Cyclohexane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-124.6kJ/molN/ASpitzer and Huffman, 1947Value computed using ΔfHliquid° value of -157.7±1.8 kj/mol from Spitzer and Huffman, 1947 and ΔvapH° value of 33.1 kj/mol from Prosen, Johnson, et al., 1946.; DRB
Δfgas-123.1 ± 0.79kJ/molCcbProsen, Johnson, et al., 1946ALS
Δfgas-123.3kJ/molN/AMoore, Renquist, et al., 1940Value computed using ΔfHliquid° value of -156.4±1.3 kj/mol from Moore, Renquist, et al., 1940 and ΔvapH° value of 33.1 kj/mol from Prosen, Johnson, et al., 1946.; DRB
Quantity Value Units Method Reference Comment
gas298.19J/mol*KN/ABeckett C.W., 1947Close value of S(298.15 K)=298.78(0.75) J/mol*K was obtained by [43ASTSZA] from calorimetric data.; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.0750.Dorofeeva O.V., 1986There is an appreciable difference (up to 3.0-4.5 J/mol*K) between selected values of S(T) and Cp(T) and earlier statistically calculated values [ Brickwedde F.G., 1946, Beckett C.W., 1947, Kilpatrick J.E., 1947, Lippincott E.R., 1966] at high temperatures. It is due to using the most reliable molecular constants in [ Dorofeeva O.V., 1986].; GT
42.59100.
54.80150.
69.05200.
95.20273.15
105.3 ± 2.0298.15
106.11300.
148.64400.
188.68500.
223.38600.
252.62700.
277.05800.
297.42900.
314.421000.
328.661100.
340.651200.
350.791300.
359.441400.
366.851500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
138.07370.Spitzer R., 1946Please also see Montgomery J.B., 1942.; GT
143.1 ± 1.3384.
146.44390.
153.97410.
161.8 ± 1.7428.
174.5 ± 1.7460.
189.5 ± 2.1495.
196.7 ± 2.1521.
206.3 ± 2.1544.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-157.7 ± 1.8kJ/molCcbSpitzer and Huffman, 1947ALS
Δfliquid-156.2 ± 0.79kJ/molCcbProsen, Johnson, et al., 1946ALS
Δfliquid-156.4 ± 1.3kJ/molCcbMoore, Renquist, et al., 1940Reanalyzed by Cox and Pilcher, 1970, Original value = -157.7 kJ/mol; ALS
Quantity Value Units Method Reference Comment
Δcliquid-3930. ± 20.kJ/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
liquid203.89J/mol*KN/AAston, Szasa, et al., 1943DH
liquid204.35J/mol*KN/ARuehrwein and Huffman, 1943DH
liquid205.9J/mol*KN/AParks, Huffman, et al., 1930Extrapolation below 90 K, 50.54 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
156.00298.15Trejo, Costas, et al., 1991DH
156.90298.15Lainez, Rodrigo, et al., 1989DH
143.9326.5Voss and Sloan, 1989T = 326.5 to 450.0 K. Unsmoothed experimental datum.; DH
155.96298.15Saito and Tanaka, 1988DH
154.32298.15Shiohama, Ogawa, et al., 1988DH
155.13293.15Kalali, Kohler, et al., 1987T = 293.15, 313.15 K.; DH
157.06298.15Jimenez, Romani, et al., 1986DH
155.85298.15Ortega, 1986DH
156.5298.15Nkinamubanzi, Charlet, et al., 1985DH
155.96298.15Tanaka, Nakamichi, et al., 1985DH
154.81293.15Siddiqi, Svejda, et al., 1983DH
156.4298.15Grolier, Inglese, et al., 1982DH
156.0298.15Tanaka, 1982T = 293.15, 298.15, 303.15 K. Data at three temperatures.; DH
156.149298.15Fortier, D'Arcy, et al., 1979DH
156.12298.15Vesely, Zabransky, et al., 1979DH
156.4298.15Wilhelm, Grolier, et al., 1979DH
156.35298.15Grolier, Wilhelm, et al., 1978DH
156.7298.Safir, 1978T = 298 to 313 K. Data calculated from equation Cp = 1.7493 + 0.00452 T kJ/kg*K.; DH
156.12298.15Vesely, Svoboda, et al., 1977T = 298 to 318 K.; DH
156.07298.15Fortier, Benson, et al., 1976DH
156.070298.15Fortier and Benson, 1976DH
156.20298.15Jolicoeur, Boileau, et al., 1975DH
154.80293.15Wilhelm, Zettler, et al., 1974T = 273 to 323 K.; DH
159.6298.15Subrahmanyam and Rajagopal, 1973T = 298 to 323 K.; DH
155.2298.15Wilhelm, Schano, et al., 1969Temperature 20, 30, and 40°C.; DH
155.5298.Recko, 1968T = 24 to 40°C, equation only.; DH
152.93298.Nikolaev, Rabinovich, et al., 1966T = 10 to 50°C.; DH
155.31298.00Moelwyn-Hughes and Thorpe, 1964T = 297 to 327 K.; DH
155.2311.Swietoslawski and Zielenkiewicz, 1960Mean value 20 to 56°C.; DH
154.2300.Auerbach, Sage, et al., 1950T = 300 to 366 K. Cp given as 0.4378 Btu/lb*R at 80°F.; DH
155.85295.Aston, Szasa, et al., 1943T = 12 to 293 K.; DH
156.31298.15Ruehrwein and Huffman, 1943T = 13 to 302 K.; DH
100.4304.2Phillip, 1939DH
143.9298.9Parks, Huffman, et al., 1930T = 92 to 299 K. Value is unsmoothed experimental datum.; DH
176.1298.Dejardin, 1919T = 22 to 50°C.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil353.9 ± 0.2KAVGN/AAverage of 93 out of 116 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus279.6 ± 0.3KAVGN/AAverage of 38 out of 47 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple279.7 ± 0.4KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Tc554. ± 1.KAVGN/AAverage of 18 values; Individual data points
Quantity Value Units Method Reference Comment
Pc40.7 ± 0.5barAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.308l/molN/ADaubert, 1996 
Vc0.309l/molN/AYoung, 1972Uncertainty assigned by TRC = 0.003 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc3.24 ± 0.03mol/lN/ADaubert, 1996 
ρc3.26mol/lN/ATeja and Anselme, 1990Uncertainty assigned by TRC = 0.07 mol/l; TRC
ρc3.230mol/lN/ASimon, 1957Uncertainty assigned by TRC = 0.04 mol/l; TRC
ρc3.250mol/lN/AYoung, 1910Uncertainty assigned by TRC = 0.02 mol/l; TRC
ρc3.247mol/lN/AYoung and Fortey, 1899Uncertainty assigned by TRC = 0.06 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap33.1 ± 0.4kJ/molAVGN/AAverage of 19 out of 21 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
29.97353.9N/AMajer and Svoboda, 1985 
33.334298.15N/AAston, Szasa, et al., 1943P = 13.18 kPa; DH
33.1315.EBGierycz, Kosowski, et al., 2009Based on data from 296. - 353. K.; AC
32.7315.N/ALubomska, Banas, et al., 2002Based on data from 300. - 345. K.; AC
31.9324.EBDiogo, Santos, et al., 1995Based on data from 313. - 336. K.; AC
32.2375.N/ALee and Holder, 1993Based on data from 360. - 470. K.; AC
32.3314.CDong, Lin, et al., 1988AC
31.1332.CDong, Lin, et al., 1988AC
30.3345.CDong, Lin, et al., 1988AC
30.0355.CDong, Lin, et al., 1988AC
30.9368.AStephenson and Malanowski, 1987Based on data from 353. - 414. K.; AC
29.6427.AStephenson and Malanowski, 1987Based on data from 412. - 491. K.; AC
29.6504.AStephenson and Malanowski, 1987Based on data from 489. - 553. K.; AC
32.9308.A,MMStephenson and Malanowski, 1987Based on data from 293. - 355. K. See also Willingham, Taylor, et al., 1945.; AC
32.3 ± 0.1313.CMajer, Svoboda, et al., 1979AC
31.2 ± 0.1333.CMajer, Svoboda, et al., 1979AC
31.0 ± 0.1338.CMajer, Svoboda, et al., 1979AC
30.4 ± 0.1348.CMajer, Svoboda, et al., 1979AC
30.1 ± 0.1353.CMajer, Svoboda, et al., 1979AC
32.2 ± 0.1313.CSvoboda, Veselý, et al., 1973AC
31.9 ± 0.1323.CSvoboda, Veselý, et al., 1973AC
31.1 ± 0.1333.CSvoboda, Veselý, et al., 1973AC
30.6 ± 0.1343.CSvoboda, Veselý, et al., 1973AC
30.1 ± 0.1354.CSvoboda, Veselý, et al., 1973AC
32.5318.N/AGaw and Swinton, 1968Based on data from 303. - 343. K.; AC
32.9313.N/ACruickshank and Cutler, 1967Based on data from 298. - 348. K.; AC
32.8331.N/AMarinichev and Susarev, 1965Based on data from 316. - 354. K.; AC
31.4 ± 0.1324.CMcCullough, Person, et al., 1951AC
30.4 ± 0.1346.CMcCullough, Person, et al., 1951AC
30.1354.N/ASpitzer and Pitzer, 1946AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 292. - 422.
A (kJ/mol) 43.32
α -0.1437
β 0.4512
Tc (K) 553.4
ReferenceMajer and Svoboda, 1985

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
111.80298.15Aston, Szasa, et al., 1943P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
323. - 523.4.139831316.554-35.581Kerns, Anthony, et al., 1974Coefficents calculated by NIST from author's data.
303. - 343.3.99201216.93-48.621Gaw and Swinton, 1968, 2Coefficents calculated by NIST from author's data.
315.70 - 353.903.17125780.637-107.29Marinichev and Susarev, 1965, 2Coefficents calculated by NIST from author's data.
293.06 - 354.733.969881203.526-50.287Williamham, Taylor, et al., 1945 

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
27.6265.AStephenson and Malanowski, 1987Based on data from 223. - 280. K.; AC
46.6186.BBondi, 1963AC
37.2273.N/AJones, 1960Based on data from 268. - 278. K.; AC
37.7248.AStull, 1947Based on data from 228. - 268. K.; AC
36.5274.ARotinjanz and Nagornow, 1934Based on data from 269. - 279. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
2.68279.8Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
36.2186.1Domalski and Hearing, 1996CAL
9.57279.8

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
6.686186.09crystaline, IIcrystaline, IAston, Szasa, et al., 1943DH
2.628279.84crystaline, IliquidAston, Szasa, et al., 1943DH
6.7396186.1crystaline, IIcrystaline, IRuehrwein and Huffman, 1943DH
2.6769279.82crystaline, IliquidRuehrwein and Huffman, 1943DH
6.820186.4crystaline, IIcrystaline, IZiegler and Andrews, 1942DH
2.728279.4crystaline, IliquidZiegler and Andrews, 1942DH
6.234185.9crystaline, IIcrystaline, IParks, Huffman, et al., 1930DH
2.423279.3crystaline, IliquidParks, Huffman, et al., 1930DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
35.93186.09crystaline, IIcrystaline, IAston, Szasa, et al., 1943DH
9.39279.84crystaline, IliquidAston, Szasa, et al., 1943DH
36.21186.1crystaline, IIcrystaline, IRuehrwein and Huffman, 1943DH
9.57279.82crystaline, IliquidRuehrwein and Huffman, 1943DH
36.59186.4crystaline, IIcrystaline, IZiegler and Andrews, 1942DH
9.76279.4crystaline, IliquidZiegler and Andrews, 1942DH
33.53185.9crystaline, IIcrystaline, IParks, Huffman, et al., 1930DH
8.68279.3crystaline, IliquidParks, Huffman, et al., 1930DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Cyclohexene + Hydrogen = Cyclohexane

By formula: C6H10 + H2 = C6H12

Quantity Value Units Method Reference Comment
Δr-118. ± 6.kJ/molAVGN/AAverage of 8 values; Individual data points

NH4+ + Cyclohexane = (NH4+ • Cyclohexane)

By formula: H4N+ + C6H12 = (H4N+ • C6H12)

Quantity Value Units Method Reference Comment
Δr40.kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
12.317.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M

C6H6+ + Cyclohexane = (C6H6+ • Cyclohexane)

By formula: C6H6+ + C6H12 = (C6H6+ • C6H12)

Quantity Value Units Method Reference Comment
Δr46.9kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
13.295.PHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated; M

C6H11- + Hydrogen cation = Cyclohexane

By formula: C6H11- + H+ = C6H12

Quantity Value Units Method Reference Comment
Δr1750. ± 8.4kJ/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Δr1702.1 ± 3.8kJ/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; B
Quantity Value Units Method Reference Comment
Δr1713. ± 9.2kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B
Δr>1665.2kJ/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; B

2Hydrogen + 1,3-Cyclohexadiene = Cyclohexane

By formula: 2H2 + C6H8 = C6H12

Quantity Value Units Method Reference Comment
Δr-224.4 ± 1.2kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS
Δr-229.6 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -231.7 ± 0.4 kJ/mol; At 355 °K; ALS

2Hydrogen + 1,4-Cyclohexadiene = Cyclohexane

By formula: 2H2 + C6H8 = C6H12

Quantity Value Units Method Reference Comment
Δr-233.kJ/molChydRoth, Adamczak, et al., 1991liquid phase; ALS
Δr-225.5 ± 1.4kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS

C3H9Si+ + Cyclohexane = (C3H9Si+ • Cyclohexane)

By formula: C3H9Si+ + C6H12 = (C3H9Si+ • C6H12)

Quantity Value Units Method Reference Comment
Δr159.kJ/molPHPMSLi and Stone, 1989gas phase; condensation; M
Quantity Value Units Method Reference Comment
Δr201.J/mol*KPHPMSLi and Stone, 1989gas phase; condensation; M

