fluorine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar202.791 ± 0.005J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar202.80J/mol*KReviewChase, 1998Data last reviewed in June, 1982

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 31.44510
B 8.413831
C -2.778850
D 0.218104
E -0.211175
F -10.43260
G 237.2770
H 0.000000
ReferenceChase, 1998
Comment Data last reviewed in June, 1982

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Tboil85.2KN/AStreng, 1971Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Tfus55.2KN/AStreng, 1971Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Tc144.KN/ACady and Hildebrand, 1930Uncertainty assigned by TRC = 1. K; in glass capillary tube; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
53.99 to 143.994.02355322.067-4.748Straty and Prydz, 1970Coefficents calculated by NIST from author's data.
50. to 85.34.62315417.9615.415Stull, 1947Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

21,1,1',1'-Tetrakis(difluoroamino)-N-1,1'-trifluorodimethylamine = 4Tetrafluoromethane + 5Nitrogen + 3fluorine

By formula: 2C2F11N5 = 4CF4 + 5N2 + 3F2

Quantity Value Units Method Reference Comment
Δr-3009. ± 13.kJ/molCmSinke, Thompson, et al., 1967gas phase; Energy of explosion; ALS

CF5N = Tetrafluoromethane + 0.5Nitrogen + 0.5fluorine

By formula: CF5N = CF4 + 0.5N2 + 0.5F2

Quantity Value Units Method Reference Comment
Δr-226. ± 2.kJ/molCcbWalker, 1972gas phase; Decompostion reaction; ALS

Tetrafluoromethane + 0.5Nitrogen + 0.5fluorine = CF5N

By formula: CF4 + 0.5N2 + 0.5F2 = CF5N

Quantity Value Units Method Reference Comment
Δr226. ± 2.kJ/molCcbWalker, 1972gas phase; Decompostion reaction; ALS

2Heptafluoromethanetriamine = 2Tetrafluoromethane + 3Nitrogen + 3fluorine

By formula: 2CF7N3 = 2CF4 + 3N2 + 3F2

Quantity Value Units Method Reference Comment
Δr-1467.kJ/molCmSinke, Thompson, et al., 1967gas phase; Energy of explosion; ALS

2Pentafluoroguanidine = 2Tetrafluoromethane + 3Nitrogen + fluorine

By formula: 2CF5N3 = 2CF4 + 3N2 + F2

Quantity Value Units Method Reference Comment
Δr-2059.kJ/molCmSinke, Thompson, et al., 1967gas phase; Energy of explosion; ALS

Octafluoromethanetetramine = Tetrafluoromethane + 2Nitrogen + 2fluorine

By formula: CF8N4 = CF4 + 2N2 + 2F2

Quantity Value Units Method Reference Comment
Δr-935.1kJ/molCmSinke, Thompson, et al., 1967gas phase; Energy of explosion; ALS

Hexafluoromethanediamine = Tetrafluoromethane + Nitrogen + fluorine

By formula: CF6N2 = CF4 + N2 + F2

Quantity Value Units Method Reference Comment
Δr-478.2kJ/molCmSinke, Thompson, et al., 1967gas phase; Energy of explosion; ALS

Fluorine anion + fluorine = F3-

By formula: F- + F2 = F3-

Quantity Value Units Method Reference Comment
Δr97. ± 10.kJ/molCIDTArtau, Nizzi, et al., 2000gas phase; B

Tetrafluoromethane + 4hydrogen fluoride = Methane + 4fluorine

By formula: CF4 + 4HF = CH4 + 4F2

Quantity Value Units Method Reference Comment
Δr-1922. ± 13.kJ/molCmJessup, McCoskey, et al., 1955gas phase; ALS

Ethene, tetrafluoro- + 2fluorine = 2Tetrafluoromethane

By formula: C2F4 + 2F2 = 2CF4

Quantity Value Units Method Reference Comment
Δr-1037.3kJ/molCcbDomalski and Armstrong, 1967solid phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman
B - John E. Bartmess

