Argon

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar154.846 ± 0.003J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar154.84J/mol*KReviewChase, 1998Data last reviewed in March, 1982

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 6000.
A 20.78600
B 2.825911×10-7
C -1.464191×10-7
D 1.092131×10-8
E -3.661371×10-8
F -6.197350
G 179.9990
H 0.000000
ReferenceChase, 1998
Comment Data last reviewed in March, 1982

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Lithium ion (1+) + Argon = (Lithium ion (1+) • Argon)

By formula: Li+ + Ar = (Li+ • Ar)

Quantity Value Units Method Reference Comment
Δr30. ± 4.kJ/molAVGN/AAverage of 4 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr30.J/mol*KDTMcKnight and Sawina, 1973gas phase; ΔrS approximate; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
5.9294.IMobCassidy and Elford, 1985gas phase; M
7.9319.DTKeller, Beyer, et al., 1973gas phase; LOW E/N; M
11.215.DTMcKnight and Sawina, 1973gas phase; ΔrS approximate; M

Ar+ + Argon = (Ar+ • Argon)

By formula: Ar+ + Ar = (Ar+ • Ar)

Quantity Value Units Method Reference Comment
Δr100. ± 90.kJ/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr53.6J/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)Ar; Turner and Conway, 1979, Liu and Conway, 1975; M

Potassium ion (1+) + Argon = (Potassium ion (1+) • Argon)

By formula: K+ + Ar = (K+ • Ar)

Quantity Value Units Method Reference Comment
Δr12. ± 3.kJ/molAVGN/AAverage of 9 values; Individual data points

Nitrogen cation + Argon = (Nitrogen cation • Argon)

By formula: N2+ + Ar = (N2+ • Ar)

Quantity Value Units Method Reference Comment
Δr112.kJ/molPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M
Δr106.kJ/molPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M
Δr57.3J/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M

Cesium ion (1+) + Argon = (Cesium ion (1+) • Argon)

By formula: Cs+ + Ar = (Cs+ • Ar)

Quantity Value Units Method Reference Comment
Δr8.16kJ/molIMobGatland, 1984gas phase; M
Δr6.11kJ/molSCATTERINGGislason, 1984gas phase; M
Δr8.20kJ/molIMobViehland, 1984gas phase; M
Δr9.54kJ/molIMobTakebe, 1983gas phase; M
Δr9.6kJ/molIMobTakebe, 1983gas phase; values from this reference are consistently too high; M

Chromium ion (1+) + Argon = (Chromium ion (1+) • Argon)

By formula: Cr+ + Ar = (Cr+ • Ar)

Quantity Value Units Method Reference Comment
Δr29. ± 2.kJ/molSIDTKemper, Hsu, et al., 1991gas phase; ΔrH(0 K) = 27.4 kJ/mol, ΔrS(100 K) = 60.2 J/mol*K; M
Quantity Value Units Method Reference Comment
Δr66.1J/mol*KSIDTKemper, Hsu, et al., 1991gas phase; ΔrH(0 K) = 27.4 kJ/mol, ΔrS(100 K) = 60.2 J/mol*K; M

Sodium ion (1+) + Argon = (Sodium ion (1+) • Argon)

By formula: Na+ + Ar = (Na+ • Ar)

Quantity Value Units Method Reference Comment
Δr15. ± 8.8kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr15.5kJ/molSCATTERINGGislason, 1984gas phase; M
Δr18.4kJ/molIMobViehland, 1984gas phase; M
Δr18.kJ/molDTMcKnight and Sawina, 1973gas phase; M
Δr20.4kJ/molIMobTakebe, 1983gas phase; M

H3+ + Argon = (H3+ • Argon)

By formula: H3+ + Ar = (H3+ • Ar)

Quantity Value Units Method Reference Comment
Δr28.0 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr31. ± 3.kJ/molSIFTBedford and Smith, 1990gas phase; switching reaction(H3+)H2, Hiraoka and Mori, 1989; M
Quantity Value Units Method Reference Comment
Δr56.1J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

Xe+ + Argon = (Xe+ • Argon)

By formula: Xe+ + Ar = (Xe+ • Ar)

Quantity Value Units Method Reference Comment
Δr17.kJ/molPIDehmer and Pratt, 1982gas phase; M
Δr25.kJ/molSIFTJones, Lister, et al., 1980gas phase; M
Δr13.kJ/molPINg, Tiedemann, et al., 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr81.2J/mol*KSIFTJones, Lister, et al., 1980gas phase; M

(Ar+ • 2Argon) + Argon = (Ar+ • 3Argon)

