Mesitylene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
gas385.30 ± 0.63J/mol*KN/ATaylor R.D., 1955 

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
104.3200.Draeger, 1985Discrepancies with other statistically calculated values of S(T) and Cp(T) amount to 1, 2, and 3 J/mol*K for [ Thermodynamics Research Center, 1997], [ Pitzer K.S., 1943], and [ Taylor W.J., 1946], respectively.
136.0273.15
147.4 ± 0.4298.15
148.3300.
193.7400.
234.6500.
269.2600.
298.2700.
322.7800.
343.5900.
361.21000.
376.41100.
389.51200.
400.71300.
410.41400.
418.81500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δcliquid-5193.1 ± 1.3kJ/molCcbJohnson, Prosen, et al., 1945Corresponding Δfliquid = -63.43 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-5202.7kJ/molCcbRichards and Barry, 1915At 291 K; Corresponding Δfliquid = -53.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid273.55J/mol*KN/ATaylor and Kilpatrick, 1955DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
207.85298.15Grolier, Roux-Desgranges, et al., 1993DH
205.5294.99Andolenko and Grigor'ev, 1979T = 295 to 424 K. Unsmoothed experimental datum given as 1.710 kJ/kg*K.; DH
207.66298.15Wilhelm, Faradjzadeh, et al., 1979DH
207.686298.15Fortier and Benson, 1977DH
206.5298.Recko, 1968T = 24 to 40°C. Equation only.; DH
201.46299.8Helfrey, Heiser, et al., 1955T = 80 to 220°F.; DH
209.33298.15Taylor and Kilpatrick, 1955T = 20 to 305 K.; DH
213.0298.Kurbatov, 1947T = 15 to 155°C, mean Cp, five temperatures.; DH
211.3298.von Reis, 1881T = 292 to 403 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil437.8 ± 0.8KAVGN/AAverage of 48 out of 54 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus225. ± 8.KAVGN/AAverage of 21 out of 22 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple228.42KN/ATaylor and Kilpatrick, 1955, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.01 K; TRC
Quantity Value Units Method Reference Comment
Tc639. ± 4.KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Pc31.3 ± 0.4barN/ATsonopoulos and Ambrose, 1995 
Pc31.619barN/AKay and Pak, 1980Uncertainty assigned by TRC = 0.0031 bar; Visual, Table 2, mercury interface at room temperature.; TRC
Pc32.55barN/AKay and Pak, 1980Uncertainty assigned by TRC = 0.0032 bar; Visual, Table 2, mercury interface at sample tempera; TRC
Pc31.27barN/AAmbrose, Broderick, et al., 1967Uncertainty assigned by TRC = 0.06 bar; TRC
Pc32.60barN/AAltschul, 1893Uncertainty assigned by TRC = 0.0981 bar; TRC
Quantity Value Units Method Reference Comment
Δvap47.51 ± 0.07kJ/molAVGN/AAverage of 8 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
46.2 ± 1.3319.MMWiberg and Waldron, 1991Based on data from 296. - 342. K.; AC
43.5363.N/APark and Gmehling, 1989Based on data from 348. - 424. K.; AC
49.7264.AStephenson and Malanowski, 1987Based on data from 249. - 356. K.; AC
43.9369.AStephenson and Malanowski, 1987Based on data from 354. - 445. K. See also Forziati, Norris, et al., 1949.; AC
47.7286.MMChickos, Hyman, et al., 1981Based on data from 273. - 299. K.; AC
51.1262.RGHopke and Sears, 1948Based on data from 255. - 268. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference
354.64 - 438.874.199271569.622-63.572Forziati, Norris, et al., 1949, 2

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
9.51228.4Domalski and Hearing, 1996See also Radomska and Radomski, 1991.; AC
9.51228.4Radomska and Radomski, 1991AC

