., 1976, 64, 3251. [all data]

Berkowitz, Appelman, et al., 1973
Berkowitz, J.; Appelman, E.H.; Chupka, W.A., Photoionization of HOF with mass analysis, J. Chem. Phys., 1973, 58, 1950. [all data]

Katsumata and Lloyd, 1977
Katsumata, S.; Lloyd, D.R., The photoelectron spectra of the OH and OD radicals, Chem. Phys. Lett., 1977, 45, 519. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, References