By formula: (Ar+ • 2Ar) + Ar = (Ar+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr20. ± 1.kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr72.4J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
8.477.PHPMSTeng and Conway, 1973gas phase; M

(Nitrogen cation • 7Argon) + Argon = (Nitrogen cation • 8Argon)

By formula: (N2+ • 7Ar) + Ar = (N2+ • 8Ar)

Quantity Value Units Method Reference Comment
Δr6.40kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

(Nitrogen cation • 8Argon) + Argon = (Nitrogen cation • 9Argon)

By formula: (N2+ • 8Ar) + Ar = (N2+ • 9Ar)

Quantity Value Units Method Reference Comment
Δr6.36kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr71.J/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

Fluorine anion + Argon = ArF-

By formula: F- + Ar = ArF-

Quantity Value Units Method Reference Comment
Δr8.37kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B
Quantity Value Units Method Reference Comment
Δr-16.6kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B

Rubidium ion (1+) + Argon = (Rubidium ion (1+) • Argon)

By formula: Rb+ + Ar = (Rb+ • Ar)

Quantity Value Units Method Reference Comment
Δr8.49kJ/molIMobGatland, 1984gas phase; M
Δr8.28kJ/molIMobViehland, 1984gas phase; M
Δr11.9kJ/molIMobTakebe, 1983gas phase; M

(O- • 10Argon) + Argon = (O- • 11Argon)

By formula: (O- • 10Ar) + Ar = (O- • 11Ar)

Quantity Value Units Method Reference Comment
Δr2. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 11Argon) + Argon = (O- • 12Argon)

By formula: (O- • 11Ar) + Ar = (O- • 12Ar)

Quantity Value Units Method Reference Comment
Δr3. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 12Argon) + Argon = (O- • 13Argon)

By formula: (O- • 12Ar) + Ar = (O- • 13Ar)

Quantity Value Units Method Reference Comment
Δr0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 13Argon) + Argon = (O- • 14Argon)

By formula: (O- • 13Ar) + Ar = (O- • 14Ar)

Quantity Value Units Method Reference Comment
Δr0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 14Argon) + Argon = (O- • 15Argon)

By formula: (O- • 14Ar) + Ar = (O- • 15Ar)

Quantity Value Units Method Reference Comment
Δr2. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 15Argon) + Argon = (O- • 16Argon)

By formula: (O- • 15Ar) + Ar = (O- • 16Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 16Argon) + Argon = (O- • 17Argon)

By formula: (O- • 16Ar) + Ar = (O- • 17Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 17Argon) + Argon = (O- • 18Argon)

By formula: (O- • 17Ar) + Ar = (O- • 18Ar)

Quantity Value Units Method Reference Comment
Δr0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 18Argon) + Argon = (O- • 19Argon)

By formula: (O- • 18Ar) + Ar = (O- • 19Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 19Argon) + Argon = (O- • 20Argon)

By formula: (O- • 19Ar) + Ar = (O- • 20Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 20Argon) + Argon = (O- • 21Argon)

By formula: (O- • 20Ar) + Ar = (O- • 21Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 21Argon) + Argon = (O- • 22Argon)

By formula: (O- • 21Ar) + Ar = (O- • 22Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 22Argon) + Argon = (O- • 23Argon)

By formula: (O- • 22Ar) + Ar = (O- • 23Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 23Argon) + Argon = (O- • 24Argon)

By formula: (O- • 23Ar) + Ar = (O- • 24Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 24Argon) + Argon = (O- • 25Argon)

By formula: (O- • 24Ar) + Ar = (O- • 25Ar)

Quantity Value Units Method Reference Comment
Δr0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 25Argon) + Argon = (O- • 26Argon)

By formula: (O- • 25Ar) + Ar = (O- • 26Ar)

Quantity Value Units Method Reference Comment
Δr0.8 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 9Argon) + Argon = (O- • 10Argon)

By formula: (O- • 9Ar) + Ar = (O- • 10Ar)

Quantity Value Units Method Reference Comment
Δr3. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 2Argon) + Argon = (O- • 3Argon)

By formula: (O- • 2Ar) + Ar = (O- • 3Ar)

Quantity Value Units Method Reference Comment
Δr6.7 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 3Argon) + Argon = (O- • 4Argon)

By formula: (O- • 3Ar) + Ar = (O- • 4Ar)

Quantity Value Units Method Reference Comment
Δr5.9 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 4Argon) + Argon = (O- • 5Argon)

By formula: (O- • 4Ar) + Ar = (O- • 5Ar)

Quantity Value Units Method Reference Comment
Δr5.0 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 5Argon) + Argon = (O- • 6Argon)

By formula: (O- • 5Ar) + Ar = (O- • 6Ar)

