Ethane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-84. ± 0.4kJ/molReviewManion, 2002adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Δfgas-83.8 ± 0.3kJ/molCcbPittam and Pilcher, 1972ALS
Δfgas-84.67 ± 0.49kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; ALS
Quantity Value Units Method Reference Comment
Δcgas-1560.7 ± 0.3kJ/molCcbPittam and Pilcher, 1972Corresponding Δfgas = -83.85 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-1559.9 ± 0.46kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; Corresponding Δfgas = -84.64 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-1559.8 ± 0.46kJ/molCcbRossini, 1934Corresponding Δfgas = -84.68 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
35.70100.Gurvich, Veyts, et al., 1989p=1 bar. Recommended entropies and heat capacities are in good agreement with those obtained from other statistical thermodynamic calculations [ Pitzer K.S., 1944, Chao J., 1973, Pamidimukkala K.M., 1982].; GT
42.30200.
52.49298.15
52.71300.
65.46400.
77.94500.
89.19600.
99.14700.
107.94800.
115.71900.
122.551000.
128.551100.
133.801200.
138.391300.
142.401400.
145.901500.
148.981600.
151.671700.
154.041800.
156.141900.
158.002000.
159.652100.
161.122200.
162.432300.
163.612400.
164.672500.
165.632600.
166.492700.
167.282800.
168.002900.
168.653000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
41.66 ± 0.31189.20Halford J.O., 1957Please also see Eucken A., 1933, Kistiakowsky G.B., 1939, Dailey B.P., 1943.; GT
43.25 ± 0.32209.30
45.08 ± 0.34229.65
47.27 ± 0.35249.90
47.17 ± 0.35250.15
49.68 ± 0.37272.00
49.51 ± 0.04272.07
50.66 ± 0.42279.00
52.14 ± 0.39292.00
53.27 ± 0.07302.70
57.40 ± 0.04335.82
58.91347.65
60.38359.75
61.04 ± 0.10364.78
62.10 ± 0.47373.60
63.89387.55
72.43451.95
80.08520.55
86.27561.65
90.46603.25

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid126.7J/mol*KN/AWitt and Kemp, 1937Entropy from 0 to 15 K calculated using a Debye function.

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
68.66100.Atake and Chihara, 1976T = 50 to 100 K. Data given graphically. Cp = 0.69933 (T/K) - 2.385 J/mol*K (50 to 70 K, for solid).
68.594.Roder, 1976From data 90.3 to 94 K. Average value over range.
68.44100.32Roder, 1976, 2T = 93 to 301 K (saturation line), 91 to 330 K, pressures from 0 to 33 MPa.
72.22180.Witt and Kemp, 1937T = 15 to 185 K.
74.48200.Wiebe, Hubbard, et al., 1930T = 67 to 305.2 K. Heat capacity of saturated liquid given to 295 K is 136.1 J/mol*K.

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Cobalt ion (1+) + Ethane = (Cobalt ion (1+) • Ethane)

By formula: Co+ + C2H6 = (Co+ • C2H6)

Quantity Value Units Method Reference Comment
Δr93.3J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)CH4, ΔrS(500 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
100. (+5.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
117. (+6.7,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)CH4, ΔrS(500 K); M

(Cobalt ion (1+) • Methane) + Ethane = (Cobalt ion (1+) • Ethane • Methane)

By formula: (Co+ • CH4) + C2H6 = (Co+ • C2H6 • CH4)

Quantity Value Units Method Reference Comment
Δr108.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
119. (+5.4,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M

3Water (g) + Aluminum, triethyl- (l) = AlH3O3 (amorphous) + 3Ethane (g)

By formula: 3H2O (g) + C6H15Al (l) = AlH3O3 (amorphous) + 3C2H6 (g)

Quantity Value Units Method Reference Comment
Δr-647.3 ± 6.3kJ/molRSCFowell, 1961Please also see Cox and Pilcher, 1970. Liquid triethylaluminum contains a very small molar fraction of monomer at 298 K, ca. 0.1% Smith, 1967, so that the "real" liquid should be described as [Al(Et)3]2.; MS

C2H5- + Hydrogen cation = Ethane

By formula: C2H5- + H+ = C2H6

Quantity Value Units Method Reference Comment
Δr1758. ± 8.4kJ/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr1761. ± 8.4kJ/molBranDePuy, Bierbaum, et al., 1984gas phase; B
Quantity Value Units Method Reference Comment
Δr1723. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B