View reactions leading to F2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)15.697 ± 0.003eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)332.kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity305.5kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
3.005 ± 0.071R-AWenthold and Squires, 1995EA fixed at 0K value, not 298K of heat of formation; B
3.120 ± 0.070CIDCArtau, Nizzi, et al., 2000B
3.07998ECDAyala, Wentworth, et al., 1981Vertical Detachment Energy: 1.24 eV; B
2.94 ± 0.20EIAEHarland and Franklin, 1974From NF3; B
2.90 ± 0.22EIAEDeCorpo and Franklin, 1971From BF3; B
3.16558EIAEWang and Franklin, 1980From SO2F2; B
>2.80 ± 0.30EIAEThynne, 1972From CF2O; B
3.08 ± 0.10EndoChupka, Berkowitz, et al., 1971B
>2.99997EIAEReese, Dibeter, et al., 1958From SO2F2; B

Ionization energy determinations

IE (eV) Method Reference Comment
15.697 ± 0.003PEVan Lonkhuyzen and De Lange, 1984LBLHLM
15.70PEBieri, Schmelzer, et al., 1980LLK
15.694TEGuyon, Spohr, et al., 1976LLK
15.70 ± 0.02SGole and Margrave, 1972LLK
15.70 ± 0.01PEPotts and Price, 1971LLK
15.70PECornford, Frost, et al., 1971LLK
15.74PECornford, Frost, et al., 1971LLK
15.686 ± 0.006PIBerkowitz, Chupka, et al., 1971LLK
15.70PEAnderson, Mamantov, et al., 1971LLK
15.69 ± 0.01PIDibeler, Walker, et al., 1969RDSH
15.7SIczkowski and Margrave, 1959RDSH
15.70PEDyke, Josland, et al., 1984Vertical value; LBLHLM

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
F+15.2F-EIVeljkovic, Neskovic, et al., 1992LL
F+19.008FPIBerkowitz and Wahl, 1973LLK
F+15.6F-PIBerkowitz, Chupka, et al., 1971LLK
F+19.008FPIBerkowitz, Chupka, et al., 1971, 2LLK
F+15.48F-PIDibeler, Walker, et al., 1969RDSH

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through July, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 19F2
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Many strong absorption bands observed and partially analyzed up to 126000 cm-1, heavily perturbed and not assigned. 1
missing citation
K 1Πu     [1.040] 2 3    [1.306] K ← X V 11655.72 Z
Gole and Margrave, 1972; missing citation
J 1Πu (4p σ) 116409 [1032.6] Z   [1.041] 3    [1.306] J ← X V 116469.4 Z
missing citation
I 1Σu+ (4p π) 113841 [1108.92] Z 4  [0.8009] 5  [1.8E-6] 6  1.4886 I → f R 17081.6 $I H
missing citation; Stricker and Krauss, 1968; Colbourn, Dagenais, et al., 1976
           I → F R 20732 7 H
missing citation; Stricker and Krauss, 1968; Colbourn, Dagenais, et al., 1976
           I ↔ X 8 R 113940.24 Z
di Lonardo and Douglas, 1972; Gole and Margrave, 1972; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
H 1Πu (3pσ) 105520.14 1088.19 Z 9.875  1.021 9 0.014    1.318 H ← X V 105606.27 Z
Gole and Margrave, 1972; Colbourn, Dagenais, et al., 1976
h 3Π1u (3pσ) (104904) (1100) 10   1.022 11 0.016    1.318 h ← X V 104998.7 Z
Colbourn, Dagenais, et al., 1976
G 1Σu+ (3pπ) (104300) 12           
Colbourn, Dagenais, et al., 1976
E (1Σu+) ≤100912 [196.3] 13 Z (0.96)  [0.194] 13     [3.02] 13 E ← X R 100555.5 13 Z
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
D (1Σu+) ≤98756 [221.6] 13 Z (1.22)  [0.207] 13     [2.93] 13 D ← X R 98411.9 13 Z
missing citation
f (3Π1g) (3sσ) [97314] 14 14   [1.005] 14     [1.329] 14  
C 1Σu+ ≤93499 [493.2] 15 Z   [0.484] 15     [1.915] 15 C ↔ X R 93290.4 15 Z
missing citation
F 1Πg (3sσ) 93099 1133.34 16 H 9.173  1.047 16 0.012    1.302  
A 1Πu 17           A ← X 
Steunenberg and Vogel, 1956; Rees, 1957
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
a 3Π0+u 19           a ← X 18 
Steunenberg and Vogel, 1956; Rees, 1957
X 1Σg+ 0 916.64 Z 11.236 20 -0.113 0.89019 0.013847 21  3.3E-6  1.41193 22  
Andrychuk, 1951; Claassen, Selig, et al., 1969; Stricker and Hochenbleicher, 1973; Edwards, Good, et al., 1976
Mol. beam magn. reson. 23
Ozier, Crapo, et al., 1964
Ab initio calc.
Das and Wahl, 1972