Quantity Value Units Method Reference Comment
Δr5.0 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 6Argon) + Argon = (O- • 7Argon)

By formula: (O- • 6Ar) + Ar = (O- • 7Ar)

Quantity Value Units Method Reference Comment
Δr4.2 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 7Argon) + Argon = (O- • 8Argon)

By formula: (O- • 7Ar) + Ar = (O- • 8Ar)

Quantity Value Units Method Reference Comment
Δr4. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 8Argon) + Argon = (O- • 9Argon)

By formula: (O- • 8Ar) + Ar = (O- • 9Ar)

Quantity Value Units Method Reference Comment
Δr4. ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • Argon) + Argon = (O- • 2Argon)

By formula: (O- • Ar) + Ar = (O- • 2Ar)

Quantity Value Units Method Reference Comment
Δr8.4 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Ar+ • Argon) + Argon = (Ar+ • 2Argon)

By formula: (Ar+ • Ar) + Ar = (Ar+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr21.2 ± 0.3kJ/molPHPMSTurner and Conway, 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr84.9J/mol*KPHPMSTurner and Conway, 1979gas phase; M

(Nitrogen cation • Argon) + Argon = (Nitrogen cation • 2Argon)

By formula: (N2+ • Ar) + Ar = (N2+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr16.kJ/molPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>; M
Quantity Value Units Method Reference Comment
Δr71.J/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>; M

O- + Argon = (O- • Argon)

By formula: O- + Ar = (O- • Ar)

Quantity Value Units Method Reference Comment
Δr9.2 ± 8.4kJ/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Ar+ • 10Argon) + Argon = (Ar+ • 11Argon)

By formula: (Ar+ • 10Ar) + Ar = (Ar+ • 11Ar)

Quantity Value Units Method Reference Comment
Δr6.5 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ • 9Argon) + Argon = (Ar+ • 10Argon)

By formula: (Ar+ • 9Ar) + Ar = (Ar+ • 10Ar)

Quantity Value Units Method Reference Comment
Δr6.49 ± 0.84kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr71.5J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(D3+ • 2Argon) + Argon = (D3+ • 3Argon)

By formula: (D3+ • 2Ar) + Ar = (D3+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr18.6 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr77.0J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 3Argon) + Argon = (D3+ • 4Argon)

By formula: (D3+ • 3Ar) + Ar = (D3+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr10.2 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr69.5J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 4Argon) + Argon = (D3+ • 5Argon)

By formula: (D3+ • 4Ar) + Ar = (D3+ • 5Ar)

Quantity Value Units Method Reference Comment
Δr9.5 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 5Argon) + Argon = (D3+ • 6Argon)

By formula: (D3+ • 5Ar) + Ar = (D3+ • 6Ar)

Quantity Value Units Method Reference Comment
Δr9.1 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 6Argon) + Argon = (D3+ • 7Argon)

By formula: (D3+ • 6Ar) + Ar = (D3+ • 7Ar)

Quantity Value Units Method Reference Comment
Δr6.5 ± 0.4kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Ar+ • 3Argon) + Argon = (Ar+ • 4Argon)

By formula: (Ar+ • 3Ar) + Ar = (Ar+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr7.0 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr58.2J/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

McKnight and Sawina, 1973
McKnight, L.G.; Sawina, J.M., Equilibrium Constants and Binding Energies of Alkali Metal Ions with Inert Gases, Bull. Am. Phys. Soc., 1973, 18, 804. [all data]

Cassidy and Elford, 1985
Cassidy, R.A.; Elford, M.T., The Mobility of Li+ Ions in Helium and Argon, Aust. J. Phys., 1985, 38, 4, 587, https://doi.org/10.1071/PH850587 . [all data]

Keller, Beyer, et al., 1973
Keller, C.E.; Beyer, R.A.; Colonna-Romano, L.M., Clustering of Ar to Li+ and a Comparison of Drift - Tube Models, Phys. Rev. A, 1973, 8, 3, 1446, https://doi.org/10.1103/PhysRevA.8.1446 . [all data]

Teng and Conway, 1973
Teng, H.H.; Conway, D.C., Ion - Molecule Equilibria in Mixtures of N2 and Ar, J. Chem. Phys., 1973, 59, 5, 2316, https://doi.org/10.1063/1.1680338 . [all data]

Turner and Conway, 1979
Turner, D.L.; Conway, D.C., Study of the 2Ar + Ar2+ = Ar + Ar3+ Reaction, J. Chem. Phys., 1979, 71, 4, 1899, https://doi.org/10.1063/1.438544 . [all data]