(Cobalt ion (1+) • Ethane) + Methane = (Cobalt ion (1+) • Methane • Ethane)

By formula: (Co+ • C2H6) + CH4 = (Co+ • CH4 • C2H6)

Quantity Value Units Method Reference Comment
Δr110.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
102. (+4.6,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Hydrogen bromide (g) + ethyllithium (cr) = Ethane (g) + Lithium bromide (cr)

By formula: HBr (g) + C2H5Li (cr) = C2H6 (g) + BrLi (cr)

Quantity Value Units Method Reference Comment
Δr-345.7 ± 2.0kJ/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

C5O5W (g) + Ethane (g) = C7H6O5W (g)

By formula: C5O5W (g) + C2H6 (g) = C7H6O5W (g)

Quantity Value Units Method Reference Comment
Δr-31.0 ± 8.4kJ/molEqGBrown, Ishikawa, et al., 1990Temperature range: ca. 300-350 K; MS
Δr-41. ± 13.kJ/molEqGIshikawa, Brown, et al., 1988Temperature range: 298-363 K; MS

Iron ion (1+) + Ethane = (Iron ion (1+) • Ethane)

By formula: Fe+ + C2H6 = (Fe+ • C2H6)

Quantity Value Units Method Reference Comment
Δr70. ± 10.kJ/molMKERCarpenter, van Koppen, et al., 1995gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
64.0 (+5.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Ethane, 1,2-dichloro- + 2Hydrogen = Ethane + 2Hydrogen chloride

By formula: C2H4Cl2 + 2H2 = C2H6 + 2HCl

Quantity Value Units Method Reference Comment
Δr-143.0 ± 0.96kJ/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -147.77 ± 0.50 kJ/mol; At 250 C; ALS

2Hydrogen + Ethane, 1,1-dichloro- = Ethane + 2Hydrogen chloride

By formula: 2H2 + C2H4Cl2 = C2H6 + 2HCl

Quantity Value Units Method Reference Comment
Δr-140.8 ± 1.0kJ/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -145.0 ± 0.50 kJ/mol; At 250C; ALS

2Hydrogen + Acetylene = Ethane

By formula: 2H2 + C2H2 = C2H6

Quantity Value Units Method Reference Comment
Δr-312.0 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -314.1 ± 2.8 kJ/mol; At 355 K; ALS

Diethylzinc (l) + (Sulfuric Acid • 100Water) (solution) = 2Ethane (g) + (zinc sulphate • 100Water) (solution)

By formula: C4H10Zn (l) + (H2O4S • 100H2O) (solution) = 2C2H6 (g) + (O4SZn • 100H2O) (solution)

Quantity Value Units Method Reference Comment
Δr-354.4 ± 4.2kJ/molRSCCarson, Hartley, et al., 1949Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970.; MS

Hydrogen + Ethylene = Ethane

By formula: H2 + C2H4 = C2H6

Quantity Value Units Method Reference Comment
Δr-136. ± 2.kJ/molChydKistiakowsky and Nickle, 1951gas phase; ALS
Δr-136.3 ± 0.3kJ/molChydKistiakowsky, Romeyn, et al., 1935gas phase; ALS

2Hydrogen chloride (g) + Aluminum, chlorodiethyl- (l) = AlCl3 (cr) + 2Ethane (g)

By formula: 2HCl (g) + C4H10AlCl (l) = AlCl3 (cr) + 2C2H6 (g)

Quantity Value Units Method Reference Comment
Δr-265.0 ± 3.3kJ/molRSCShaulov and Shmyreva, 1968The reaction enthalpy was derived from data in Shaulov and Shmyreva, 1968.; MS

C2H4+ + Ethane = (C2H4+ • Ethane)

By formula: C2H4+ + C2H6 = (C2H4+ • C2H6)

Quantity Value Units Method Reference Comment
Δr64.0kJ/molPHPMSHiraoka and Kebarle, 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr88.J/mol*KPHPMSHiraoka and Kebarle, 1980gas phase; M

2Hydrogen + Ethene, chloro- = Ethane + Hydrogen chloride

By formula: 2H2 + C2H3Cl = C2H6 + HCl

Quantity Value Units Method Reference Comment
Δr-214.2 ± 0.8kJ/molChydLacher, Emery, et al., 1956gas phase; At 298 K, see Lacher, Kianpour, et al., 1956; ALS

Hydrogen bromide (g) + C2H5BrMg (solution) = Ethane (solution) + Br2Mg (solution)