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
9.5148228.42crystaline, IliquidTaylor and Kilpatrick, 1955Metastable melting points at 221.46 K and 223.35 K.; DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
41.65228.42crystaline, IliquidTaylor and Kilpatrick, 1955Metastable; DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H9Si+ + Mesitylene = (C3H9Si+ • Mesitylene)

By formula: C3H9Si+ + C9H12 = (C3H9Si+ • C9H12)

Quantity Value Units Method Reference Comment
Δr130.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)(C6H6), Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr147.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)(C6H6), Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
61.1468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)(C6H6), Entropy change calculated or estimated; M

C3H9Sn+ + Mesitylene = (C3H9Sn+ • Mesitylene)

By formula: C3H9Sn+ + C9H12 = (C3H9Sn+ • C9H12)

Quantity Value Units Method Reference Comment
Δr134.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr133.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
64.0525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

C9H13+ + Mesitylene = (C9H13+ • Mesitylene)

By formula: C9H13+ + C9H12 = (C9H13+ • C9H12)

Quantity Value Units Method Reference Comment
Δr51.9kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
20.272.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C11H10+ + Mesitylene = (C11H10+ • Mesitylene)

By formula: C11H10+ + C9H12 = (C11H10+ • C9H12)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr58.2kJ/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

C6H7N+ + Mesitylene = (C6H7N+ • Mesitylene)

By formula: C6H7N+ + C9H12 = (C6H7N+ • C9H12)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr64.0kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

C9H12+ + Mesitylene = (C9H12+ • Mesitylene)

By formula: C9H12+ + C9H12 = (C9H12+ • C9H12)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr72.0kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

Mesitylene + 3Hydrogen = Cyclohexane, 1,3,5-trimethyl-

By formula: C9H12 + 3H2 = C9H18

Quantity Value Units Method Reference Comment
Δr-196.1 ± 0.84kJ/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -199.2 ± 0.8 kJ/mol; At 355 °K; ALS

Chlorine anion + Mesitylene = (Chlorine anion • Mesitylene)

By formula: Cl- + C9H12 = (Cl- • C9H12)

Quantity Value Units Method Reference Comment
Δr18.8kJ/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
19.300.PHPMSFrench, Ikuta, et al., 1982gas phase; M

NH4+ + Mesitylene = (NH4+ • Mesitylene)

By formula: H4N+ + C9H12 = (H4N+ • C9H12)

Quantity Value Units Method Reference Comment
Δr91.2kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

2Mesitylene + 6Hydrogen = Cyclohexane, 1,3,5-trimethyl-, (1α,3α,5β)- + Cyclohexane, 1,3,5-trimethyl-, (1α,3α,5α)-

By formula: 2C9H12 + 6H2 = C9H18 + C9H18

Quantity Value Units Method Reference Comment
Δr-198. ± 2.kJ/molEqkEgan and Buss, 1959gas phase; At 480-571 K; ALS

(Chromium ion (1+) • Mesitylene) + Mesitylene = (Chromium ion (1+) • 2Mesitylene)

By formula: (Cr+ • C9H12) + C9H12 = (Cr+ • 2C9H12)

Quantity Value Units Method Reference Comment
Δr212. ± 38.kJ/molRAKLin and Dunbar, 1997RCD

Chromium ion (1+) + Mesitylene = (Chromium ion (1+) • Mesitylene)

By formula: Cr+ + C9H12 = (Cr+ • C9H12)

Quantity Value Units Method Reference Comment
Δr193. ± 29.kJ/molRAKLin and Dunbar, 1997RCD

Calcium ion (1+) + Mesitylene = (Calcium ion (1+) • Mesitylene)

By formula: Ca+ + C9H12 = (Ca+ • C9H12)

Quantity Value Units Method Reference Comment
Δr135.kJ/molRAKGapeev and Dunbar, 2000RCD

Strontium ion (1+) + Mesitylene = (Strontium ion (1+) • Mesitylene)

By formula: Sr+ + C9H12 = (Sr+ • C9H12)