Notes

1The assignments to two Rydberg series by Gole and Margrave, 1972 are questioned by Colbourn, Dagenais, et al., 1976.
2BQ; BPR = 1.034.
3B2 = 0.9916.
4ΔG(3/2)=754.06, ΔG(5/2)=553.78, ΔG(7/2)=733.01; strongly perturbed, not certain whether one or two electronic states are involved.
5B1= 0.8129, B2= 0.8980, B3= 0.8946, B4= 0.891; see 4.
6Dv(v=1...4, E-6 cm-1) = 4.0, 14.0, -2.6, -50.0
7v" uncertain, see 16.
8Four of the strongest absorption bands; in emission only bands with v=0 and 1 and very weakly v=2.
9From Q branches, BQ - BPR ~ +0.004. v' = 0,1,2,3 analyzed, a weak and highly perturbed band at 911 (109770 cm-1) may be 4-0.
10Estimated from the 0-0 and 2-0 (v0= 107069.4) bands.
11From Q branches; BQ - BPR = +0.005. v=0 strongly perturbed.
12Infrared from strong perturbation of the higher vibrational levels of C 1Σu+.
13(Deperturbed) constants determined from the lowest observed levels; vibrational numbering unknown. Only those levels which interact strongly with C 1Σu+ have been found in absorption. It is possible that D and E are not two independent states.
14From I →f Porter, 1968; vibrational numbering unknown. The assignments of Stricker and Krauss, 1968 suggest the existence of additional levels at 1058 below and 1044 cm-1 above the single level reported by Porter, 1968.
15Constants for the lowest observed level, vibrational numbering unknown (v=n). In absorption levels up to v = n+30 have been observed. Numerous perturbations by levels of D and E (interaction matrix elements ~ 10 cm-1); a much stronger interaction with G affects levels having v «gte» n+25. For details see Table 5 of Colbourn, Dagenais, et al., 1976.
16Vibrational numbering uncertain. Extensive perturbations. Strong predissociation leading to line broadening in I→F bands having v" = 1,2,4,5,6,8; bands with v"= 3,7 are sharp.
17Continuous absorption with maximum at 35000 cm-1.
18The existence of the a ←X absorption becomes clear only after subtraction of the much stronger effect of the A←X absorption from the observed absorption intensities Rees, 1957. It is generally assumed that the 3Π0+u state has a minimum but no discrete absorption or emission has been observed, see Nathans, 1950. Child and Bernstein, 1973 predict a dissociation energy De= 3300 cm-1 and re= 1.9 for this state.
19Continuous absorption with maximum at 25500 cm-1.
20These constants represent only the lowest nine levels (i.e. v≤8) Colbourn, Dagenais, et al., 1976. Levels have been observed up to v=22; this last level lies only 90 cm-1 below the extrapolated limit.
21+0.0001179(v+1/2)2 - 0.0000203(v+1/2)3, representing B0....B12.
22Raman sp.
23Rotational gyromagnetic ratio gJ = -0.1208 μN (nuclear) spin-rotation and spin- spin interaction constants c = -157.3 kHz, d = 8.0 kHz.
24From the observed vibrational levels of the ground state Colbourn, Dagenais, et al., 1976; the highest observed level (presumably the last stable level) is at 12830.38 cm-1. Shock tube experiments of Blauer and Solomon, 1972 give the same value within ±0.05 eV; see also the earlier work of Barrow and Caunt, 1953, Stamper and Barrow, 1958, DeCorpo, Steiger, et al., 1970.
25From photoionization Berkowitz, Chupka, et al., 1971. Photoelectron spectra Cornford, Frost, et al., 1971 give 15.70 eV.
26The lower state vibrational numbering of this band is unknown, see 14.