3Hydrogen + Benzene = Cyclohexane

By formula: 3H2 + C6H6 = C6H12

Quantity Value Units Method Reference Comment
Δr-205.3 ± 0.63kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -208.4 ± 0.63 kJ/mol; At 355 °K; ALS

Hydrogen iodide + Cyclohexane, iodo- = Cyclohexane + Iodine

By formula: HI + C6H11I = C6H12 + I2

Quantity Value Units Method Reference Comment
Δr-32.6 ± 8.4kJ/molCmBrennan and Ubbelohde, 1956gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28. ± 4.2 kJ/mol; ALS

Lithium ion (1+) + Cyclohexane = (Lithium ion (1+) • Cyclohexane)

By formula: Li+ + C6H12 = (Li+ • C6H12)

Quantity Value Units Method Reference Comment
Δr100.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Cyclopentane, methyl- = Cyclohexane

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr-14.69kJ/molEqkGlasebrook and Lovell, 1939liquid phase; Heat of isomerization; ALS

2Hydrogen + Bicyclo[2.2.0]hex-1(4)-ene = Cyclohexane

By formula: 2H2 + C6H8 = C6H12

Quantity Value Units Method Reference Comment
Δr-426.8 ± 7.9kJ/molChydRoth, Adamczak, et al., 1991liquid phase; ALS

Cyclohexanol = Cyclohexane + Hydrogen

By formula: C6H12O = C6H12 + H2

Quantity Value Units Method Reference Comment
Δr63.4 ± 2.3kJ/molEqkFedoseenko, Yursha, et al., 1983gas phase; At 502 K; ALS

Cyclohexane, chloro- + Hydrogen chloride = Cyclohexane + Chlorine

By formula: C6H11Cl + HCl = C6H12 + Cl2

Quantity Value Units Method Reference Comment
Δr-143.1kJ/molCmKirkbride, 1956liquid phase; ALS

Cyclohexane = Cyclopentane, methyl-

By formula: C6H12 = C6H12

Quantity Value Units Method Reference Comment
Δr18.1 ± 1.2kJ/molEqkKabo and Andreevskii, 1973liquid phase; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0051 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.00553200.XN/A 
0.0062710.XN/A 
0.0056 LN/A 
0.0051 VN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C6H12+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.88 ± 0.03eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)686.9kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity666.9kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.80 ± 0.05EIHolmes and Lossing, 1991LL
10.0 ± 0.03EIArimura and Yoshikawa, 1984LBLHLM
9.82EQSieck and Mautner(Meot-Ner), 1982LBLHLM
9.88 ± 0.10EQLias, 1982LBLHLM
9.88PEKovac and Klasinc, 1978LLK
9.88 ± 0.02PEBieri, Burger, et al., 1977LLK
9.88EILossing and Traeger, 1975LLK
9.89 ± 0.01PERang, Paldoia, et al., 1974LLK
9.83 ± 0.05EIPuttemans, 1974LLK
9.84PEPuttemans, 1974LLK
9.88 ± 0.01PISergeev, Akopyan, et al., 1973LLK
9.87PEIkuta, Yoshihara, et al., 1973LLK
9.88 ± 0.01SRaymonda, 1972LLK
9.89PEDemeo and Yencha, 1970RDSH
9.81PEDewar and Worley, 1969RDSH
9.79PEAl-Joboury and Turner, 1964RDSH
9.88 ± 0.02PIWatanabe, 1957RDSH
11.0 ± 0.2EIHustrulid, Kusch, et al., 1938RDSH
10.32PEKimura, Katsumata, et al., 1981Vertical value; LLK
10.3 ± 0.1PEBieri, Burger, et al., 1977Vertical value; LLK
10.3PEBruckmann and Klessinger, 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H5+13.20 ± 0.08C3H7EIRabbih, Selim, et al., 1981LLK
C3H6+12.00 ± 0.07C3H6EIRabbih, Selim, et al., 1981LLK
C3H6+11.23 ± 0.04C3H6PISergeev, Akopyan, et al., 1973LLK
C3H7+13.50 ± 0.08C3H5EIRabbih, Selim, et al., 1981LLK
C3H7+11.49 ± 0.03C3H5PISergeev, Akopyan, et al., 1973LLK
C4H7+11.21 ± 0.04C2H5PISergeev, Akopyan, et al., 1973LLK
C4H8+11.15 ± 0.03C2H4EIRabbih, Selim, et al., 1981LLK
C4H8+11.45C2H4EIPuttemans, 1974LLK
C4H8+11.08 ± 0.01C2H4PISergeev, Akopyan, et al., 1973LLK
C5H9+9.88CH3EILossing and Traeger, 1975, 2LLK
C5H9+≤11.06CH3EILossing and Traeger, 1975LLK
C5H9+11.15CH3EIPuttemans, 1974LLK
C5H9+11.07 ± 0.04CH3PISergeev, Akopyan, et al., 1973LLK
C6H11+11.32 ± 0.05HPISergeev, Akopyan, et al., 1973LLK
C6H11+11.66HEIPottie, Harrison, et al., 1961RDSH

De-protonation reactions

C6H11- + Hydrogen cation = Cyclohexane

By formula: C6H11- + H+ = C6H12

Quantity Value Units Method Reference Comment
Δr1750. ± 8.4kJ/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Δr1702.1 ± 3.8kJ/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; B
Quantity Value Units Method Reference Comment
Δr1713. ± 9.2kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B
Δr>1665.2kJ/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C3H9Si+ + Cyclohexane = (C3H9Si+ • Cyclohexane)

By formula: C3H9Si+ + C6H12 = (C3H9Si+ • C6H12)

Quantity Value Units Method Reference Comment
Δr159.kJ/molPHPMSLi and Stone, 1989gas phase; condensation
Quantity Value Units Method Reference Comment
Δr201.J/mol*KPHPMSLi and Stone, 1989gas phase; condensation

C6H6+ + Cyclohexane = (C6H6+ • Cyclohexane)

By formula: C6H6+ + C6H12 = (C6H6+ • C6H12)

Quantity Value Units Method Reference Comment
Δr46.9kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
13.295.PHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated

NH4+ + Cyclohexane = (NH4+ • Cyclohexane)

By formula: H4N+ + C6H12 = (H4N+ • C6H12)

Quantity Value Units Method Reference Comment
Δr40.kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated, DG<, ΔrH<
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated, DG<, ΔrH<

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
12.317.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated, DG<, ΔrH<

Lithium ion (1+) + Cyclohexane = (Lithium ion (1+) • Cyclohexane)

By formula: Li+ + C6H12 = (Li+ • C6H12)

Quantity Value Units Method Reference Comment
Δr100.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1998.
NIST MS number 291493

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Pickett, Muntz, et al., 1951
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 193
Instrument Hilger prism spectrograph
Melting point 6.6
Boiling point 80.7

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   D3d     Symmetry Number σ = 6


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1g 1 CH2 a-str 2930  E  ia 2938 VS p liq. FR(2ν3)
a1g 1 CH2 a-str 2930  E  ia 2923 VS p liq. FR(2ν3)
a1g 2 CH2 s-str 2852  C  ia 2852 VS p liq.
a1g 3 CH2 scis 1465  C  ia 1465 M p liq.
a1g 4 CH2 rock 1157  C  ia 1157 S p liq.
a1g 5 CC str 802  C  ia 802 VS p liq.
a1g 6 CCC deform + CC torsion 383  C  ia 383 M p liq.
a1u 7 CH2 twist 1383  C 1383 gas  ia Observed in the crystalline state at about ν90 K
a1u 8 CH2 wag 1157  C 1157 gas  ia Observed in the crystalline state at about ν90 K
a1u 9 CC str + CC torsion 1057  C 1057 gas  ia Observed in the crystalline state at about ν90 K
a2g 10 CH2 wag 1437  C 1437 gas  ia Observed in the crystalline state at about ν90 K
a2g 11 CH2 twist 1090  C 1090 gas  ia Observed in the crystalline state at about ν90 K
a2u 12 CH2 a-str 2915  E 2915 M gas  ia
a2u 13 CH2 s-str 2860  E  ia SF21826)
a2u 14 CH2 scis 1437  C 1437 M gas  ia
a2u 15 CH2 rock 1030  D 1040 M gas  ia FR2332)
a2u 15 CH2 rock 1030  D 1016 M gas  ia FR2332)
a2u 16 CCC deform 523  A 523 W gas  ia
eg 17 CH2 a-str 2930  E  ia SF11225)
eg 18 CH2 s-str 2897  E  ia 2897 M vb
eg 19 CH2 scis 1443  C  ia 1443 S dp
eg 20 CH2 wag 1347  C  ia 1347 S dp
eg 21 CH2 twist 1266  C  ia 1266 VS dp
eg 22 CC str 1027  C  ia 1027 VS dp
eg 23 CH2 rock 785  C 785 gas 785 VW dp liq. Observed in the crystalline state at about ν90 K
eg 24 CCC deform + CC torsion 426  C  ia 426 S dp liq.
eu 25 CH2 a-str 2933  A 2933 VS gas  ia
eu 26 CH2 s-str 2863  A 2863 VS gas  ia
eu 27 CH2 scis 1457  A 1457 VS gas  ia
eu 28 CH2 wag 1355  B 1355 W gas  ia
eu 29 CH2 twist 1261  A 1261 S gas  ia
eu 30 CH2 rock 907  B 907 S gas  ia
eu 31 CC str 863  A 863 S gas  ia
eu 32 CCC deform + CC torsion 248  C 248 VW liq.  ia