Quantity Value Units Method Reference Comment
Δr116.kJ/molRAKGapeev and Dunbar, 2000RCD

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.12 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.143600.XN/A 
0.17 LN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C9H12+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)8.40 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)836.2kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity808.6kJ/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
835.1Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kJ/mol) Reference Comment
808.8Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
8.41 ± 0.01EQLias and Ausloos, 1978LLK
8.46CTSKobayashi, Kobayashi, et al., 1973LLK
8.2 ± 0.1EIGilbert, Leach, et al., 1973LLK
8.47CTSHuttner and Fischer, 1967RDSH
8.40 ± 0.01PIWatanabe, Nakayama, et al., 1962RDSH
8.55CTSKinoshita, 1962RDSH
8.39 ± 0.01PIPrice, Bralsford, et al., 1959RDSH
8.41 ± 0.02PIVilesov and Terenin, 1957RDSH
8.42PEHowell, Goncalves, et al., 1984Vertical value; LBLHLM
8.42PECetinkaya, Lappert, et al., 1983Vertical value; LBLHLM
8.45PEWorley and Webb, 1980Vertical value; LLK
8.45 ± 0.05PEGower, Kane-Maguire, et al., 1977Vertical value; LLK
8.45 ± 0.05PEEvans, Green, et al., 1974Vertical value; LLK
8.65 ± 0.03PEKlessinger, 1972Vertical value; LLK

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C3H9Si+ + Mesitylene = (C3H9Si+ • Mesitylene)

By formula: C3H9Si+ + C9H12 = (C3H9Si+ • C9H12)

Quantity Value Units Method Reference Comment
Δr130.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)(C6H6), Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr147.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)(C6H6), Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
61.1468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)(C6H6), Entropy change calculated or estimated; M

C3H9Sn+ + Mesitylene = (C3H9Sn+ • Mesitylene)

By formula: C3H9Sn+ + C9H12 = (C3H9Sn+ • C9H12)

Quantity Value Units Method Reference Comment
Δr134.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr133.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
64.0525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

C6H7N+ + Mesitylene = (C6H7N+ • Mesitylene)

By formula: C6H7N+ + C9H12 = (C6H7N+ • C9H12)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr64.0kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

C9H12+ + Mesitylene = (C9H12+ • Mesitylene)

By formula: C9H12+ + C9H12 = (C9H12+ • C9H12)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr72.0kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C9H13+ + Mesitylene = (C9H13+ • Mesitylene)

By formula: C9H13+ + C9H12 = (C9H13+ • C9H12)

Quantity Value Units Method Reference Comment
Δr51.9kJ/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
20.272.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C11H10+ + Mesitylene = (C11H10+ • Mesitylene)

By formula: C11H10+ + C9H12 = (C11H10+ • C9H12)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr58.2kJ/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

Calcium ion (1+) + Mesitylene = (Calcium ion (1+) • Mesitylene)

By formula: Ca+ + C9H12 = (Ca+ • C9H12)

Quantity Value Units Method Reference Comment
Δr135.kJ/molRAKGapeev and Dunbar, 2000RCD

Chlorine anion + Mesitylene = (Chlorine anion • Mesitylene)

By formula: Cl- + C9H12 = (Cl- • C9H12)

Quantity Value Units Method Reference Comment
Δr18.8kJ/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
19.300.PHPMSFrench, Ikuta, et al., 1982gas phase; M

Chromium ion (1+) + Mesitylene = (Chromium ion (1+) • Mesitylene)

By formula: Cr+ + C9H12 = (Cr+ • C9H12)

Quantity Value Units Method Reference Comment
Δr193. ± 29.kJ/molRAKLin and Dunbar, 1997RCD

(Chromium ion (1+) • Mesitylene) + Mesitylene = (Chromium ion (1+) • 2Mesitylene)

By formula: (Cr+ • C9H12) + C9H12 = (Cr+ • 2C9H12)

Quantity Value Units Method Reference Comment
Δr212. ± 38.kJ/molRAKLin and Dunbar, 1997RCD