By formula: HBr (g) + C2H5BrMg (solution) = C2H6 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-299.2 ± 2.2kJ/molRSCHolm, 1981solvent: Diethyl ether; MS

(Cobalt ion (1+) • 2Ethane) + Ethane = (Cobalt ion (1+) • 3Ethane)

By formula: (Co+ • 2C2H6) + C2H6 = (Co+ • 3C2H6)

Quantity Value Units Method Reference Comment
Δr50.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH<; M

Aluminum ion (1+) + Ethane = (Aluminum ion (1+) • Ethane)

By formula: Al+ + C2H6 = (Al+ • C2H6)

Quantity Value Units Method Reference Comment
Δr38. ± 8.4kJ/molCIDC,EqGStockigt, Schwarz, et al., 1996Anchored to theory; RCD

2Hydrogen + Vinyl bromide = Hydrogen bromide + Ethane

By formula: 2H2 + C2H3Br = HBr + C2H6

Quantity Value Units Method Reference Comment
Δr-199.2 ± 1.9kJ/molChydLacher, Kianpour, et al., 1957gas phase; ALS

Hydrogen + 2Ethane, iodo- = 2Ethane + Iodine

By formula: H2 + 2C2H5I = 2C2H6 + I2

Quantity Value Units Method Reference Comment
Δr-88.7 ± 3.3kJ/molChydAshcroft, Carson, et al., 1965liquid phase; ALS

Hydrogen + Ethyl bromide = Hydrogen bromide + Ethane

By formula: H2 + C2H5Br = HBr + C2H6

Quantity Value Units Method Reference Comment
Δr-59.0 ± 1.1kJ/molChydFowell, Lacher, et al., 1965gas phase; ALS

Hydrogen + 2Ethyl bromide = 2Ethane + Bromine

By formula: H2 + 2C2H5Br = 2C2H6 + Br2

Quantity Value Units Method Reference Comment
Δr23. ± 13.kJ/molChydAshcroft, Carson, et al., 1965liquid phase; ALS

Hydrogen + Ethyl Chloride = Ethane + Hydrogen chloride

By formula: H2 + C2H5Cl = C2H6 + HCl

Quantity Value Units Method Reference Comment
Δr-69.3 ± 0.4kJ/molChydLacher, Emery, et al., 1956gas phase; ALS

Nickel ion (1+) + Ethane = (Nickel ion (1+) • Ethane)

By formula: Ni+ + C2H6 = (Ni+ • C2H6)

Quantity Value Units Method Reference Comment
Δr120. ± 10.kJ/molMKERCarpenter, van Koppen, et al., 1995gas phase; M

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]

Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Rossini, 1934
Rossini, F.D., Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane, J. Res. NBS, 1934, 12, 735-750. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Pitzer K.S., 1944
Pitzer K.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Chao J., 1973
Chao J., Ideal gas thermodynamic properties of ethane and propane, J. Phys. Chem. Ref. Data, 1973, 2, 427-438. [all data]

Pamidimukkala K.M., 1982
Pamidimukkala K.M., Ideal gas thermodynamic properties of CH3, CD3, CD4, C2D2, C2D4, C2D6, C2H6, CH3N2CH3, and CD3N2CD3, J. Phys. Chem. Ref. Data, 1982, 11, 83-99. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

Eucken A., 1933
Eucken A., Molar heats and normal frequencies of ethane and ethylene, Z. Phys. Chem., 1933, B20, 184-194. [all data]

Kistiakowsky G.B., 1939
Kistiakowsky G.B., Gaseous heat capacities. I. The method and the heat capacities of C2H6 and C2D6, J. Chem. Phys., 1939, 7, 281-288. [all data]

Dailey B.P., 1943
Dailey B.P., The heat capacities at higher temperatures of ethane and propane, J. Am. Chem. Soc., 1943, 65, 42-44. [all data]

Witt and Kemp, 1937
Witt, R.K.; Kemp, J.D., The heat capacity of ethane from 15°K to the boiling point. The heat of fusion and the heat of vaporization, J. Am. Chem. Soc., 1937, 59, 273-276. [all data]

Atake and Chihara, 1976
Atake, T.; Chihara, H., Calorimetric study of the phase changes in solid ethane, Chem. Lett., 1976, (7), 683-688. [all data]

Roder, 1976
Roder, H.M., The heats of transition of solid ethane, J. Chem. Phys., 1976, 65, 1371-1373. [all data]

Roder, 1976, 2
Roder, H.M., Measurements of the specific heats, Ca, and Cv, of dense gaseous and liquid ethane, J. Res., 1976, NBS 80A, 739-759. [all data]