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
iaInactive
vbVery broad
pPolarized
dpDepolarized
FRFermi resonance with an overtone or a combination tone indicated in the parentheses.
SFCalculation shows that the frequency approximately equals that of the vibration indicated in the parentheses.
A0~1 cm-1 uncertainty
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryHP-10.664.1Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-110.660.1Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-120.665.7Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-130.662.3Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-140.661.2Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-150.661.9Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
CapillaryHP-160.662.9Wang, Liu, et al., 200530. m/0.25 mm/0.25 μm
PackedPMS-100090.681.Arutyunov, Kudryashov, et al., 2004N2, Chromaton N-AW-DMCS; Column length: 2. m
PackedSE-30160.676.Kurbatova, Finkelstein, et al., 2004Chromaton N-AW; Column length: 1. m
CapillarySqualane70.667.14Soják, 2004H2
CapillarySqualane70.667.02Soják, 2004N2
CapillarySqualane70.667.46Soják, 2004N2
CapillaryOV-10140.656.8Chen, Liang, et al., 2001He; Column length: 50. m; Column diameter: 0.25 mm
CapillaryOV-10160.662.2Chen, Liang, et al., 2001He; Column length: 50. m; Column diameter: 0.25 mm
PackedC78, Branched paraffin130.693.6Dallos, Sisak, et al., 2000He; Column length: 3.3 m
CapillaryHP-10160.663.35Garay, 200050. m/0.2 mm/0.2 μm, H2
CapillaryOV-101110.668.Zhuravleva, 200050. m/0.3 mm/0.4 μm, He
CapillaryOV-1010.649.Skrbic, 1997 
CapillaryOV-1010.650.Skrbic, 1997 
CapillaryCP Sil 260.672.0Estel, Mohnke, et al., 1995100. m/0.25 mm/0.25 μm
CapillaryOV-101150.688.3Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillaryOV-101180.697.9Cha and Lee, 1994Column length: 20. m; Column diameter: 0.5 mm
CapillarySqualane25.658.Hilal, Carreira, et al., 1994 
CapillaryCP Sil 5 CB20.655.7Do and Raulin, 199225. m/0.15 mm/2. μm, H2
PackedC78, Branched paraffin130.692.8Reddy, Dutoit, et al., 1992Chromosorb G HP; Column length: 3.3 m
CapillaryBP-10.649.Skrbic and Cvejanov, 199215. m/0.53 mm/1.0 μm, N2
PackedApolane130.694.Dutoit, 1991Column length: 3.7 m
CapillaryOV-145.660.6Guan, Kiraly, et al., 198920. m/0.32 mm/1.2 μm, He
CapillaryOV-165.665.6Guan, Kiraly, et al., 198920. m/0.32 mm/1.2 μm, He
CapillaryOV-145.660.6Guan, Kiraly, et al., 198925. m/0.31 mm/0.52 μm, He
CapillaryOV-165.665.6Guan, Kiraly, et al., 198925. m/0.31 mm/0.52 μm, He
CapillarySqualane50.662.7Guan, Kiraly, et al., 198950. m/0.22 mm/0.21 μm, He
CapillarySqualane70.667.1Guan, Kiraly, et al., 198950. m/0.22 mm/0.21 μm, He
CapillaryHP-160.663.Bangjie, Yijian, et al., 1988N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryHP-160.664.Bangjie, Yijian, et al., 1988N2; Column length: 25. m; Column diameter: 0.20 mm
CapillaryOV-10140.658.Laub and Purnell, 1988 
CapillaryOV-10160.663.Laub and Purnell, 1988 
CapillaryOV-10180.668.Laub and Purnell, 1988 
PackedOV-101120.676.Litvinenko, Isakova, et al., 1988He, Chromaton W AW; Column length: 2.4 m
CapillarySqualane50.662.Lunskii and Paizanskaya, 1988He; Column length: 50. m; Column diameter: 0.22 mm
CapillarySqualane70.666.4Lunskii and Paizanskaya, 1988He; Column length: 50. m; Column diameter: 0.22 mm
CapillaryOV-1100.671.1Engewald, Billing, et al., 1987Column length: 50. m; Column diameter: 0.3 mm
CapillaryOV-101100.674.Engewald, Topalova, et al., 1987Column length: 50. m; Column diameter: 0.30 mm
PackedApolane150.680.Evans and Haken, 1987He, Chromosorb G AW DCMS; Column length: 3.7 m
PackedSqualane80.669.Fernández-Sánchez, García-Domínguez, et al., 1987H2
CapillaryOV-10140.658.7Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
CapillaryOV-10150.660.9Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
CapillaryOV-10160.663.2Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
CapillaryOV-10170.665.5Boneva and Dimov, 1986100. m/0.27 mm/0.9 μm
PackedApolane150.680.Haken and Vernon, 1986Chromosorb G AW DCMS; Column length: 3.7 m
CapillaryOV-1100.673.6Anders, Anders, et al., 198555. m/0.21 mm/0.35 μm, N2
PackedSE-30180.658.Oszczapowicz, Osek, et al., 1985N2, Chromosorb A AW; Column length: 3. m
PackedSE-30150.685.Tiess, 1984Ar, Gas Chrom Q (80-100 mesh); Column length: 3. m
CapillaryOV-10130.656.Chien, Furio, et al., 1983 
CapillaryOV-10140.658.Chien, Furio, et al., 1983 
CapillaryOV-10150.660.Chien, Furio, et al., 1983 
CapillaryOV-10160.663.Chien, Furio, et al., 1983 
CapillaryOV-10170.665.Chien, Furio, et al., 1983 
CapillaryOV-10180.668.Chien, Furio, et al., 1983 
CapillaryOV-330.664.5Chien, Furio, et al., 1983, 2 
CapillaryOV-340.666.8Chien, Furio, et al., 1983, 2 
CapillaryOV-350.669.2Chien, Furio, et al., 1983, 2 
CapillaryOV-360.671.7Chien, Furio, et al., 1983, 2 
CapillaryOV-370.674.4Chien, Furio, et al., 1983, 2 
CapillaryOV-380.677.3Chien, Furio, et al., 1983, 2 
CapillaryDB-160.663.7Lubeck and Sutton, 1983Column length: 60. m; Column diameter: 0.264 mm
CapillaryDB-160.664.2Lubeck and Sutton, 198360. m/0.259 mm/1. μm
PackedSE-30100.675.Winskowski, 1983Gaschrom Q; Column length: 2. m
CapillaryOV-150.661.Anders, Scheller, et al., 1982Column length: 55. m; Column diameter: 0.21 mm
CapillarySE-30130.683.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
CapillarySE-3080.669.Bredael, 1982Column length: 100. m; Column diameter: 0.5 mm
PackedPorapack Q200.639.Goebel, 1982N2
PackedApiezon L70.680.Jaworski, 1982Column length: 1.8 m
CapillaryOV-10150.661.Johansen and Ettre, 1982100. m/0.27 mm/0.20 μm
CapillaryOV-10150.661.Johansen and Ettre, 198255. m/0.27 mm/0.9 μm
CapillaryOV-150.662.Johansen and Ettre, 198217.5 m/0.2 mm/0.15 μm
CapillarySE-3050.661.Johansen and Ettre, 198217.5 m/0.2 mm/0.15 μm
CapillarySF-9650.661.Johansen and Ettre, 198291.4 m/0.31 mm/0.20 μm
CapillaryOV-130.657.2Chien, Kopecni, et al., 1981H2
CapillaryOV-140.659.6Chien, Kopecni, et al., 1981H2
CapillaryOV-150.662.1Chien, Kopecni, et al., 1981H2
CapillaryOV-160.664.7Chien, Kopecni, et al., 1981H2
CapillaryOV-170.667.4Chien, Kopecni, et al., 1981H2
CapillaryOV-180.670.3Chien, Kopecni, et al., 1981H2
CapillarySE-3030.657.Chien, Kopecni, et al., 1981H2
CapillarySE-3040.659.1Chien, Kopecni, et al., 1981H2
CapillarySE-3050.661.3Chien, Kopecni, et al., 1981H2
CapillarySE-3060.663.6Chien, Kopecni, et al., 1981H2
CapillarySE-3070.666.1Chien, Kopecni, et al., 1981H2
CapillarySE-3080.668.8Chien, Kopecni, et al., 1981H2
CapillarySqualane50.662.Mitra, 1981N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane50.663.Mitra, 1981N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySE-3080.669.2Albaigés and Guardino, 1980He; Column length: 64. m; Column diameter: 0.25 mm
CapillarySqualane80.668.1Albaigés and Guardino, 1980He; Column length: 100. m; Column diameter: 0.25 mm
CapillaryApiezon L100.690.Morishita, Okano, et al., 1980Column length: 45. m; Column diameter: 0.25 mm
PackedSqualane100.675.Nabivach and Kirilenko, 1980He, Chromaton N-AW-HMDS; Column length: 1. m
CapillarySqualane50.662.7Bajus, Veselý, et al., 1979Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.663.9Bajus, Veselý, et al., 1979Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane50.662.78Pacáková and Koslík, 197850. m/0.2 mm/0.5 μm, N2
CapillarySqualane100.674.Rang, Orav, et al., 1977Nitrogen or helium; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane100.664.Lulova, Leont'eva, et al., 1976He; Column length: 120. m; Column diameter: 0.25 mm
CapillarySqualane100.668.8Lulova, Leont'eva, et al., 1976He; Column length: 120. m; Column diameter: 0.25 mm
CapillarySqualane100.667.8Lulova, Leont'eva, et al., 1976He; Column length: 120. m; Column diameter: 0.25 mm
PackedApolane70.675.6Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
PackedSqualane100.671.Vernon and Edwards, 1975N2, DCMS-treated Celite; Column length: 1. m
CapillarySqualane42.5660.Engewald, Epsch, et al., 1974N2; Column length: 100. m; Column diameter: 0.23 mm
CapillarySqualane70.668.Engewald, Epsch, et al., 1974N2; Column length: 100. m; Column diameter: 0.23 mm
PackedSE-30120.663.Pascal, Heintz, et al., 1974Column length: 2. m
PackedSE-30140.668.Pascal, Heintz, et al., 1974Column length: 2. m
PackedSE-30160.674.Pascal, Heintz, et al., 1974Column length: 2. m
CapillarySqualane50.663.Rijks and Cramers, 1974N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.667.Rijks and Cramers, 1974N2; Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane100.674.Besson and Gäumann, 1973Column length: 50. m; Column diameter: 0.25 mm
CapillaryApiezon L100.689.Besson and Gäumann, 1973Column length: 50. m; Column diameter: 0.25 mm
CapillaryApiezon L50.669.Gäumann and Bonzo, 1973Column length: 100. m
CapillarySqualane50.662.Gäumann and Bonzo, 1973Column length: 100. m
CapillaryOV-10150.662.Pacáková, Hoch, et al., 197325. m/0.25 mm/1.39 μm, N2
CapillaryOV-10160.664.Pacáková, Hoch, et al., 197325. m/0.25 mm/1.39 μm, N2
CapillarySqualane100.675.7Schomburg and Dielmann, 1973Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane120.682.Agrawal, Tesarík, et al., 1972N2, Celite 545; Column length: 50. m; Column diameter: 0.3 mm
CapillarySqualane86.674.Agrawal, Tesarík, et al., 1972N2, Celite 545; Column length: 50. m; Column diameter: 0.3 mm
PackedApiezon L130.683.Paris and Alexandre, 1972Chromosorb W AW
CapillaryVacuum Grease Oil (VM-4)35.662.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)45.665.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)50.667.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)58.669.Sidorov, Petrova, et al., 1972 
CapillaryVacuum Grease Oil (VM-4)68.672.Sidorov, Petrova, et al., 1972 
CapillarySqualane70.663.8Dimov and Schopov, 1971Column length: 100. m; Column diameter: 0.25 mm
PackedSE-3075.667.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m
PackedSqualane100.674.Robinson and Odell, 1971N2, Embacel; Column length: 3.0 m
PackedVacuum Grease Oil (VM-4)35.662.Sidorov, Ivanova, et al., 1971 
PackedApiezon L100.700.Wagaman and Smith, 1971CH4; Column length: 3. m
CapillarySqualane70.667.Cramers, Rijks, et al., 1970Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.667.Cramers, Rijks, et al., 1970Column length: 100. m; Column diameter: 0.25 mm
CapillarySqualane70.667.Cramers, Rijks, et al., 1970Column length: 100. m; Column diameter: 0.25 mm
PackedSE-30130.676.Mitra and Saha, 1970N2
PackedSE-3080.667.Mitra and Saha, 1970N2
PackedApiezon L100.688.Brown, Chapman, et al., 1968N2, DCMS-treated Chromosorb W; Column length: 2.3 m
PackedSqualane27.658.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.664.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.668.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.672.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane22.656.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane30.658.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane40.660.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane55.664.Evans, 1966Untreated celite; Column length: 1.8 m
PackedSqualane70.667.Evans, 1966Untreated celite; Column length: 1.8 m
PackedDC-200100.675.Rohrschneider, 1966Column length: 4. m
PackedSqualane100.675.Rohrschneider, 1966Column length: 5. m
PackedApiezon L100.689.Rohrschneider, 1966Column length: 5. m
CapillarySqualane120.675.Schomburg, 1966 
CapillarySqualane70.668.Schomburg, 1966 
CapillarySqualane80.668.Schomburg, 1966 
PackedMethyl Silicone130.676.Antheaume and Guiochon, 1965 
PackedSqualane150.688.Schomburg, 1964 
PackedApiezon L70.676.Wehrli and Kováts, 1959Celite; Column length: 2.25 m

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101650.Hayes and Pitzer, 1982110. m/0.25 mm/0.20 μm, He, 1. K/min; Tstart: 35. C; Tend: 200. C
CapillaryApiezon L678.Louis, 1971N2, 1. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100657.8Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
CapillaryDB-1658.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedCarbowax 20M160.740.Kurbatova, Finkelstein, et al., 2004Chromaton N-AW; Column length: 1. m
CapillaryPEG 4000100.766.Rang, Orav, et al., 1988 
CapillaryPEG 400060.748.Rang, Orav, et al., 1988 
CapillaryPEG 400070.752.Rang, Orav, et al., 1988 
CapillaryPEG 400080.757.Rang, Orav, et al., 1988 
PackedCarbowax 20M150.740.Haken and Vernon, 1986Chromosorb G AW DCMS; Column length: 3.7 m; Column diameter: 6.4 mm
PackedCarbowax 20M75.735.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m
CapillaryPEG-20M100.742.Morishita, Okano, et al., 1980Column length: 75. m; Column diameter: 0.25 mm
CapillaryPEG 4000100.766.Rang, Orav, et al., 1977Nitrogen or Helium; Column length: 45. m; Column diameter: 0.25 mm
PackedCarbowax 20M120.726.Pascal, Heintz, et al., 1974Column length: 2. m
PackedCarbowax 20M140.732.Pascal, Heintz, et al., 1974Column length: 2. m
PackedCarbowax 20M160.738.Pascal, Heintz, et al., 1974Column length: 2. m
PackedCarbowax 20M100.752.Rohrschneider, 1966Column length: 2. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax722.Umano and Shibamoto, 198840. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 220. C
CapillaryDB-Wax722.Umano and Shibamoto, 198840. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 220. C
CapillaryDB-Wax722.Umano and Shibamoto, 1987He, 40. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillarySPB-5663.Engel and Ratel, 200760. m/0.32 mm/1. μm, 40. C @ 2. min, 3. K/min, 230. C @ 10. min
CapillaryPetrocol DH655.8Censullo, Jones, et al., 200350. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min
CapillarySPB-1647.56LECO Corporation, 200330. m/0.25 mm/0.25 μm, 40. C @ 2. min, 10. K/min, 250. C @ 2. min
CapillarySPB-1648.22LECO Corporation, 200330. m/0.25 mm/0.25 μm, 40. C @ 2. min, 10. K/min, 250. C @ 2. min
CapillaryDB-5656.2Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5654.9Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 4. K/min; Tend: 310. C
CapillaryDB-5655.4Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5656.2Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5657.6Song, Lai, et al., 200330. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C
CapillaryOV-101654.6Yin, Liu, et al., 2001N2, 1. K/min; Column length: 80. m; Column diameter: 0.22 mm; Tstart: 30. C; Tend: 130. C
CapillaryDB-5655.4Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5656.2Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5657.6Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 6. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5656.2Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 4. K/min; Tstart: 40. C; Tend: 310. C
CapillaryDB-5654.9Lai and Song, 199530. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 4. K/min; Tend: 310. C
CapillaryPetrocol DH651.20Subramaniam, Bochniak, et al., 1994100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH651.24Subramaniam, Bochniak, et al., 1994100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryUltra-1651.Olson, Sinkevitch, et al., 19924. K/min; Tstart: -40. C; Tend: 230. C
CapillaryPetrocol DH651.09White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH651.14White, Douglas, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH651.White, Hackett, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryPetrocol DH668.White, Hackett, et al., 1992100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C
CapillaryHP-1660.8Bangjie, Xijian, et al., 1987N2, 10. K/min; Column length: 25. m; Column diameter: 0.2 mm; Tstart: 30. C
CapillaryHP-1657.3Bangjie, Xijian, et al., 1987N2, 2. K/min; Column length: 25. m; Column diameter: 0.2 mm; Tstart: 30. C
CapillaryHP-1656.4Bangjie, Xijian, et al., 1987N2, 30. C @ 5. min, 5. K/min; Column length: 25. m; Column diameter: 0.2 mm
CapillaryUltra-1647.36Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 1. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-1650.41Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 2. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-1652.19Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 3. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-2653.15Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 1. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-2656.24Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 2. K/min; Tstart: -30. C; Tend: 240. C
CapillaryUltra-2658.10Haynes and Pitzer, 198550. m/0.22 mm/0.33 μm, He, 3. K/min; Tstart: -30. C; Tend: 240. C
PackedSE-30662.Buchman, Cao, et al., 1984He, Chromosorb AW, 40. C @ 10. min, 10. K/min, 210. C @ 30. min; Column length: 3.05 m
CapillaryOV-101650.Hayes and Pitzer, 1981108. m/0.25 mm/0.2 μm, 1. K/min; Tstart: 35. C; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1665.Peng, 200015. m/0.53 mm/1. μm, He; Program: 40C(3min) => 8C/min => 200(1min) => 5C/min => 300C(25min)
CapillaryMethyl Silicone648.90Hassoun, Pilling, et al., 199950. m/0.25 mm/1. μm, He; Program: -50C(2min) => 49.9C/min => 35C(10min) => 3C/min => 200C(2min) => 40C/min => 240C(30min)
PackedSE-30662.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)
PackedSE-30662.Peng, Ding, et al., 1988Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min)

