Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

2,4,6-Cycloheptatrien-1-one, 2-hydroxy-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Deltafgas-156. ± 1.kJ/molCcbHubbard, Katz, et al., 1952 
Deltafgas-155.kJ/molCcbCook, Gibb, et al., 1951 

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Deltafsolid-239.7 ± 2.6kJ/molCcbTanaka and Watase, 1956Reanalyzed by Cox and Pilcher, 1970, Original value = -240. kJ/mol
Deltafsolid-239.5 ± 0.8kJ/molCcbHubbard, Katz, et al., 1952 
Deltafsolid-239.kJ/molCcbCook, Gibb, et al., 1951 
Quantity Value Units Method Reference Comment
Deltacsolid-3382. ± 2.kJ/molCcbJackson, Hung, et al., 1971Corresponding «DELTA»fsolid = -230. kJ/mol (simple calculation by NIST; no Washburn corrections)
Deltacsolid-3370.kJ/molCcbTanaka and Watase, 1956Corresponding «DELTA»fsolid = -240. kJ/mol (simple calculation by NIST; no Washburn corrections)
Deltacsolid-3372.6kJ/molCcbHubbard, Katz, et al., 1952Corresponding «DELTA»fsolid = -239.4 kJ/mol (simple calculation by NIST; no Washburn corrections)
Deltacsolid-3373. ± 4.kJ/molCcbCook, Gibb, et al., 1951Corresponding «DELTA»fsolid = -239. kJ/mol (simple calculation by NIST; no Washburn corrections)

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Deltasub83.7 ± 0.8kJ/molVHubbard, Katz, et al., 1952ALS
Deltasub83.7 ± 0.8kJ/molN/ACook, Gibb, et al., 1951, 2See also Cox and Pilcher, 1970, 2.; AC
Deltasub83.7 ± 0.8kJ/molECook, Gibb, et al., 1951ALS

Enthalpy of sublimation

DeltasubH (kJ/mol) Temperature (K) Method Reference Comment
84.1 ± 0.4297.0 ± 0.5VJackson, Hung, et al., 1971ALS
84.1 ± 0.4273. - 333.MEJackson, Hung, et al., 1971AC

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Sadtler Research Labs Under US-EPA Contract
State gas

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin CARL DJERASSI DEPT OF CHEM STANFORD UNIV STANFORD CALIF 94305
NIST MS number 51191

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hubbard, Katz, et al., 1952
Hubbard, W.N.; Katz, C.; Guthrie, G.B., Jr.; Waddington, G., The heat of combustion and resonance energy of tropolone, J. Am. Chem. Soc., 1952, 74, 4456-44. [all data]

Cook, Gibb, et al., 1951
Cook, J.W.; Gibb, A.R.; Raphael, R.A.; Somerville, A.R., Tropolones. Part I. The preparation and general characteristics of tropolone, J. Chem. Soc., 1951, 503-511. [all data]

Tanaka and Watase, 1956
Tanaka, T.; Watase, T., Resonance energies of tropolone and hinokitiol, Tech. Rpt., Osaka Univ., 1956, 6, 367-371. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Jackson, Hung, et al., 1971
Jackson, W.; Hung, T.S.; Hopkins, H.P., Jr., Delocalization energies of troponoids from bomb calorimetric and vapour pressure measurements, J. Chem. Thermodyn., 1971, 3, 347-353. [all data]

Cook, Gibb, et al., 1951, 2
Cook, J.W.; Gibb, A.R.; Raphael, R.A.; Somerville, A.R., 107. Tropolones. Part I. The preparation and general characteristics of tropolone, J. Chem. Soc., 1951, 503, https://doi.org/10.1039/jr9510000503 . [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References