Liu and Conway, 1975
Liu, W.F.; Conway, D.C., Ion - Molecule Reactions in Ar at 296, 195, and 77 K, J. Chem. Phys., 1975, 62, 8, 3070, https://doi.org/10.1063/1.430906 . [all data]

Kim and Bowers, 1990
Kim, H.S.; Bowers, M.T., Energetics, Structure and Photodissociation Dynamics of the Cluster Ar.N2+, J. Chem. Phys., 1990, 93, 2, 1158, https://doi.org/10.1063/1.459179 . [all data]

Hiraoka and Nakajima, 1988
Hiraoka, K.; Nakajima, G., A Determination of the Stabilities of N2+(N2)n and O2+(N2)n with n = 1 - 11 from Measurements of the Gas - Phase Ion Equilibria, J. Chem. Phys., 1988, 88, 12, 7709, https://doi.org/10.1063/1.454285 . [all data]

Gatland, 1984
Gatland, I.R., Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Gislason, 1984
Gislason, E.A., Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Viehland, 1984
Viehland, L.A., Interaction Potentials for Li+ - Rare - Gas Systems, Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3 . [all data]

Takebe, 1983
Takebe, M., The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves, J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763 . [all data]

Kemper, Hsu, et al., 1991
Kemper, P.R.; Hsu, M.T.; Bowers, M.T., Transition - Metal Ion - Rare Gas Clusters: Bond Strengths and Molecular Parameters for Co+(He/Ne)n, Ni+(He/Ne)n, and Cr+(He/Ne/Ar), J. Phys. Chem., 1991, 95, 26, 10600, https://doi.org/10.1021/j100179a022 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Isotope Effect and Nature of Bonding in the Cluster Ions H3+(Ar)n and D3+(Ar)n, J. Chem. Phys., 1989, 91, 8, 4821, https://doi.org/10.1063/1.456720 . [all data]

Bedford and Smith, 1990
Bedford, D.K.; Smith, D., Variable-temperature selected ion flow tube studies of the reactions of Ar+, Ar2+ and ArHn+ (n=1-3) ions with H2, HD and D2 at 300 K and 80 K, Int. J. Mass Spectrom. Ion Proc., 1990, 98, 2, 179, https://doi.org/10.1016/0168-1176(90)85017-V . [all data]

Dehmer and Pratt, 1982
Dehmer, P.M.; Pratt, S.T., Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions, J. Chem. Phys., 1982, 77, 4804. [all data]

Jones, Lister, et al., 1980
Jones, J.D.C.; Lister, D.G.; Twiddy, N.D., Equilibrium Constant for the Reaction Xe+ + 2Ar ---> XeAr+ + Ar in the Temperature Range 150 - 300 K and the Dissociation Energy of XeAr+, Chem. Phys. Lett., 1980, 70, 3, 575, https://doi.org/10.1016/0009-2614(80)80128-X . [all data]

Ng, Tiedemann, et al., 1977
Ng, C.Y.; Tiedemann, P.W.; Mahan, B.H.; Lee, Y.T., Photoionization Studies of the Diatomic Internuclear Rare Gas Molecules XeKr, XeAr, and KrAr, J. Chem. Phys., 1977, 66, 12, 5737, https://doi.org/10.1063/1.433848 . [all data]

Hiraoka and Mori, 1989, 2
Hiraoka, K.; Mori, T., Formation and Stabilities of Cluster Ions Arn+, J. Chem. Phys., 1989, 90, 12, 7143, https://doi.org/10.1063/1.456245 . [all data]

Hiraoka, Mori, et al., 1992
Hiraoka, K.; Mori, T.; Yamabe, S., Gas-Phase Solvation of N2+ with Ar Atoms - A Charge Switch in the Reaction N2+(Ar)...Ar+(N2), Chem. Phys. Lett., 1992, 189, 1, 7, https://doi.org/10.1016/0009-2614(92)85144-Y . [all data]

Wada, Kikkawa, et al., 2007
Wada, A.; Kikkawa, A.; Sugiyama, T.; Hiraoka, K., Thermochemical Stabilities of the Gas-phase Cluster Ions of Halide Ions with Rare Gas Atoms, Int. J. Mass Spectrom.., 2007, 267, 1-3, 284-287, https://doi.org/10.1016/j.ijms.2007.02.053 . [all data]

Arnold, Hendricks, et al., 1995
Arnold, S.T.; Hendricks, J.H.; Bowen, K.H., Photoelectron spectroscopy of the solvated anion clusters O-(Ar)(n=1-26,34): Energetics and structure, J. Chem. Phys., 1995, 102, 1, 39, https://doi.org/10.1063/1.469415 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References