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax732.Malliaa, Fernandez-Garcia, et al., 200560. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min
CapillaryPEG-20M734.0Wang and Sun, 19853. K/min; Column length: 62. m; Column diameter: 0.27 mm; Tstart: 70. C
CapillaryPEG-20M735.5Wang and Sun, 19854. K/min; Column length: 62. m; Column diameter: 0.27 mm; Tstart: 70. C
CapillaryPEG-20M737.0Wang and Sun, 19852. K/min; Column length: 62. m; Column diameter: 0.27 mm; Tstart: 80. C
CapillaryPEG-20M741.7Wang and Sun, 19852. K/min; Column length: 62. m; Column diameter: 0.27 mm; Tstart: 90. C
PackedCarbowax 20M723.Buchman, Cao, et al., 1984He, Supelcoport, 40. C @ 10. min, 10. K/min, 210. C @ 30. min; Column length: 3.05 m

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryMethyl Silicone100.673.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone120.680.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone140.685.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryMethyl Silicone80.668.Lebrón-Aguilar, Quintanilla-López, et al., 2007 
CapillaryOV-10140.660.Li and Deng, 1998N2; Column length: 51. m; Column diameter: 0.25 mm
CapillaryMethyl Silicone50.663.N/AN2; Column length: 74.6 m; Column diameter: 0.28 mm
CapillaryOV-10150.661.Wu and Lu, 1984 
CapillaryOV-10170.665.Wu and Lu, 1984 
PackedSynachrom150.619.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSynachrom150.625.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
CapillarySqualane86.661.Vigdergauz and Martynov, 1971He; Column length: 150. m; Column diameter: 0.35 mm
PackedApieson L120.688.Kurdina, Markovich, et al., 1969not specified, not specified
PackedSqualane125.676.Cremer and Nonn, 1964H2, Chromosorb W (80-100 mesh); Column length: 3. m

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPolydimethyl siloxane: CP-Sil 5 CB658.Bramston-Cook, 201360. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min
CapillaryPetrocol DH651.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryOV-101666.Zenkevich, Eliseenkov, et al., 200925. m/0.20 mm/0.25 μm, Nitrogen, 6. K/min; Tstart: 60. C; Tend: 240. C
CapillaryBP-1662.Health Safety Executive, 200050. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C
CapillaryDB-5MS654.9Shoenmakers, Oomen, et al., 200030. m/0.25 mm/0.25 μm, He, 40. C @ 1. min, 3. K/min; Tend: 250. C
CapillaryMethyl Silicone648.95Baraldi, Rapparini, et al., 199960. m/0.25 mm/0.25 μm, 40. C @ 10. min, 5. K/min; Tend: 220. C
CapillaryOV-101658.Orav, Kailas, et al., 199950. m/0.20 mm/0.50 μm, Helium, 30. C @ 6. min, 1. K/min; Tend: 100. C
CapillarySE-54670.Bellesia, Pinetti, et al., 199625. m/0.2 mm/0.5 μm, He, 35. C @ 2. min, 5. K/min; Tend: 250. C
CapillaryDB-1658.Ciccioli, Cecinato, et al., 199260. m/0.32 mm/1.2 μm, He, 30. C @ 10. min, 3. K/min; Tend: 240. C
CapillarySE-30651.Heydanek and McGorrin, 1981He, 40. C @ 3. min, 3. K/min; Column length: 50. m; Column diameter: 0.5 mm; Tend: 170. C
PackedApiezon L668.Dahlmann, Köser, et al., 1979Chromosorb G-AW-DMCS, 10. K/min; Column length: 2. m; Tstart: 25. C
CapillarySF-96659.Donetzhuber, Johansson, et al., 1976Nitrogen, 3. K/min, 130. C @ 40. min; Column length: 111. m; Column diameter: 0.76 mm; Initial hold: 8. min

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySqualane660.Chen, 2008Program: not specified
CapillarySqualane669.Chen, 2008Program: not specified
CapillaryDB-5 MS669.Cajka, Hajslova, et al., 200730. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (0.75 min) 10 0C/min -> 200 0C 30 0C/min -> 245 0C (1.25 min)
CapillaryMethyl Silicone663.Feng and Mu, 2007Program: not specified
CapillaryMethyl Silicone661.Blunden, Aneja, et al., 200560. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min)
CapillarySE-30677.Vinogradov, 2004Program: not specified
CapillarySPB-5657.Begnaud, Pérès, et al., 200360. m/0.32 mm/1. μm; Program: not specified
CapillaryApiezon L696.Finkelstein, Kurbatova, et al., 2002Program: not specified
CapillaryMethyl Silicone700.N/AProgram: not specified
CapillaryDB-1664.Zhu and Wang, 2001Program: not specified
CapillaryMethyl Silicone666.Zenkevich, 2000Program: not specified
CapillaryMethyl Silicone657.Spieksma, 1999Program: not specified
CapillaryMethyl Silicone666.Zenkevich, 1998Program: not specified
CapillarySPB-1666.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryMethyl Silicone654.Xu, Chu, et al., 1995Program: not specified
CapillaryDB-1649.Ciccioli, Cecinato, et al., 199460. m/0.32 mm/0.25 μm; Program: not specified
CapillaryDB-1649.Ciccioli, Brancaleoni, et al., 199360. m/0.32 mm/0.25 μm; Program: 3 min at 5 C; 5 - 50 C at 3 deg/min; 50 - 220 C at 5 deg/min
CapillarySE-30664.Lou, Liu, et al., 1993Column diameter: 0.25 mm; Program: not specified
CapillaryOV-101650.Skrbic and Cvejanov, 1993Program: not specified
CapillarySPB-1666.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1664.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryOV-101677.Shibamoto, 1987Program: not specified
CapillarySE-52666.van Langenhove and Schamp, 1986Column length: 100. m; Column diameter: 0.50 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.645.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.661.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.669.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.675.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1664.Ramsey and Flanagan, 1982Program: not specified
PackedSE-30675.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)
PackedSqualane669.Robinson and Odell, 1971N2, Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min => 35 => 4C/min => 95C(hold)
PackedSE-30675.Robinson and Odell, 1971, 2Chrom W; Column length: 6.1 m; Program: 50C(10min) => 20C/min(2min) => 90C(6min) => 10C/min(6min) => (hold at 150C)
PackedSqualane669.Robinson and Odell, 1971, 2Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min(5min) => 4C/min(15min) => (hold at 95C)

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax729.Shimadzu, 201230. m/0.32 mm/0.50 μm, Helium, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-Wax729.Shimadzu Corporation, 200330. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 40. C; Tend: 260. C
CapillarySupelcowax-10717.Girard and Durance, 200060. m/0.25 mm/0.25 μm, He, 35. C @ 10. min, 4. K/min; Tend: 200. C
CapillaryDB-Wax712.Chung, Eiserich, et al., 199360. C @ 4. min, 3. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 220. C
CapillaryBP-20765.MacLeod and Snyder, 198570. C @ 5. min, 3. K/min; Column length: 25. m; Column diameter: 0.2 mm; Tend: 180. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySOLGel-Wax742.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min)
CapillarySOLGel-Wax737.Johanningsmeier and McFeeters, 201130. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryCarbowax 20M765.Vinogradov, 2004Program: not specified
CapillaryDB-Wax723.Peng, Yang, et al., 1991Program: not specified
CapillaryCarbowax 20M756.Shibamoto, 1987Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.723.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryCarbowax 20M726.Ramsey and Flanagan, 1982Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Spitzer and Huffman, 1947
Spitzer, R.; Huffman, H.M., The heats of combustion of cyclopentane, cyclohexane, cycloheptane and cyclooctane, J. Am. Chem. Soc., 1947, 69, 211-213. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons, J. Res. NBS, 1946, 37, 51-56. [all data]

Moore, Renquist, et al., 1940
Moore, G.E.; Renquist, M.L.; Parks, G.S., Thermal data on organic compounds. XX. Modern combustion data for two methylnonanes, methyl ethyl ketone, thiophene and six cycloparaffins, J. Am. Chem. Soc., 1940, 62, 1505-1507. [all data]

Beckett C.W., 1947
Beckett C.W., The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane, and seven dimethylcyclohexanes, J. Am. Chem. Soc., 1947, 69, 2488-2495. [all data]

Dorofeeva O.V., 1986
Dorofeeva O.V., Thermodynamic properties of twenty-one monocyclic hydrocarbons, J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]

Brickwedde F.G., 1946
Brickwedde F.G., Equilibrium constants of some reactions involved in the production of 1,3-butadiene, J. Res. Nat. Bur. Stand., 1946, 37, 263-279. [all data]

Kilpatrick J.E., 1947
Kilpatrick J.E., Heats, equilibrium constants, and free energies of formation of the alkylcyclopentanes and alkylcyclohexanes, J. Res. Nat. Bur. Stand., 1947, 39, 523-543. [all data]

Lippincott E.R., 1966
Lippincott E.R., Enthalpy, free energy, entropy, and heat capacity of cyclohexane and acetaldehyde, Bull. Soc. Chim. Belges., 1966, 75, 655-667. [all data]

Spitzer R., 1946
Spitzer R., The heat capacity of gaseous cyclopentane, cyclohexane and methylcyclohexane, J. Am. Chem. Soc., 1946, 68, 2537-2538. [all data]

Montgomery J.B., 1942
Montgomery J.B., The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene, J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Aston, Szasa, et al., 1943
Aston, J.G.; Szasa, G.J.; Fink, H.L., The heat capacity and entropy, heats of transition, fusion and vaporization and the vapor pressures of cyclohexane. The vibrational frequencies of alicyclic ring systems, J. Am. Chem. Soc., 1943, 65, 1135-1139. [all data]

Ruehrwein and Huffman, 1943
Ruehrwein, R.A.; Huffman, H.M., Thermal data. XVII. The heat capacity, entropy and free energy of formation of cyclohexane. A new method of heat transfer in low temperature calorimetry, J. Am. Chem. Soc., 1943, 65, 1620-1625. [all data]

Parks, Huffman, et al., 1930
Parks, G.S.; Huffman, H.M.; Thomas, S.B., Thermal data on organic compounds. VI. The heat capacities, entropies and free energies of some saturated, non-benzenoid hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1032-1041. [all data]

Trejo, Costas, et al., 1991
Trejo, L.M.; Costas, M.; Patterson, D., Excess heat capacity of organic mixtures, Internat. DATA Series, Selected Data Mixt., 1991, Ser. [all data]

Lainez, Rodrigo, et al., 1989
Lainez, A.; Rodrigo, M.M.; Wilhelm, E.; Grolier, J.-P.E., Excess volumes and excess heaat capacitiies of some mixtures with trans,trans,cis-1,5,9-cyclododecatriene at 298.15K, J. Chem. Eng. Data, 1989, 34, 332-335. [all data]

Voss and Sloan, 1989
Voss, S.F.; Sloan, E.D., Thermal conductivity and heat capacity of synthetic fuel components, Int. J. Thermophys., 1989, 10(5), 1029-1040. [all data]

Saito and Tanaka, 1988
Saito, A.; Tanaka, R., Excess volumes and heat capacities of binary mixtures formed from cyclohexane, hexane and heptane at 298.15 K, J. Chem. Thermodynam., 1988, 20, 859-865. [all data]

Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I., Excess thermodynamic properties of (cis-decalin or trans-decalin + cyclohexane or methylcyclohexane or cyclooctane) at 298.15 K, J. Chem. Thermodynam., 1988, 20, 1307-1314. [all data]

Kalali, Kohler, et al., 1987
Kalali, H.; Kohler, F.; Svejda, P., Excess properties of the mixture bis(2-dichlorethyl)ether (chlorex) + 2,2,4-trimethylpentane (isooctane), Monatsh. Chem., 1987, 118, 1-18. [all data]

Jimenez, Romani, et al., 1986
Jimenez, E.; Romani, L.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E., Molar excess heat capacities and volumes for mixtures of alkanoates with cyclohexane at 25°C, J. Solution Chem., 1986, 15(11), 879-890. [all data]

Ortega, 1986
Ortega, J., Excess molar heat capacities of the binary mixtures of cyclohexane with isomers of hexanol at 298.15 K, Rev. Latinoam. Ing. Quim. Quim. Apl., 1986, 16, 307-315. [all data]

Nkinamubanzi, Charlet, et al., 1985
Nkinamubanzi, P.; Charlet, G.; Delmas, G., Excess enthalpies, excess heat capacities and excess volumes of tetraalkoxysilanes with cyclohexane and carbon tetrachloride, Fluid Phase Equilibria, 1985, 20, 57-73. [all data]

Tanaka, Nakamichi, et al., 1985
Tanaka, R.; Nakamichi, T.; Murakami, S., Molar excess heat capacities and volumes for mixtures of benzomitrile with cyclohexane between 10 and 45°C, J. Solution Chem., 1985, 14(11), 795-803. [all data]

Siddiqi, Svejda, et al., 1983
Siddiqi, M.A.; Svejda, P.; Kohler, F., A generalized van der Waals equation of state II. Excess heat capacities of mixtures containing cycloalkanes (C5,C6), methylcycloalkanes (C5,C6) and n-decane, Ber. Bunsenges. Phys. Chem., 1983, 87, 1176-1181. [all data]

Grolier, Inglese, et al., 1982
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E., Excess volumes and excess heat capacities of tetrachloroethene + cyclohexane, + methylcyclohexane, + benzene, and + toluene at 298.15 K, J. Chem. Thermodynam., 1982, 14, 523-529. [all data]