NH4+ + Mesitylene = (NH4+ • Mesitylene)

By formula: H4N+ + C9H12 = (H4N+ • C9H12)

Quantity Value Units Method Reference Comment
Δr91.2kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

Strontium ion (1+) + Mesitylene = (Strontium ion (1+) • Mesitylene)

By formula: Sr+ + C9H12 = (Sr+ • C9H12)

Quantity Value Units Method Reference Comment
Δr116.kJ/molRAKGapeev and Dunbar, 2000RCD

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 659
NIST MS number 228343

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Ardyukova, Korobeinicheva, et al., 1973
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 286
Instrument Spectrophotometer SF-16
Melting point -44.7
Boiling point 164.5-164.8

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Taylor R.D., 1955
Taylor R.D., Entropy, heat capacity, and heats of transition of 1,3,5-trimethylbenzene, J. Chem. Phys., 1955, 23, 1232-1235. [all data]

Draeger, 1985
Draeger, J.A., The methylbenzenes II. Fundamental vibrational shifts, statistical thermodynamic functions, and properties of formation, J. Chem. Thermodyn., 1985, 17, 263-275. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Pitzer K.S., 1943
Pitzer K.S., The thermodynamics and molecular structure of benzene and its methyl derivatives, J. Am. Chem. Soc., 1943, 65, 803-829. [all data]

Taylor W.J., 1946
Taylor W.J., Heats, equilibrium constants, and free energies of formation of the alkylbenzenes, J. Res. Nat. Bur. Stand., 1946, 37, 95-122. [all data]

Johnson, Prosen, et al., 1945
Johnson, W.H.; Prosen, E.J.; Rossini, F.D., Heats of combustion and isomerization of the eight C9H12 alkylbenzenes, J. Res. NBS, 1945, 35, 141-146. [all data]

Richards and Barry, 1915
Richards, T.W.; Barry, F., The heats of combustion of aromatic hydrocarbons and hexamethylene, J. Am. Chem. Soc., 1915, 37, 993-1020. [all data]

Taylor and Kilpatrick, 1955
Taylor, R.D.; Kilpatrick, J.E., Entropy, heat capacity, heats of transition of 1,3,5-trimethylbenzene, J. Chem. Phys., 1955, 23, 1232-1235. [all data]

Grolier, Roux-Desgranges, et al., 1993
Grolier, J.-P.E.; Roux-Desgranges, G.; Berkane, M.; Jimenez, E.; Wilhelm, E., Heat capacities and densities of mixtures of very polar substances 2. Mixtures containing N,N-dimethylformamide, J. Chem. Thermodynam., 1993, 25(1), 41-50. [all data]

Andolenko and Grigor'ev, 1979
Andolenko, R.A.; Grigor'ev, B.A., Investigation of isobaric heat capacity of aromatic hydrocarbons at atmospheric pressure, Iaz. Vyssh. Ucheb. Zaved., Neft i Gaz (11), 1979, 78, 90. [all data]

Wilhelm, Faradjzadeh, et al., 1979
Wilhelm, E.; Faradjzadeh, A.; Grolier, J.-P.E., Molar excess heat capacities and excess volumes of 1,2-dichloroethane + cyclooctane, + mesitylene, and + tetrachloromethane, J. Chem. Thermodynam., 1979, 11, 979-984. [all data]

Fortier and Benson, 1977
Fortier, J.-L.; Benson, G.C., Excess heat capacities of binary mixtures of tetrachloromethane witlh some aromatic liquids at 298.15 K, J. Chem. Thermodynam., 1977, 9, 1181-1188. [all data]

Recko, 1968
Recko, W.M., Excess heat capacity of the binary systems formed by n-propyl alcohol with benzene, mesitylene and cyclohexane, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1968, 16, 549-552. [all data]