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Cady and Hildebrand, 1930
Cady, G.H.; Hildebrand, J.H., The Vapor Pressure and Critical Temperature of Fluorine, J. Am. Chem. Soc., 1930, 52, 3839. [all data]

Straty and Prydz, 1970
Straty, G.C.; Prydz, R., The Vapor Pressure of Liquid Fluorine, Adv. Cryog. Eng., 1970, 15, 36-41. [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Sinke, Thompson, et al., 1967
Sinke, G.C.; Thompson, C.J.; Jostad, R.E.; Walker, L.C.; Swanson, A.C.; Stull, D.R., Enthalpies of formation and bond energies of some fluoramines, J. Chem. Phys., 1967, 47, 1852-1854. [all data]

Walker, 1972
Walker, L.C., The enthalpy of decomposition of CF3NF2(g) to CF4(g), N2(g), and F2(g), J. Chem. Thermodyn., 1972, 4, 219-223. [all data]

Artau, Nizzi, et al., 2000
Artau, A.; Nizzi, K.E.; Hill, B.T.; Sunderlin, L.S.; Wenthold, P.G., Bond dissociation energy in trifluoride ion, J. Am. Chem. Soc., 2000, 122, 43, 10667-10670, https://doi.org/10.1021/ja001613e . [all data]

Jessup, McCoskey, et al., 1955
Jessup, R.S.; McCoskey, R.E.; Nelson, R.A., The heat of formation of tetrafluoromethane, J. Am. Chem. Soc., 1955, 77, 244-245. [all data]

Domalski and Armstrong, 1967
Domalski, E.S.; Armstrong, G.T., The heats of combustion of polytetrafluoroethylene (teflon) and graphite in elemental fluorine, J. Res. NBS, 1967, 71, 105-118. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Ayala, Wentworth, et al., 1981
Ayala, J.A.; Wentworth, W.E.; Chen, E.C.M., Electron attachment to halogens, J. Phys. Chem., 1981, 85, 768. [all data]

Harland and Franklin, 1974
Harland, P.W.; Franklin, J.L., Partitioning of excess energy in dissociative resonance capture processes, J. Chem. Phys., 1974, 61, 1621. [all data]

DeCorpo and Franklin, 1971
DeCorpo, J.J.; Franklin, J.L., Electron affinities of the halogen molecules by dissociative electron attachment, J. Chem. Phys., 1971, 54, 1885. [all data]

Wang and Franklin, 1980
Wang, J.-S.; Franklin, J.L., Reactions and energy distributions in dissociative electron capture processes in sulfuryl halides, Int. J. Mass Spectrom. Ion Phys., 1980, 36, 233. [all data]

Thynne, 1972
Thynne, J.C.J., Negative Ion Studies with a Time-of-Flight Mass Spectrometer., Dyn. Mass Spectrom., 1972, 3, 67. [all data]