Tanaka, 1982
Tanaka, R., Determination of excess heat capacities of (benzene + tetrachloromethane and + cyclohexane) between 293.15 and 303.15 K by use of a Picker flow calorimeter, J. Chem. Thermodynam., 1982, 14, 259-268. [all data]

Fortier, D'Arcy, et al., 1979
Fortier, J.-L.; D'Arcy, P.J.; Benson, G.C., Heat capacities of binary cycloalkane mixtures at 298.15 K, Thermochim. Acta, 1979, 28, 37-43. [all data]

Vesely, Zabransky, et al., 1979
Vesely, F.; Zabransky, M.; Svoboda, V.; Pick, J., The use of mixing calorimeter for measuring heat capacities of liquids, Coll. Czech. Chem. Commun., 1979, 44, 3529-3532. [all data]

Wilhelm, Grolier, et al., 1979
Wilhelm, E.; Grolier, G.-P.E.; Karbalai Ghassemi, M.H., Molar heat capacity of binary liquid mixtures: 1,2-dichloroethane + cyclohexane and 1,2-dichloroethane + methylcyclohexane, Thermochim. Acta, 1979, 28, 59-69. [all data]

Grolier, Wilhelm, et al., 1978
Grolier, J.-P.E.; Wilhelm, E.; Hamedi, M.H., Molar heat capacities and isothermal compressibility of binary liquid mixtures: carbon tetrachloride + benzene, carbon tetrachloride + cyclohexane and benzene + cyclohexane, Ber. Bunsenges. Phys. Chem., 1978, 82, 1282-1290. [all data]

Safir, 1978
Safir, L.I., Experimental determination of the isobaric heat capacity of cyclohexane at atmospheric pressure, Izv. Vyssh. Uchebn. Zaved. Neft. Gaz 21, 1978, (12), 81-82. [all data]

Vesely, Svoboda, et al., 1977
Vesely, F.; Svoboda, V.; Pick, J., Heat capacities of some organic liquids determined with the mixing calorimeter, 1st Czech. Conf. Calorimetry (Lect. Short Commun.), 1977, C9-1-C9-4. [all data]

Fortier, Benson, et al., 1976
Fortier, J.-L.; Benson, G.C.; Picker, P., Heat capacities of some organic liquids determined with the Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 289-299. [all data]

Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C., Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 411-423. [all data]

Jolicoeur, Boileau, et al., 1975
Jolicoeur, C.; Boileau, J.; Bazinet, S.; Picker, P., Thermodynamic properties of aqueous organic solutes in relation to their structure. Part II. Apparent molal volumes and heat capacities of c-alkylamine hydrobromides in water, Can. J. Chem., 1975, 53, 716-722. [all data]

Wilhelm, Zettler, et al., 1974
Wilhelm, E.; Zettler, M.; Sackmann, H., Molar heat capacities for the binary systems cyclohexane, carbon tetrachloride, silicon tetrachloride and tin tetrachloride Ber. Bunsenges. Phys. Chem., 1974, 78, 795-804. [all data]

Subrahmanyam and Rajagopal, 1973
Subrahmanyam, S.V.; Rajagopal, E., Excess thermodynamic functions of the systems isooctane + carbon tetrachloride and isooctane + cyclohexane, Z. Phys. Chem. [NF], 1973, 85, 256-268. [all data]

Wilhelm, Schano, et al., 1969
Wilhelm, E.; Schano, R.; Becker, G.; Findenegg, G.H.; Kohler, F., Molar heat capacity at constant volume. Binary mixtures of 1,2-dichloroethane and 1,2-dibromoethane with cyclohexane, Trans. Faraday Soc., 1969, 65, 1443-1455. [all data]

Recko, 1968
Recko, W.M., Excess heat capacity of the binary systems formed by n-propyl alcohol with benzene, mesitylene and cyclohexane, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1968, 16, 549-552. [all data]

Nikolaev, Rabinovich, et al., 1966
Nikolaev, P.N.; Rabinovich, I.B.; Gal'perin, V.A.; Tsvetkov, V.G., Isotopic effect on the specific heat and compressibility of deuterocyclohexane, Zhur. Fiz. Khim., 1966, 40, 1091-1097. [all data]

Moelwyn-Hughes and Thorpe, 1964
Moelwyn-Hughes, E.A.; Thorpe, P.L., The physical and thermodynamic properties of some associated solutions. II. Heat capacities and compressibilities, Proc. Roy. Soc. (London), 1964, 278A, 574-587. [all data]

Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]

Auerbach, Sage, et al., 1950
Auerbach, C.E.; Sage, B.H.; Lacey, W.N., Isobaric heat capacities at bubble point, Ind. Eng. Chem., 1950, 42, 110-113. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Dejardin, 1919
Dejardin, G., Pressions maxima des vapeurs du benzene et du cyclohexane aux temperatures moyennes et calcul de leurs chaleurs specifiques principales, Ann. phys. [9], 1919, 11, 253-291. [all data]

Daubert, 1996
Daubert, T.E., Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes, J. Chem. Eng. Data, 1996, 41, 365-372. [all data]

Young, 1972
Young, C.L., Gas-liquid critical properties of the cycloalkanes and their mixtures, Aust. J. Chem., 1972, 25, 1625-30. [all data]

Teja and Anselme, 1990
Teja, A.S.; Anselme, M.J., The critical properties of thermally stable and unstable fluids. II. 1986 results, AIChE Symp. Ser., 1990, 86, 279, 122-7. [all data]

Simon, 1957
Simon, M., Methods and Apparatus Used at the Bureau of Physicochemical Standards XV. Critical Constants and Straight-Line Diameters of Ten Hydrocarbons, Bull. Soc. Chim. Belg., 1957, 66, 375-81. [all data]

Young, 1910
Young, S., The Internal Heat of Vaporization constants of thirty pure substances, Sci. Proc. R. Dublin Soc., 1910, 12, 374. [all data]

Young and Fortey, 1899
Young, S.; Fortey, E.C., The Vapour Pressures, Specific Volumes and Critical Constants of Hexamethylene., J. Chem. Soc., Trans., 1899, 75, 873. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Gierycz, Kosowski, et al., 2009
Gierycz, Pawel; Kosowski, Andrzej; Swietlik, Ryszard, Vapor-Liquid Equilibria in Binary Systems Formed by Cyclohexane with Alcohols, J. Chem. Eng. Data, 2009, 54, 11, 2996-3001, https://doi.org/10.1021/je900050z . [all data]

Lubomska, Banas, et al., 2002
Lubomska, Monika; Banas, Agnieszka; Malanowski, Stanislaw K., Vapor-Liquid Equilibrium in Binary Systems Formed by Allyl Alcohol with Benzene and with Cyclohexane, J. Chem. Eng. Data, 2002, 47, 6, 1466-1471, https://doi.org/10.1021/je025540l . [all data]

Diogo, Santos, et al., 1995
Diogo, Hermínio P.; Santos, Rui C.; Nunes, Paulo M.; Minas da Piedade, Manuel E., Ebulliometric apparatus for the measurement of enthalpies of vaporization, Thermochimica Acta, 1995, 249, 113-120, https://doi.org/10.1016/0040-6031(95)90678-9 . [all data]

Lee and Holder, 1993
Lee, Chang Ha; Holder, Gerald D., Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene, J. Chem. Eng. Data, 1993, 38, 2, 320-323, https://doi.org/10.1021/je00010a034 . [all data]

Dong, Lin, et al., 1988
Dong, Jin-Quan; Lin, Rui-Sen; Yen, Wen-Hsing, Heats of vaporization and gaseous molar heat capacities of ethanol and the binary mixture of ethanol and benzene, Can. J. Chem., 1988, 66, 4, 783-790, https://doi.org/10.1139/v88-136 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009 . [all data]

Majer, Svoboda, et al., 1979
Majer, Vladimír; Svoboda, Václav; Hála, Slavoj; Pick, Jirí, Temperature dependence of heats of vaporization of saturated hydrocarbons C5-C8; Experimental data and an estimation method, Collect. Czech. Chem. Commun., 1979, 44, 3, 637-651, https://doi.org/10.1135/cccc19790637 . [all data]

Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature, Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539 . [all data]

Gaw and Swinton, 1968
Gaw, W.J.; Swinton, F.L., Thermodynamic properties of binary systems containing hexafluorobenzene. Part 3.?Excess Gibbs free energy of the system hexafluorobenzene + cyclohexane, Trans. Faraday Soc., 1968, 64, 637, https://doi.org/10.1039/tf9686400637 . [all data]

Cruickshank and Cutler, 1967
Cruickshank, Austin J.B.; Cutler, A.J.B., Vapor pressure of cyclohexane, 25 to 75.degree., J. Chem. Eng. Data, 1967, 12, 3, 326-329, https://doi.org/10.1021/je60034a010 . [all data]

Marinichev and Susarev, 1965
Marinichev, A.N.; Susarev, M.P., Zh. Prikl. Khim. (S.-Peterburg), 1965, 38, 378. [all data]

McCullough, Person, et al., 1951
McCullough, J.P.; Person, W.B.; Spitzer, Ralph, The Heats of Vaporization and Vapor Heat Capacities of Some Dimethylcyclohexanes 1, J. Am. Chem. Soc., 1951, 73, 9, 4069-4071, https://doi.org/10.1021/ja01153a003 . [all data]

Spitzer and Pitzer, 1946
Spitzer, Ralph; Pitzer, Kenneth S., The Heat Capacity of Gaseous Cyclopentane, Cyclohexane and Methylcyclohexane, J. Am. Chem. Soc., 1946, 68, 12, 2537-2538, https://doi.org/10.1021/ja01216a032 . [all data]

Kerns, Anthony, et al., 1974
Kerns, W.J.; Anthony, R.G.; Eubank, P.T., Volumetric Properties of Cyclohexane Vapor, AIChE Symp. Ser., 1974, 70, 140, 14-21. [all data]

Gaw and Swinton, 1968, 2
Gaw, W.J.; Swinton, F.L., Thermodynamic Properties of Binary Systems Containing Hexafluorobenzene. Part 3. Excess Gibbs Free Energy of the System Hexafluorobenzene + Cyclohexane, Trans. Faraday Soc., 1968, 64, 637-647, https://doi.org/10.1039/tf9686400637 . [all data]

Marinichev and Susarev, 1965, 2
Marinichev, A.N.; Susarev, M.P., Study of a Liquid-Vapor Equilibrium in the Systems of Acetone/Methanol and Acetone/Cyclohexane at Temperatures 35, 45, 55 ºC and Pressure 760 Torr, Zh. Prikl. Khim. (Moscow), 1965, 38, 378-383. [all data]

Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Rotinjanz and Nagornow, 1934
Rotinjanz, L.; Nagornow, N., Z. Phys. Chem. Abt. A, 1934, 169, 20. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Ziegler and Andrews, 1942
Ziegler, W.T.; Andrews, D.H., The heat capacity of benzene-d6, J. Am. Chem. Soc., 1942, 64, 2482-2485. [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Turner, Mallon, et al., 1973
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.v.E.; Roth, W.R.; Schroder, G., Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes, J. Am. Chem. Soc., 1973, 95, 8605-8610. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Brennan and Ubbelohde, 1956
Brennan, D.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. Part IV. Bond-strength differences based on the reaction: RI + HI = RH + I2, where R = p-methoxyphenyl and cyclohexyl, J. Chem. Soc., 1956, 3011-3016. [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Glasebrook and Lovell, 1939
Glasebrook, A.L.; Lovell, W.G., The isomerization of cyclohexane and methylcyclopentane, J. Am. Chem. Soc., 1939, 61, 1717-1720. [all data]

Fedoseenko, Yursha, et al., 1983
Fedoseenko, V.I.; Yursha, I.A.; Kabo, G.Ya., Equilibrium and thermodynamics of cyclohexanol dehydrogenation reactions, Dokl. Akad. Nauk BSSR, 1983, 27, 926-929. [all data]

Kirkbride, 1956
Kirkbride, F.W., The heats of chlorination of some hydrocarbons and their chloro-derivatives, J. Appl. Chem., 1956, 6, 11-21. [all data]

Kabo and Andreevskii, 1973
Kabo, G.Ya.; Andreevskii, D.N., Thermodynamic characteristics of the cyclohexane = methylcyclopentane isomerization, Zh. Fiz. Khim., 1973, 47, 272-273. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P., Ionization energies of homologous organic compounds and correlation with molecular size, Org. Mass Spectrom., 1991, 26, 537. [all data]

Arimura and Yoshikawa, 1984
Arimura, M.; Yoshikawa, Y., Ionization efficiency and ionization energy of cyclic compounds by electron impact, Mass Spectrosc. (Tokyo), 1984, 32, 375. [all data]

Sieck and Mautner(Meot-Ner), 1982
Sieck, L.W.; Mautner(Meot-Ner), M., Ionization energies and entropies of cycloalkanes. Kinetics of free energy controlled charge-transfer reactions, J. Phys. Chem., 1982, 86, 3646. [all data]

Lias, 1982
Lias, S.G., Thermochemical information from ion-molecule rate constants, Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]

Kovac and Klasinc, 1978
Kovac, B.; Klasinc, L., Photoelectron spectroscopy of adamantane and some adamantanones, Croat. Chem. Acta, 1978, 51, 55. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Lossing and Traeger, 1975
Lossing, F.P.; Traeger, J.C., Stabilization in cyclopentadienyl, cyclopentenyl, and cyclopentyl cations, J. Am. Chem. Soc., 1975, 97, 1579. [all data]

Rang, Paldoia, et al., 1974
Rang, S.; Paldoia, P.; Talvari, A., Ionization potentials of unsaturated hydrocarbons. 2. Mono-substituted cyclopentenes and cyclohexenes, Eesti. NSV Tead. Akad. Toim., 1974, 354. [all data]

Puttemans, 1974
Puttemans, J.P., Ionisation de cycloalcanes (C5 a C12) en spectroscopie photoelectronique et par impact electronique, Ing. Chim. (Brussels), 1974, 56, 64. [all data]