Wiebe, Hubbard, et al., 1930
Wiebe, R.; Hubbard, K.H.; Brevoort, M.J., The heat capacity of saturated liquid ethane from the boiling point to the critical temperature and heat fusion of the solid, J. Am. Chem. Soc., 1930, 52, 611-622. [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Fowell, 1961
Fowell, P.A., Ph. D. Thesis, University of Manchester, 1961. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Smith, 1967
Smith, M.B., J. Phys. Chem., 1967, 71, 364. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

DePuy, Bierbaum, et al., 1984
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R., Relative Gas-Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1984, 106, 4051. [all data]

Holm, 1974
Holm, T., J. Organometal. Chem., 1974, 77, 27. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W., In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]

Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M., J. Am. Chem. Soc., 1990, 112, 2530. [all data]

Ishikawa, Brown, et al., 1988
Ishikawa, Y.; Brown, C.E.; Hackett, P.A.; Rayner, D.M., Chem. Phys. Lett., 1988, 150, 506. [all data]

Carpenter, van Koppen, et al., 1995
Carpenter, C.J.; van Koppen, P.A.M.; Bowers, M.T., Details of Potential Energy Surfaces Involving C-C Bond Activation: Reactions of Fe+, Co+ and Ni+ with Acetone, J. Am. Chem. Soc., 1995, 117, 44, 10976, https://doi.org/10.1021/ja00149a021 . [all data]

Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D., Reaction heats of organic compounds. Part 5.-Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane, Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Carson, Hartley, et al., 1949
Carson, A.S.; Hartley, K.; Skinner, H.A., Thermochemistry of metal alkyls. Part II.?The bond dissociation energies of some Zn?C and Cd?C bonds, and of Et?I., Trans. Faraday Soc., 1949, 45, 1159, https://doi.org/10.1039/tf9494501159 . [all data]

Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G., Ethane-ethylene and propane-propylene equilibria, Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]

Kistiakowsky, Romeyn, et al., 1935
Kistiakowsky, G.B.; Romeyn, H., Jr.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. I. The apparatus and the heat of hydrogenation of ethylene, J. Am. Chem. Soc., 1935, 57, 65-75. [all data]

Shaulov and Shmyreva, 1968
Shaulov, Yu.Kh.; Shmyreva, G.O., Russ. J. Phys. Chem., 1968, 42, 1008. [all data]

Hiraoka and Kebarle, 1980
Hiraoka, K.; Kebarle, P., Ion Molecule Reactions in Ethane. Thermochemistry and Structures of the Intermediate Complexes: C4H11+ and C4H10+ Formed in the Reactions of C2H5+ and C2H4+ with C2H6, Can. J. Chem., 1980, 58, 21, 2262, https://doi.org/10.1139/v80-364 . [all data]

Lacher, Emery, et al., 1956
Lacher, J.R.; Emery, E.; Bohmfalk, E.; Park, J.D., Reaction heats of organic compounds. IV. A high temperature calorimeter and the hydrogenation of methyl ethyl and vinyl chlorides, J. Phys. Chem., 1956, 60, 492-495. [all data]

Lacher, Kianpour, et al., 1956
Lacher, J.R.; Kianpour, A.; Oetting, F.; Park, J.D., Reaction calorimetry. The hydrogenation of organic fluorides and chlorides, Trans. Faraday Soc., 1956, 52, 1500-1508. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H., Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+, J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/10.1021/jp960060k . [all data]

Lacher, Kianpour, et al., 1957
Lacher, J.R.; Kianpour, A.; Montgomery, P.; Knedler, H.; Park, J.D., Reaction heats of organic halogen compounds. IX. The catalytic hydrogenation of vinyl and perfluorovinyl bromide, J. Phys. Chem., 1957, 61, 1125-1126. [all data]

Ashcroft, Carson, et al., 1965
Ashcroft, S.J.; Carson, A.S.; Carter, W.; Laye, P.G., Thermochemistry of reductions caused by lithium aluminium hydride. Part 3.- The C-halogen bond dissociation energies in ethyl iodine and ethyl bromide, Trans. Faraday Soc., 1965, 61, 225-229. [all data]

Fowell, Lacher, et al., 1965
Fowell, P.; Lacher, J.R.; Park, J.D., Reaction heats of organic compounds. Part 3.-Heats of hydrogenation of methyl bromide and ethyl bromide, Trans. Faraday Soc., 1965, 61, 1324-1327. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References