Chupka, Berkowitz, et al., 1971
Chupka, W.A.; Berkowitz, J.; Gutman, D., Electron Affinities of Halogen Diatomic Molecules as Determined by Endoergic Charge Exchange, J. Chem. Phys., 1971, 55, 6, 2724, https://doi.org/10.1063/1.1676487 . [all data]

Reese, Dibeter, et al., 1958
Reese, R.M.; Dibeter, V.H.; Franklin, J.L., Electron impact studies of sulfur dioxide and sulfuryl fluoride, J. Chem. Phys., 1958, 29, 880. [all data]

Van Lonkhuyzen and De Lange, 1984
Van Lonkhuyzen, H.; De Lange, C.A., High-resolution UV photoelectron spectroscopy of diatomic halogens, Chem. Phys., 1984, 89, 313. [all data]

Bieri, Schmelzer, et al., 1980
Bieri, G.; Schmelzer, A.; Asbrink, L.; Jonsson, M., Fluorine and the fluoroderivatives of acetylene and diacetylene studied by 30.4 nm He(II) photoelectron spectroscopy, Chem. Phys., 1980, 49, 213. [all data]

Guyon, Spohr, et al., 1976
Guyon, P.-M.; Spohr, R.; Chupka, W.A.; Berkowitz, J., Threshold photoelectron spectra of HF, DF, F2, J. Chem. Phys., 1976, 65, 1650. [all data]

Gole and Margrave, 1972
Gole, J.L.; Margrave, J.L., The vacuum ultraviolet spectrum of molecular fluorine, J. Mol. Spectrosc., 1972, 43, 65. [all data]

Potts and Price, 1971
Potts, A.W.; Price, W.C., Photoelectron spectra of the halogens and mixed halides ICI and lBr, J. Chem. Soc. Faraday Trans., 1971, 67, 1242. [all data]

Cornford, Frost, et al., 1971
Cornford, A.B.; Frost, D.C.; McDowell, C.A.; Ragle, J.L.; Stenhouse, I.A., Photoelectron spectra of the halogens, J. Chem. Phys., 1971, 54, 2651. [all data]

Berkowitz, Chupka, et al., 1971
Berkowitz, J.; Chupka, W.A.; Guyon, P.M.; Holloway, J.H.; Spohr, R., Photoionization mass spectrometric study of F2, HF, and DF, J. Chem. Phys., 1971, 54, 5165. [all data]

Anderson, Mamantov, et al., 1971
Anderson, C.P.; Mamantov, G.; Bull, W.E.; Grimm, F.A.; Carver, J.C.; Carlson, T.A., Photoelectron spectrum of chlorine monofluoride, Chem. Phys. Lett., 1971, 12, 137. [all data]

Dibeler, Walker, et al., 1969
Dibeler, V.H.; Walker, J.A.; McCulloh, K.E., Dissociation energy of fluorine, J. Chem. Phys., 1969, 50, 4592. [all data]

Iczkowski and Margrave, 1959
Iczkowski, R.P.; Margrave, J.L., Absorption spectrum of fluorine in the vacuum ultraviolet, J. Chem. Phys., 1959, 30, 403. [all data]

Dyke, Josland, et al., 1984
Dyke, J.M.; Josland, G.D.; Snijders, J.G.; Boerrigter, P.M., Ionization energies of the diatomic halogens and interhalogens studied with relativistic hartree-fock-slater calculations, Chem. Phys., 1984, 91, 419. [all data]

Veljkovic, Neskovic, et al., 1992
Veljkovic, M.V.; Neskovic, O.M.; Zmbov, K.F., Mass spectrometric study of the thermal decomposition of F2, J. Serb. Chem. Soc., 1992, 57, 753. [all data]

Berkowitz and Wahl, 1973
Berkowitz, J.; Wahl, A.C., The dissociation energy of fluorine, Adv. Fluorine Chem., 1973, 7, 147. [all data]