Sergeev, Akopyan, et al., 1973
Sergeev, Yu.L.; Akopyan, M.E.; Vilesov, F.I.; Chizhov, Yu.V., Photoionization processes in gaseous cyclohexane, and chloro- and bromocyclohexane, High Energy Chem., 1973, 7, 369, In original 418. [all data]

Ikuta, Yoshihara, et al., 1973
Ikuta, S.; Yoshihara, K.; Shiokawa, T.; Jinno, M.; Yokoyama, Y.; Ikeda, S., Photoelectron spectroscopy of cyclohexane, cyclopentane, and some related compounds, Chem. Lett., 1973, 1237. [all data]

Raymonda, 1972
Raymonda, J.W., Rydberg states in cyclic alkanes, J. Chem. Phys., 1972, 56, 3912. [all data]

Demeo and Yencha, 1970
Demeo, D.A.; Yencha, A.J., Photoelectron spectra of bicyclic and exocyclic olefins, J. Chem. Phys., 1970, 53, 4536. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Hustrulid, Kusch, et al., 1938
Hustrulid, A.; Kusch, P.; Tate, J.T., The dissociation of benzene (C6H6), pyridine (C5H5N) and cyclohexane (C6H12) by electron impact, Phys. Rev., 1938, 54, 1037. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Bruckmann and Klessinger, 1973
Bruckmann, P.; Klessinger, M., Photoelektronenspektren organischer verbindungen. III. Photoelektronenspektren acetylensubstituierter kleiner ringe, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 341. [all data]

Rabbih, Selim, et al., 1981
Rabbih, M.A.; Selim, E.T.M.; Fahmey, M.A., Ionization & fragmentation of cyclohexane, Indian J. Pure Appl. Phys., 1981, 19, 962. [all data]

Lossing and Traeger, 1975, 2
Lossing, F.P.; Traeger, J.C., Free radicals by mass spectrometry XLVI. Heats of formation of C5H7 and C5H9 radicals and cations., J. Am. Chem. Soc., 1975, 19, 9. [all data]

Pottie, Harrison, et al., 1961
Pottie, R.F.; Harrison, A.G.; Lossing, F.P., Free radicals by mass spectrometry. XXIV. Ionization potentials of cycloalkyl free radicals and cycloalkanes, J. Am. Chem. Soc., 1961, 83, 3204. [all data]

Pickett, Muntz, et al., 1951
Pickett, L.W.; Muntz, M.; McPherson, E.M., Vacuum ultraviolet absorption spectra of cyclic compounds. I. Cyclohexane, cyclohexene, cyclopentane, Cyclopentene and benzene, J. Am. Chem. Soc., 1951, 73, 4862-4865. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Wang, Liu, et al., 2005
Wang, Y.; Liu, J.; Li, N.; Shi, G.; Jiang, G.; Ma, W., Preliminary study of the retention behavior for different compounds using cryogenic chromatography at different initial temperatures, Microchem. J., 2005, 81, 2, 184-190, https://doi.org/10.1016/j.microc.2005.02.003 . [all data]

Arutyunov, Kudryashov, et al., 2004
Arutyunov, Y.I.; Kudryashov, S.Y.; Onuchak, L.A., Analysis of Mixtures Containing Unknown Components by Gas Chromatography: Determination of Molecular Mass, J. Anal. Chem. USSR (Engl. Transl.), 2004, 59, 4, 358-365. [all data]

Kurbatova, Finkelstein, et al., 2004
Kurbatova, S.V.; Finkelstein, E.E.; Kolosova, E.A.; Kartashev, A.V.; Rashkin, S.V., Structural analogy method in studies of adamantanes, J. Struct. Chem., 2004, 45, 1, 144-150, https://doi.org/10.1023/B:JORY.0000041513.82837.4e . [all data]

Soják, 2004
Soják, L., Separation and identification of isomeric hydrocarbons by capillary gas chromatography and hyphenated spectrometric techniques, Petroleum Coal, 2004, 46, 3, 1-35. [all data]

Chen, Liang, et al., 2001
Chen, J.P.; Liang, X.M.; Zhang, Q.; Zhang, L.F., Prediction of GC retention values under various column temperature conditions from temperature programmed data, Chromatographia, 2001, 53, 9/10, 539-547, https://doi.org/10.1007/BF02491619 . [all data]

Dallos, Sisak, et al., 2000
Dallos, A.; Sisak, A.; Kulcsár, Z.; Kováts, E., Pair-wise interactions by gas chromatography VII. Interaction free enthalpies of solutes with secondary alcohol groups, J. Chromatogr. A, 2000, 904, 2, 211-242, https://doi.org/10.1016/S0021-9673(00)00908-0 . [all data]

Garay, 2000
Garay, F., Application of a flow-tunable, serially coupled gas chromatographic capillary column system for the analysis of complex mixtures, Chromatographia Sup., 2000, 51, 1, s108-s120, https://doi.org/10.1007/BF02492792 . [all data]

Zhuravleva, 2000
Zhuravleva, I.L., Evaluation of the polarity and boiling points of nitrogen-containing heterocyclic compounds by gas chromatography, Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 325-328, https://doi.org/10.1007/BF02494682 . [all data]

Skrbic, 1997
Skrbic, B.D., Unified retention concept -- statistical treatment of Kováts retention index, J. Chromatogr. A, 1997, 764, 2, 257-264, https://doi.org/10.1016/S0021-9673(96)00955-7 . [all data]

Estel, Mohnke, et al., 1995
Estel, D.; Mohnke; Biermans; Rotzsche, The analysis of C4-C11 hydrocarbons in naphtha and reformate with a new apolar fused silica column, J. Hi. Res. Chromatogr., 1995, 18, 7, 403-412, https://doi.org/10.1002/jhrc.1240180703 . [all data]

Cha and Lee, 1994
Cha, K.-W.; Lee, D.-J., Prediction of retention indices of various compounds in gas-liquid chromatography, J. Korean Chem. Soc., 1994, 38, 2, 108-120, retrieved from http://journal.kcsnet.or.kr/publi/dh/dh94n2/108.pdf. [all data]

Hilal, Carreira, et al., 1994
Hilal, S.H.; Carreira, L.A.; Karickhoff, S.W.; Melton, C.M., Estimation of Gas-Liquid Chromatographic Retention Times from Molecular Structure, J. Chromatogr. A, 1994, 662, 2, 269-280, https://doi.org/10.1016/0021-9673(94)80515-6 . [all data]

Do and Raulin, 1992
Do, L.; Raulin, F., Gas chromatography of Titan's atmosphere. III. Analysis of low-molecular-weight hydrocarbons and nitriles with a CP-Sil-5 CB WCOT capillary column, J. Chromatogr., 1992, 591, 1-2, 297-301, https://doi.org/10.1016/0021-9673(92)80247-R . [all data]

Reddy, Dutoit, et al., 1992
Reddy, K.S.; Dutoit, J.-Cl.; Kovats, E. sz., Pair-wise interactions by gas chromatography. I. Interaction free enthalpies of solutes with non-associated primary alcohol groups, J. Chromatogr., 1992, 609, 1-2, 229-259, https://doi.org/10.1016/0021-9673(92)80167-S . [all data]

Skrbic and Cvejanov, 1992
Skrbic, B.D.; Cvejanov, J.Dj., Unified retention indices of hydrocarbons on BP-1 dimethylsiloxane stationary phase, Chromatographia, 1992, 34, 1/2, 83-84, https://doi.org/10.1007/BF02290465 . [all data]

Dutoit, 1991
Dutoit, J., Gas chromatographic retention behaviour of some solutes on structurally similar polar and non-polar stationary phases, J. Chromatogr., 1991, 555, 1-2, 191-204, https://doi.org/10.1016/S0021-9673(01)87179-X . [all data]

Guan, Kiraly, et al., 1989
Guan, Y.; Kiraly, J.; Rijks, J.A., Interactive retention index database for compound identification in temperature-programmed capillary gas chromatography, J. Chromatogr., 1989, 472, 129-143, https://doi.org/10.1016/S0021-9673(00)94101-3 . [all data]

Bangjie, Yijian, et al., 1988
Bangjie, C.; Yijian, G.; Shaoyi, P., Calculation of retention indices at an assigned temperature from temperature programmed data, Chromatographia, 1988, 25, 6, 539-542, https://doi.org/10.1007/BF02324830 . [all data]

Laub and Purnell, 1988
Laub, R.J.; Purnell, J.H., Specific retention volumes, retention indices, and family-plot regressions of aliphatic, alicyclic, and aromatic hydrocarbon solutes with OV-101 poly (dimethylsiloxane) stationary phase, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1988, 11, 9, 649-660, https://doi.org/10.1002/jhrc.1240110908 . [all data]

Litvinenko, Isakova, et al., 1988
Litvinenko, G.S.; Isakova, L.A.; Rubanyk, N.N., Quantitative correlation between structure of stereoisomeric saturated cyclic compounds and gas-chromatographic retention indices. I. Methysubstituted, Izv. AN Kaz. SSR, Ser. Khim., 1988, 5, 54-66. [all data]

Lunskii and Paizanskaya, 1988
Lunskii, M.Kh.; Paizanskaya, I.L., Identification of hydrocarbons C1-C9 of petrol fractions of oils and condensates in the use of capillary columns with dinonylphthalate, Zh. Anal. Khim., 1988, 43, 127-135. [all data]

Engewald, Billing, et al., 1987
Engewald, W.; Billing, U.; Welsch, T.; Haufe, G., Structure-retention correlations of hydrocarbons in gas-liquid and gas-solid chromatography. Cycloalkenes and cycloalkadienes, Chromatographia, 1987, 23, 8, 590-594, https://doi.org/10.1007/BF02324870 . [all data]

Engewald, Topalova, et al., 1987
Engewald, W.; Topalova, I.; Petsev, N.; Dimitrov, Chr., Structure-Retention Correlations of Hydrocarbons in GLC and GSC. Alkenylbenzenes, Chromatographia, 1987, 23, 8, 561-565, https://doi.org/10.1007/BF02324864 . [all data]

Evans and Haken, 1987
Evans, M.B.; Haken, J.K., Dispersion and selectivity indices of the halogenated derivatives of cyclohexane, benzene and anisole, J. Chromatogr., 1987, 389, 240-244, https://doi.org/10.1016/S0021-9673(01)94428-0 . [all data]

Fernández-Sánchez, García-Domínguez, et al., 1987
Fernández-Sánchez, E.; García-Domínguez, J.A.; García-Muñoz, J.; Menéndez, V.; Molera, M.J., Prediction of gas chromatographic retention indices on binary mixed stationary phases, An. Quim., 1987, 83, 56-58. [all data]

Boneva and Dimov, 1986
Boneva, S.; Dimov, N., Unified retention index of hydrocarbons separated on dimethylsilicone OV-101, Chromatographia, 1986, 21, 12, 697-700, https://doi.org/10.1007/BF02313682 . [all data]

Haken and Vernon, 1986
Haken, J.K.; Vernon, F., Gas chromatography of halogenated derivatives of cyclohexane, benzene and anisole, J. Chromatogr., 1986, 361, 57-61, https://doi.org/10.1016/S0021-9673(01)86893-X . [all data]

Anders, Anders, et al., 1985
Anders, G.; Anders, K.; Engewald, W., Identification of non-branched alkenylcycloalkanes with a terminal double bond from retention index increments, Chromatographia, 1985, 20, 2, 83-86, https://doi.org/10.1007/BF02280602 . [all data]

Oszczapowicz, Osek, et al., 1985
Oszczapowicz, J.; Osek, J.; Ciszkowski, K.; Krawczyk, W.; Ostrowski, M., Retention Indices of Dimethylbenzamidines and Benzylideneamines on a Non-Polar Column, J. Chromatogr., 1985, 330, 79-85, https://doi.org/10.1016/S0021-9673(01)81964-6 . [all data]

Tiess, 1984
Tiess, D., Gaschromatographische Retentionsindices von 125 leicht- bis mittelflüchtigen organischen Substanzen toxikologisch-analytischer Relevanz auf SE-30, Wiss. Z. Wilhelm-Pieck-Univ. Rostock Math. Naturwiss. Reihe, 1984, 33, 6-9. [all data]

Chien, Furio, et al., 1983
Chien, C.-F.; Furio, D.L.; Kopecni, M.M.; Laub, R.J., Specific Retention Volumes and Retention Indices of Selected Hydrocarbon Solutes with OV-101 and SP-2100 Polydimethylsiloxane Solvents, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1983, 6, 10, 577-580, https://doi.org/10.1002/jhrc.1240061013 . [all data]

Chien, Furio, et al., 1983, 2
Chien, C.-F.; Furio, D.L.; Kopecni, M.M.; Laub, R.J., Specific retention volumes and retention indices of selected hydrocarbon solutes with OV-3, OV-7, OV-11, OV-17, OV-22, and OV-25 polymethylphenylsiloxane solvents, J. Hi. Res. Chromatogr., 1983, 6, 12, 669-679, https://doi.org/10.1002/jhrc.1240061207 . [all data]

Lubeck and Sutton, 1983
Lubeck, A.J.; Sutton, DL., Kovats retention indices of selected hydrocarbons through C10 on bonded phase fused silica capillaries, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1983, 6, 6, 328-332, https://doi.org/10.1002/jhrc.1240060612 . [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Anders, Scheller, et al., 1982
Anders, G.; Scheller, M.; Schuhler, C.; Struppe, H.G., Zur Vorausberechnung von Bruttoretentioszeiten bei temperaturprogramierter Gaschromatographie mit Hilfe isotherm bestimmter Retentionsindices und einer Anpassung an experimentelle Retentionszeiten, Chromatographia, 1982, 15, 1, 43-47, https://doi.org/10.1007/BF02269039 . [all data]

Bredael, 1982
Bredael, P., Retention indices of hydrocarbons on SE-30, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Jaworski, 1982
Jaworski, M., Wybrane przyklady stosowania systemu indeksów retencji, Przem. Chem., 1982, 61, 9, 334-338. [all data]