Helfrey, Heiser, et al., 1955
Helfrey, P.F.; Heiser, D.A.; Sage, B.H., Isobaric heat capacities at bubble point, Two trimethylbenzenes and n-heptane, Ind. Eng. Chem., 1955, 44, 2385-2388. [all data]

Kurbatov, 1947
Kurbatov, V.Ya., Specific heat of liquids. I. Specific heat of benzenoid hydrocarbons, Zhur. Obshch. Khim., 1947, 17, 1999-2003. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Taylor and Kilpatrick, 1955, 2
Taylor, R.D.; Kilpatrick, J.E., Entropy, Heat Capacity and Heats of Trans. of 1,3,5-Trimethylbenzene, J. Chem. Phys., 1955, 23, 1232-5. [all data]

Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons, J. Chem. Eng. Data, 1995, 40, 547-558. [all data]

Kay and Pak, 1980
Kay, W.B.; Pak, S.C., Determination of the critical constants of high-boiling hydrocarbons. Experiments with gallium as a containing fluid, J. Chem. Thermodyn., 1980, 12, 673. [all data]

Ambrose, Broderick, et al., 1967
Ambrose, D.; Broderick, B.E.; Townsend, R., The Vapour Pressures above the Normal Boiling Point and the Critical Pressures of Some Aromatic Hydrocarbons, J. Chem. Soc. , 1967, 1967, 1967, 633-41. [all data]

Altschul, 1893
Altschul, M., The critical values of some organic compounds, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1893, 11, 577. [all data]

Wiberg and Waldron, 1991
Wiberg, K.B.; Waldron, R.F., Lactones. 2. Enthalpies of hydrolysis, reduction, and formation of the C4-C13 monocyclic lactones. strain energies and conformations, J. Am. Chem. Soc., 1991, 113, 7697-7705. [all data]

Park and Gmehling, 1989
Park, So Jin; Gmehling, Juergen, Isobaric vapor-liquid equilibrium data for the binary systems 1,3,5-trimethylbenzene/N-formylmorpholine and m-xylene/N-formylmorpholine, J. Chem. Eng. Data, 1989, 34, 4, 399-401, https://doi.org/10.1021/je00058a008 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Forziati, Norris, et al., 1949
Forziati, Alphonse F.; Norris, William R.; Rossini, Frederick D., Vapor pressures and boiling points of sixty API-NBS hydrocarbons, J. RES. NATL. BUR. STAN., 1949, 43, 6, 555-17, https://doi.org/10.6028/jres.043.050 . [all data]

Chickos, Hyman, et al., 1981
Chickos, James S.; Hyman, Arthur S.; Ladon, Liina H.; Liebman, Joel F., Measurement and estimation of the heats of vaporization of hydrocarbons, J. Org. Chem., 1981, 46, 21, 4294-4296, https://doi.org/10.1021/jo00334a040 . [all data]

Hopke and Sears, 1948
Hopke, E.R.; Sears, G.W., Vapor Pressures of Trimethylbenzenes in the Low Pressure Region 1,2, J. Am. Chem. Soc., 1948, 70, 11, 3801-3803, https://doi.org/10.1021/ja01191a077 . [all data]

Forziati, Norris, et al., 1949, 2
Forziati, A.F.; Norris, W.R.; Rossini, F.D., Vapor Pressures and Boiling Points of Sixty API-NBS Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1949, 43, 6, 555-563, https://doi.org/10.6028/jres.043.050 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Radomska and Radomski, 1991
Radomska, M.; Radomski, R., Phase diagrams in the binary systems of tetracyanoethylene with mesitylene, durene and pentamethylbenzene, Journal of Thermal Analysis, 1991, 37, 4, 693-704, https://doi.org/10.1007/BF01913148 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M., Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization, J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012 . [all data]

El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M., Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors, J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017 . [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Egan and Buss, 1959
Egan, C.J.; Buss, W.C., Determination of the equilibrium constants for the hydrogenation of mesitylene. The thermodynamic properties of the 1,3,5-trimethylcyclohexanes, J. Phys. Chem., 1959, 63, 1887-1889. [all data]

Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C., Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives, Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n . [all data]

Gapeev and Dunbar, 2000
Gapeev, A.; Dunbar, R.C., Binding of Alkaline Earth Halide Ions MX+ to Benzene and Mesitylene, J. Am. Soc. Mass Spectrom., 2000, 13, 5, 477, https://doi.org/10.1016/S1044-0305(02)00373-2 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Lias and Ausloos, 1978
Lias, S.G.; Ausloos, P.J., eIonization energies of organic compounds by equilibrium measurements, J. Am. Chem. Soc., 1978, 100, 6027. [all data]

Kobayashi, Kobayashi, et al., 1973
Kobayashi, H.; Kobayashi, M.; Kaizu, Y., Molecular complexes of arenetricarbonylchromium, Bull. Chem. Soc. Jpn., 1973, 46, 3109. [all data]

Gilbert, Leach, et al., 1973
Gilbert, J.R.; Leach, W.P.; Miller, J.R., Ionisation appearance potential measurements in arene chromium tricarbonyls, J. Organomet. Chem., 1973, 49, 219. [all data]

Huttner and Fischer, 1967
Huttner, G.; Fischer, E.O., Uber Aromatenkomplexe von Metallen. XCVIII. Spectroskopische Untersuchungen an Charge-Transfer-Komplexen von Aromaten-Chrom Tricarbonylen mit 1,3,5-Trinitrobenzol, J. Organometal. Chem., 1967, 8, 299. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Kinoshita, 1962
Kinoshita, M., The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil, Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]

Price, Bralsford, et al., 1959
Price, W.C.; Bralsford, R.; Harris, P.V.; Ridley, R.G., Ultra-violet spectra and ionization potentials of hydrocarbon molecules, Spectrochim. Acta, 1959, 14, 45. [all data]

Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N., The photoionization of the vapors of certain organic compounds, Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]

Howell, Goncalves, et al., 1984
Howell, J.O.; Goncalves, J.M.; Amatore, C.; Klasinc, L.; Wightman, R.M.; Kochi, J.K., Electron transfer from aromatic hydrocarbons and their π-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials, J. Am. Chem. Soc., 1984, 106, 3968. [all data]

Cetinkaya, Lappert, et al., 1983
Cetinkaya, B.; Lappert, M.F.; Suffolk, R.J., Photoelectron spectra of some sterically hindered phenols and related compounds, J. Chem. Res. Synop., 1983, 316. [all data]

Worley and Webb, 1980
Worley, S.D.; Webb, T.R., The electronic structure of transition-metal carbonyl complexes of norbornadiene and mesitylene, J. Organomet. Chem., 1980, 192, 139. [all data]

Gower, Kane-Maguire, et al., 1977
Gower, M.; Kane-Maguire, L.A.P.; Maier, J.P.; Sweigart, D.A., Ultraviolet photoelectron spectra of cyclohepta-1,3,5-triene and mesitylene tricarbonyl complexes of the group 6A metals, J. Chem. Soc. Dalton Trans., 1977, 316. [all data]

Evans, Green, et al., 1974
Evans, S.; Green, J.C.; Jackson, S.E.; Higginson, B., He(I) photoelectron spectra of some transition-metal sandwich complexes, J. Chem. Soc. Dalton Trans., 1974, 304. [all data]

Klessinger, 1972
Klessinger, M., Ionization potentials of substituted benzenes, Angew. Chem. Int. Ed. Engl., 1972, 11, 525. [all data]

Ardyukova, Korobeinicheva, et al., 1973
Ardyukova, T.F.; Korobeinicheva, I.K.; Rezvukhin, A.I., 1,3,5-trimethyl-benzene in Atlas of Spectra of Aromatic and Heterocyclic Substances, V.A. Koptyug, ed(s)., Publishing House "Hauka", Novosibirsk, 1973, 7. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References