Johansen and Ettre, 1982
Johansen, N.G.; Ettre, L.S., Retention index values of hydrocarbons on open-tubular columns coated with methylsilicone liquid phases, Chromatographia, 1982, 15, 10, 625-630, https://doi.org/10.1007/BF02279488 . [all data]

Chien, Kopecni, et al., 1981
Chien, C.-F.; Kopecni, M.M.; Laub, R.J., Specific Retention Volumes and Retention Indices of Selected Hydrocarbon Solutes with OV-1 and SE-30 Polydimethylsiloxane Solvents, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1981, 4, 10, 539-543, https://doi.org/10.1002/jhrc.1240041017 . [all data]

Mitra, 1981
Mitra, G.D., Conversion of linear retention indices into logarithmic retention indices, J. Chromatogr., 1981, 211, 2, 239-242, https://doi.org/10.1016/S0021-9673(00)88039-5 . [all data]

Albaigés and Guardino, 1980
Albaigés, J.; Guardino, X., Gas chromatographic-mass spectrometric identification of alkylcyclohexanes and cyclohexenes, Chromatographia, 1980, 13, 12, 755-762, https://doi.org/10.1007/BF02265555 . [all data]

Morishita, Okano, et al., 1980
Morishita, F.; Okano, T.; Kojima, T., Retention indices of monocyclic monoterpene hydrocarbons, Bunseki Kagaku, 1980, 29, 1, 48-53, https://doi.org/10.2116/bunsekikagaku.29.48 . [all data]

Nabivach and Kirilenko, 1980
Nabivach, V.M.; Kirilenko, A.V., Relationship between the gas chromatographic behaviour and the molecular structure of hydrocarbon samples and various stationary phases. Part II. Correlation between the retention index, physicochemical properties and molecular structure, Chromatographia, 1980, 13, 2, 93-100, https://doi.org/10.1007/BF02263060 . [all data]

Bajus, Veselý, et al., 1979
Bajus, M.; Veselý, V.; Leclercq, P.A.; Rijks, J.A., Steam cracking of hydrocarbons. 2. Pyrolysis of methylcyclohexane, Ind. Eng. Chem. Prod. Res. Dev., 1979, 18, 2, 135-142, https://doi.org/10.1021/i360070a012 . [all data]

Pacáková and Koslík, 1978
Pacáková, V.; Koslík, V., Capillary reaction gas chromatography. I. Catalytic decomposition of hydrocarbons, Chromatographia, 1978, 11, 5, 266-273, https://doi.org/10.1007/BF02282952 . [all data]

Rang, Orav, et al., 1977
Rang, S.; Orav, A.; Kuningas, K.; Eisen, O., Capillary Gas Chromatography of Monosubstituted Cyclopentenes and Cyclohexenes, Chromatographia, 1977, 10, 3, 115-122, https://doi.org/10.1007/BF02297862 . [all data]

Lulova, Leont'eva, et al., 1976
Lulova, N.I.; Leont'eva, S.A.; Timofeeva, A.N., Gas-chromatographic method of determination of individual hydrocarbons in catalytic cracking gasolines in Proceedings of All-Union Research Institute on Oil Processes. Vol.18, All-Union Research Institute on Oil Processes, Moscow, 1976, 30-53. [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Vernon and Edwards, 1975
Vernon, F.; Edwards, G.T., Gas-liquid chromatography on fluorinated stationary phases. I. Hydrocarbons and fluorocarbons, J. Chromatogr., 1975, 110, 1, 73-80, https://doi.org/10.1016/S0021-9673(00)91212-3 . [all data]

Engewald, Epsch, et al., 1974
Engewald, W.; Epsch, K.; Graefe, J.; Welsch, Th., Molekülstruktur und retentionsverhalten. II. Retentionsverhalten cycloaliphatischer kohlenwasser-stoffe bei der gas-adsorptions- und gas-verteilungschromatographie, J. Chromatogr., 1974, 91, 623-631, https://doi.org/10.1016/S0021-9673(01)97943-9 . [all data]

Pascal, Heintz, et al., 1974
Pascal, J.C.; Heintz, M.; Druilhe, A.; Lefort, D., Relations entre structure chimique et grandeurs de rétention. III. Stéréoisomères cyclohexaniques, Chromatographia, 1974, 7, 5, 236-245, https://doi.org/10.1007/BF02321774 . [all data]

Rijks and Cramers, 1974
Rijks, J.A.; Cramers, C.A., High precision capillary gas chromatography of hydrocarbons, Chromatographia, 1974, 7, 3, 99-106, https://doi.org/10.1007/BF02269819 . [all data]

Besson and Gäumann, 1973
Besson, R.; Gäumann, T., Indices de rétention de cycloalcanes, cycloalcènes, bicycloalkyles, cycloalkyl-cycloalcényles et bicycloalcényles en chromatographie en phase gazeuse, Helv. Chim. Acta, 1973, 56, 3, 1159-1164, https://doi.org/10.1002/hlca.19730560339 . [all data]

Gäumann and Bonzo, 1973
Gäumann, T.; Bonzo, R., The gas-chromatographic retention indices of deuterated compounds, Helv. Chim. Acta, 1973, 56, 3, 1165-1176, https://doi.org/10.1002/hlca.19730560340 . [all data]

Pacáková, Hoch, et al., 1973
Pacáková, V.; Hoch, K.; Smolková, E., The Effect of Instrumentation on the Precision of Retention Indexes, Chromatographia, 1973, 6, 7, 320-324, https://doi.org/10.1007/BF02269334 . [all data]

Schomburg and Dielmann, 1973
Schomburg, G.; Dielmann, G., Identification by means of retention parameters, J. Chromatogr. Sci., 1973, 11, 3, 151-159, https://doi.org/10.1093/chromsci/11.3.151 . [all data]

Agrawal, Tesarík, et al., 1972
Agrawal, B.B.; Tesarík, K.; Janák, J., Gas chromatographic characterization of sulphur compounds in the 93-162° gasoline cut from Romashkino crude oil using Kováts retention indices, J. Chromatogr., 1972, 65, 1, 207-215, https://doi.org/10.1016/S0021-9673(00)86933-2 . [all data]

Paris and Alexandre, 1972
Paris, C.; Alexandre, P., Stereochemical Investigation of Cyclohexane and Terpene Compounds by Gas Chromatography, J. Chromatogr. Sci., 1972, 10, 6, 402-411, https://doi.org/10.1093/chromsci/10.6.402 . [all data]

Sidorov, Petrova, et al., 1972
Sidorov, R.I.; Petrova, V.I.; Ivanova, M.P., Qualitative analysis of wide-boiling fraction C5-C10 with capillary chromatography in Processes in chromatographic columns. Vol.17, 1972, 14-25. [all data]

Dimov and Schopov, 1971
Dimov, N.; Schopov, D., Empirische korrektion der physikalisch-chemischen retentionsindexe von kohlenwasserstoffen auf squalan, J. Chromatogr., 1971, 63, 223-228, https://doi.org/10.1016/S0021-9673(01)85634-X . [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]

Sidorov, Ivanova, et al., 1971
Sidorov, R.I.; Ivanova, M.P.; Petrova, V.I., Temperature dependence of cycloalkane's retention and its using in identification of structure, Gazovaya Khromatografiya, 1971, 15, 18-26. [all data]

Wagaman and Smith, 1971
Wagaman, K.L.; Smith, T.G., Use of hydrocarbons as carrier gases in GLC, J. Chromatogr. Sci., 1971, 9, 4, 241-244, https://doi.org/10.1093/chromsci/9.4.241 . [all data]

Cramers, Rijks, et al., 1970
Cramers, C.A.; Rijks, J.A.; Pacáková, V.; de Andrade, I.R., The application of precision gas chromatography to the identification of types of hydrocarbons, J. Chromatogr., 1970, 51, 13-21, https://doi.org/10.1016/S0021-9673(01)96835-9 . [all data]

Mitra and Saha, 1970
Mitra, G.D.; Saha, N.C., Determination of Retention Indices of Saturated Hydrocarbons by Graphical Methods, J. Chromatogr. Sci., 1970, 8, 2, 95-102, https://doi.org/10.1093/chromsci/8.2.95 . [all data]

Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J., Gas chromatography of polar solutes in electron acceptor stationary phases, Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125 . [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Evans, 1966
Evans, M.B., Retention indices of solutes on squalane, dinonyl phthalate, and polyethylene glycol 400, J. Gas Chromatogr., 1966, 4, 1, 1-3, https://doi.org/10.1093/chromsci/4.1.1 . [all data]

Rohrschneider, 1966
Rohrschneider, L., Eine methode zur charakterisierung von gaschromatographischen trennflüssigkeiten, J. Chromatogr., 1966, 22, 6-22, https://doi.org/10.1016/S0021-9673(01)97064-5 . [all data]

Schomburg, 1966
Schomburg, G., Gaschromatographische Retentionsdaten und struktur chemischer verbindungen. III. Alkylverzweigte und ungesättigte cyclische Kohlenwasserstoffe, J. Chromatogr., 1966, 23, 18-41, https://doi.org/10.1016/S0021-9673(01)98653-4 . [all data]

Antheaume and Guiochon, 1965
Antheaume, J.; Guiochon, G., Application de la chromatographie en phase gazeuse à l'étude de la composition des fractions moyennes d'un brut pétrolier, Bull. Soc. Chim. Fr., 1965, 2, 298-307. [all data]

Schomburg, 1964
Schomburg, G., Gas-Chromatographische Retentionsdaten und Struktur Chemischer Verbindungen. I. Verzweigte Aliphatische und Alicyclische Carbonsäure-Methylester, J. Chromatogr., 1964, 14, 157-177, https://doi.org/10.1016/S0021-9673(00)86608-X . [all data]

Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E., Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen, Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745 . [all data]

Hayes and Pitzer, 1982
Hayes, P.C., Jr.; Pitzer, E.W., Characterizing petroleum- and shale-derived jet fuel distillates via temperature-programmed Kováts indices, J. Chromatogr., 1982, 253, 179-198, https://doi.org/10.1016/S0021-9673(01)88376-X . [all data]

Louis, 1971
Louis, R., Kovats-index-tafeln zur gaschromatographischen analyse von kohlenwasserstoffgemischen, Erdoel Kohle Erdgas Petrochem., 1971, 24, 2, 88-94. [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Rang, Orav, et al., 1988
Rang, S.A.; Orav, A.E.; Kuningas, K.R.; Meister, A.E.; Strense, T.V.; Eisen, O.G., Gas-Chromatographic Characteristics of unsaturated hydrocarbons, Academy of Sciences of Estonia SSR, Tallinn, Estonia SSR, 1988, 208. [all data]

Umano and Shibamoto, 1988
Umano, K.; Shibamoto, T., A new method of headspace sampling: grapefruit volatiles in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 981-998. [all data]

Umano and Shibamoto, 1987
Umano, K.; Shibamoto, T., Analysis of headspace volatiles from overheated beef fat, J. Agric. Food Chem., 1987, 35, 1, 14-18, https://doi.org/10.1021/jf00073a004 . [all data]

Engel and Ratel, 2007
Engel, E.; Ratel, J., Correction of the data generated by mass spectrometry analyses of biological tissues: Application to food authentication, J. Chromatogr. A, 2007, 1154, 1-2, 331-341, https://doi.org/10.1016/j.chroma.2007.02.012 . [all data]

Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T., Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography, J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922 . [all data]

LECO Corporation, 2003
LECO Corporation, Determination of hydrocarbon components in petroleum naphthas, 2003, retrieved from http://www.leco.org/customersupport/apps/separationscience/-190.pdf. [all data]

Song, Lai, et al., 2003
Song, C.; Lai, W.-C.; Madhusudan Reddy, K.; Wei, B., Chapter 7. Temperature-programmed retention indices for GC and GC-MS of hydrocarbon fuels and simulated distillation GC of heavy oils in Analytical advances for hydrocarbon research, Hsu,C.S., ed(s)., Kluwer Academic/Plenum Publishers, New York, 2003, 147-193. [all data]

Yin, Liu, et al., 2001
Yin, C.; Liu, W.; Li, Z.; Pan, Z.; Lin, T.; Zhang, M., Chemometrics to chemical modeling: structural coding in hydrocarbons and retention indices of gas chromatography, J. Sep. Sci., 2001, 24, 3, 213-220, https://doi.org/10.1002/1615-9314(20010301)24:3<213::AID-JSSC213>3.0.CO;2-4 . [all data]

Lai and Song, 1995
Lai, W.-C.; Song, C., Temperature-programmed retention indices for g.c. and g.c.-m.s. analysis of coal- and petroleum-derived liquid fuels, Fuel, 1995, 74, 10, 1436-1451, https://doi.org/10.1016/0016-2361(95)00108-H . [all data]

Subramaniam, Bochniak, et al., 1994
Subramaniam, B.; Bochniak, D.; Snavely, K., Fischer-Tropsch synthesis in supercritical reaction media, Lawrence Department of Chemical and Petroleum Engineering (DOE/PC/92532--T7), United States Department of Energy, Pittsburgh, PA, 1994, 8, retrieved from http://www.NTIS.gov. [all data]

Olson, Sinkevitch, et al., 1992
Olson, K.L.; Sinkevitch, R.M.; Sloane, T.M., Speciation and Quantitation of Hydrocarbons in Gasoline Engine Exhaust, J. Chromatogr. Sci., 1992, 30, 12, 500-508, https://doi.org/10.1093/chromsci/30.12.500 . [all data]

White, Douglas, et al., 1992
White, C.M.; Douglas, L.J.; Hackett, J.P.; Anderson, R.R., Characterization of synthetic gasoline from the chloromethane-zeolite reaction, Energy Fuels, 1992, 6, 1, 76-82, https://doi.org/10.1021/ef00031a012 . [all data]

White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S., Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane, J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211 . [all data]

Bangjie, Xijian, et al., 1987
Bangjie, C.; Xijian, G.; Shaoyi, P., Calculation of retention indices in temperature-programmed gas chromatography, Chromatographia, 1987, 23, 12, 888-892, https://doi.org/10.1007/BF02261466 . [all data]

Haynes and Pitzer, 1985
Haynes, P.C., Jr.; Pitzer, E.W., Disengaging solutes in shale- and petroleum-derived jet fuels by altering GC programmed temperature rates, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1985, 8, 5, 230-242, https://doi.org/10.1002/jhrc.1240080504 . [all data]

Buchman, Cao, et al., 1984
Buchman, O.; Cao, G.-Y.; Peng, C.T., Structure assignment by retention index in gas-liquid radiochromatography of substituted cyclohexenes, J. Chromatogr., 1984, 312, 75-90, https://doi.org/10.1016/S0021-9673(01)92765-7 . [all data]

Hayes and Pitzer, 1981
Hayes, P.C., Jr.; Pitzer, E.W., Kovats indices as a tool in characterizing hydrocarbon fuels in temperature programmed glass capillary gas chromatography. Part 1. Qualitative identification, Inhouse rpt. for Air Force Wright Aeronautical Labs., Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio, 1981, 75. [all data]

Peng, 2000
Peng, C.T., Prediction of retention indices. V. Influence of electronic effects and column polarity on retention index, J. Chromatogr. A, 2000, 903, 1-2, 117-143, https://doi.org/10.1016/S0021-9673(00)00901-8 . [all data]

Hassoun, Pilling, et al., 1999
Hassoun, S.; Pilling, M.J.; Bartle, K.D., A catalogue of urban hydrocarbons for the city of Leeds: atmospheric monitoring of volatile organic compounds by thermal desorption-gas chromatography, J. Environ. Monitor., 1999, 1, 5, 453-458, https://doi.org/10.1039/a904879k . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Malliaa, Fernandez-Garcia, et al., 2005
Malliaa, S.; Fernandez-Garcia, E.; Bosset, J.O., Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses, Int. Dairy J., 2005, 15, 6-9, 741-758, https://doi.org/10.1016/j.idairyj.2004.11.007 . [all data]

Wang and Sun, 1985
Wang, T.; Sun, Y., Correlation of Retention Indices obtained with Two Temperature Programmes, J. Chromatogr., 1985, 330, 167-171, https://doi.org/10.1016/S0021-9673(01)81973-7 . [all data]

Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M., Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases, J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025 . [all data]

Li and Deng, 1998
Li, H.; Deng, C., Qualitative analysis of light components of gasoline cracking using Kovats retention indices, J. Instrumental Analysis, 1998, 17, 1, 67-69. [all data]

Wu and Lu, 1984
Wu, J.; Lu, W., Kovats indices of C4-C10 hydrocarbons in apolar quartz capillary OV-101, Chin. J. Chromatogr., 1984, 1, 1, 11-17. [all data]

Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J., Sorpcni materialy pro plynovou chromatographii - III, Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]

Vigdergauz and Martynov, 1971
Vigdergauz, M.S.; Martynov, A.A., Some applications of the gas chromatographic linear retention indices, Chromatographia, 1971, 4, 10, 463-467, https://doi.org/10.1007/BF02268816 . [all data]

Kurdina, Markovich, et al., 1969
Kurdina, Z.G.; Markovich, V.E.; Sakharov, V.M., Gas chromatography of cyclic O-containing compounds in Gas chromatography, Issue # 10, NIITEKhim, Moscow, 1969, 128-133. [all data]

Cremer and Nonn, 1964
Cremer, E.; Nonn, H., Kennzahlen zur Identifizierung chromatographisch getrennter Komponenten, Monatsh. Chem., 1964, 3, 3, 910-921, https://doi.org/10.1007/BF00908804 . [all data]

Bramston-Cook, 2013
Bramston-Cook, R., Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Zenkevich, Eliseenkov, et al., 2009
Zenkevich, I.G.; Eliseenkov, E.V.; Kasatochkin, A.N., Chromatographic Identification of Cyclohexane Chlorination Products by an Additive Scheme for the Prediction of Retention Indices, Chromatographia, 2009, 70, 5/6, 839-849, https://doi.org/10.1365/s10337-009-1213-x . [all data]

Health Safety Executive, 2000
Health Safety Executive, MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]

Shoenmakers, Oomen, et al., 2000
Shoenmakers, P.J.; Oomen, J.L.M.M.; Blomberg, J.; Genuit, W.; van Velzen, G., Comparison of comprehensive two-dimensional gas chromatography and gas chromatography-mass spectrometry for the characterization of complex hydrocarbon mixtures, J. Chromatogr. A, 2000, 892, 1-2, 29-46, https://doi.org/10.1016/S0021-9673(00)00744-5 . [all data]

Baraldi, Rapparini, et al., 1999
Baraldi, R.; Rapparini, F.; Rossi, F.; Latella, A.; Ciccioli, P., Volatile organic compound emissions from flowers of the most occurring and economically important species of fruit trees, Phys. Chem. Earth, 1999, 24, 6, 729-732, https://doi.org/10.1016/S1464-1909(99)00073-8 . [all data]

Orav, Kailas, et al., 1999
Orav, A.; Kailas, T.; Muurisepp, M.; Kann, J., Composition of the oil from waste tires. 1. Fraction boiling at yp to 160 0C, Proc. Estonian Acad. Sci. Chem., 1999, 48, 1, 30-39. [all data]

Bellesia, Pinetti, et al., 1996
Bellesia, F.; Pinetti, A.; Bianchi, A.; Tirillini, B., Volatile compounds of the white truffle (Tuber magnaturn Pico) from middle Italy, Flavour Fragr. J., 1996, 11, 4, 239-243, https://doi.org/10.1002/(SICI)1099-1026(199607)11:4<239::AID-FFJ573>3.0.CO;2-A . [all data]

Ciccioli, Cecinato, et al., 1992
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Liberti, A., Use of carbon adsorption traps combined with high resolution gas chromatography - mass spectrometry for the analysis of polar and non-polar C4-C14 hydrocarbons involved in photochemical smog formation, J. Hi. Res. Chromatogr., 1992, 15, 2, 75-84, https://doi.org/10.1002/jhrc.1240150205 . [all data]

Heydanek and McGorrin, 1981
Heydanek, M.G.; McGorrin, R.J., Gas chromatography-mass spectroscopy investigations on the flavor chemistry of oat groats, J. Agric. Food Chem., 1981, 29, 5, 950-954, https://doi.org/10.1021/jf00107a016 . [all data]

Dahlmann, Köser, et al., 1979
Dahlmann, G.; Köser, H.J.K.; Oelert, H.H., Multiple korrelation von retentionsindizes, Chromatographia, 1979, 12, 10, 665-671, https://doi.org/10.1007/BF02302943 . [all data]

Donetzhuber, Johansson, et al., 1976
Donetzhuber, A.; Johansson, K.; Sandstroem, C., Gas phase characterization of wood, pulp, and paper, Appl. Polymer Symp., 1976, 28, 889-901. [all data]

Chen, 2008
Chen, H.-F., Quantitative prediction of gas chromatography retention indices with support vector machines, radial basis neutral networks and multiple linear regression, Anal. Chim. Acta, 2008, 609, 1, 24-36, https://doi.org/10.1016/j.aca.2008.01.003 . [all data]

Cajka, Hajslova, et al., 2007
Cajka, T.; Hajslova, J.; Cochran, J.; Holadova, K.; Klimankova, E., Solid phase microextraction - comprehensive two dimensional gas chromatography - time-of-flight mass spectrometry for the analysis of honey volatiles, J. Sep. Sci., 2007, 30, 4, 534-546, https://doi.org/10.1002/jssc.200600413 . [all data]

Feng and Mu, 2007
Feng, H.; Mu, L.-L., Quantitative structure-retention relationships for alkane and its derivatives based on electrotopological state index and molecular shape index, Chem. Ind. Engineering (Chinese), 2007, 24, 2, 161-168. [all data]

Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A., Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina, Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Begnaud, Pérès, et al., 2003
Begnaud, F.; Pérès, C.; Berdagué, J.-L., Characterization of volatile effluents of livestock buildings by solid-phase microextraction, Int. J. Environ. Anal. Chem., 2003, 83, 10, 837-849, https://doi.org/10.1080/03067310310001603349 . [all data]

Finkelstein, Kurbatova, et al., 2002
Finkelstein, E.E.; Kurbatova, S.V.; Kolosova, E.A., Study of biological activity of structure analogies of adamantane, Proc. Samara State Univ., 2002, 26, 4, 121-128. [all data]

Zhu and Wang, 2001
Zhu, X.; Wang, W., The relationship between partition coefficients of hydrocarbons and their retention indices, Acta Scientific Circumstantiae, 2001, 21, 5, 631-633. [all data]

Zenkevich, 2000
Zenkevich, I.G., Mutual Correlation between Gas Chromatographic Retention Indices of Unsaturated and Saturated Hydrocarbons found by Molecular Dynamics, Z. Anal. Chem., 2000, 55, 10, 1091-1097. [all data]

Spieksma, 1999
Spieksma, W., Determination of vapor liquid equilibrium from the Kovats retention index on dimethylsilicone using the Wilson mixing tool, J. Hi. Res. Chromatogr., 1999, 22, 10, 565-588, https://doi.org/10.1002/(SICI)1521-4168(19991001)22:10<565::AID-JHRC565>3.0.CO;2-2 . [all data]

Zenkevich, 1998
Zenkevich, I.G., Reciprocally Unambiguous Conformity Between GC Retention Indices and Boiling Points within Two- and Multidimensional Taxonomic Groups of Organic Compounds, J. Hi. Res. Chromatogr., 1998, 21, 10, 565-568, https://doi.org/10.1002/(SICI)1521-4168(19981001)21:10<565::AID-JHRC565>3.0.CO;2-6 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Xu, Chu, et al., 1995
Xu, X.; Chu, S.; Song, N., Application of chromatographic studies of air pollution in China, J. Chromatogr. A, 1995, 710, 1, 21-37, https://doi.org/10.1016/0021-9673(95)00173-K . [all data]

Ciccioli, Cecinato, et al., 1994
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Brachetti, A.; Frattoni, M.; Sparapani, R., Composition and Distribution of Polar and Non-Polar VOCs in Urban, Rural, Forest and Remote Areas, Eur Commission EUR, 1994, 549-568. [all data]

Ciccioli, Brancaleoni, et al., 1993
Ciccioli, P.; Brancaleoni, E.; Cecinato, A.; Sparapani, R.; Frattoni, M., Identification and determination of biogenic and anthropogenic volatile organic compounds in forest areas of Northern and Southern Europe and a remote site of the Himalaya region by high-resolution gas chromatography-mass spectrometry, J. Chromatogr., 1993, 643, 1-2, 55-69, https://doi.org/10.1016/0021-9673(93)80541-F . [all data]

Lou, Liu, et al., 1993
Lou, X.; Liu, X.; Zhou, L., Chiral recognition of enantiomeric amides on a diamide chiral stationary phase by gas chromatography, J. Chromatogr., 1993, 634, 2, 345-349, https://doi.org/10.1016/0021-9673(93)83024-M . [all data]

Skrbic and Cvejanov, 1993
Skrbic, B.D.; Cvejanov, J.Dj., Correlation of unified retention indices for OV-101 and squalane, Chromatographia, 1993, 35, 1/2, 109-110, https://doi.org/10.1007/BF02278566 . [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Shibamoto, 1987
Shibamoto, T., Retention Indices in Essential Oil Analysis in Capillary Gas Chromatography in Essential Oil Analysis, Sandra, P.; Bicchi, C., ed(s)., Hutchig Verlag, Heidelberg, New York, 1987, 259-274. [all data]

van Langenhove and Schamp, 1986
van Langenhove, H.; Schamp, N., Identification of Volatiles in the Head Space of Acid-Treated Phosphate Rock by Gas Chromatography-Mass Spectromety, J. Chromatogr., 1986, 351, 65-75, https://doi.org/10.1016/S0021-9673(01)83473-7 . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J., Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse, J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5 . [all data]

Robinson and Odell, 1971, 2
Robinson, P.G.; Odell, A.L., Comparison of isothermal and non-linear temperature programmed gas chromatography. The temperature dependence of the retention indices of a number of hydrocarbons on squalane and SE-30, J. Chromatogr., 1971, 57, 11-17, https://doi.org/10.1016/0021-9673(71)80002-X . [all data]

Shimadzu, 2012
Shimadzu, Pharmaceutical Related, Analysis of pharmaceutical residual solvent (observation of separation) (1) - GC, 2012, retrieved from www.shimadzu.ru/applications/Applicationspdf/GC/Pharma/Pharmaceutical residual solvents GC.pdf. [all data]

Shimadzu Corporation, 2003
Shimadzu Corporation, Analysis of pharmaceutical residual solvent (observation of separation), 2003, retrieved from http://www.shimadzu.com.br/analitica/aplicacoes/book/pharm69.pdf. [all data]

Girard and Durance, 2000
Girard, B.; Durance, T., Headspace volatiles of sockeye and pink salmon as affected by retort process, Food Chem. Toxicol., 2000, 65, 1, 34-39. [all data]

Chung, Eiserich, et al., 1993
Chung, T.Y.; Eiserich, J.P.; Shibamoto, T., Volatile compounds identified in headspace samples of peanut oil heated under temperatures ranging from 50 to 200 °C, J. Agric. Food Chem., 1993, 41, 9, 1467-1470, https://doi.org/10.1021/jf00033a022 . [all data]

MacLeod and Snyder, 1985
MacLeod, A.J.; Snyder, C.H., Volatile components of two cultivars of mango from Florida, J. Agric. Food Chem., 1985, 33, 3, 380-384, https://doi.org/10.1021/jf00063a015 . [all data]

Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F., Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS), J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x . [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References