Berkowitz, Chupka, et al., 1971, 2
Berkowitz, J.; Chupka, W.A.; Guyon, P.M.; Holloway, J.; Spohr, R., Photo-ionization studies of F2, HF, DF, and the xenon fluorides, Advan. Mass Spectrom., 1971, 5, 112. [all data]

Stricker and Krauss, 1968
Stricker, W.; Krauss, L., Die Bestimmung der Dissoziationsenergie des F2-Molekuls und ein Beitrag zu seinem Bandenspektrum, Z. Naturforsch. A, 1968, 23, 486. [all data]

Colbourn, Dagenais, et al., 1976
Colbourn, E.A.; Dagenais, M.; Douglas, A.E.; Raymonda, J.W., The electronic spectrum of F2, Can. J. Phys., 1976, 54, 1343. [all data]

di Lonardo and Douglas, 1972
di Lonardo, G.; Douglas, A.E., Electronic spectra of HF and F2, J. Chem. Phys., 1972, 56, 5185. [all data]

Steunenberg and Vogel, 1956
Steunenberg, R.K.; Vogel, R.C., The absorption spectrum of fluorine, J. Am. Chem. Soc., 1956, 78, 901. [all data]

Rees, 1957
Rees, A.L.G., Erratum: Electronic spectrum and dissociation energy of fluorine, J. Chem. Phys., 1957, 27, 1424. [all data]

Andrychuk, 1951
Andrychuk, D., The Raman spectrum of fluorine, Can. J. Phys., 1951, 29, 151. [all data]

Claassen, Selig, et al., 1969
Claassen, H.H.; Selig, H.; Shamir, J., Raman apparatus using laser excitation and polarization measurements. Rotational spectrum of fluorine, Appl. Spectrosc., 1969, 23, 8. [all data]

Stricker and Hochenbleicher, 1973
Stricker, W.; Hochenbleicher, J.G., Das lasererregte Raman-Spektrum von gasformigem Fluor, Z. Naturforsch. A, 1973, 28, 27. [all data]

Edwards, Good, et al., 1976
Edwards, H.G.M.; Good, E.A.M.; Long, D.A., Pure rotational Raman spectrum of fluorine, J. Chem. Soc. Faraday Trans. 2, 1976, 72, 984-987. [all data]

Ozier, Crapo, et al., 1964
Ozier, I.; Crapo, L.M.; Cederberg, J.W.; Ramsey, N.F., Nuclear interactions and rotational moment of F2, Phys. Rev. Lett., 1964, 13, 482. [all data]

Das and Wahl, 1972
Das, G.; Wahl, A.C., Theoretical study of the F2 molecule using the method of optimized valence configurations, J. Chem. Phys., 1972, 56, 3532. [all data]

Porter, 1968
Porter, T.L., Emission spectrum of molecular fluorine, J. Chem. Phys., 1968, 48, 2071. [all data]

Nathans, 1950
Nathans, M.W., The absorption spectrum and the dissociation energy of fluorine, J. Chem. Phys., 1950, 18, 1122. [all data]

Child and Bernstein, 1973
Child, M.S.; Bernstein, R.B., Diatomic interhalogens: systematics and implications of spectroscopic interatomic potentials and curve crossings, J. Chem. Phys., 1973, 59, 5916. [all data]

Blauer and Solomon, 1972
Blauer, J.; Solomon, W., Shock tube calorimeter for the dissociation energy of fluorine, J. Chem. Phys., 1972, 57, 3587. [all data]

Barrow and Caunt, 1953
Barrow, R.F.; Caunt, A.D., The ultra-violet absorption spectra of some gaseous alkali-metal halides and the dissociation energy of fluorine, Proc. R. Soc. London A, 1953, 219, 120. [all data]

Stamper and Barrow, 1958
Stamper, J.G.; Barrow, R.F., The dissociation energy of fluorine, Trans. Faraday Soc., 1958, 54, 1592. [all data]

DeCorpo, Steiger, et al., 1970
DeCorpo, J.J.; Steiger, R.P.; Franklin, J.L.; Margrave, J.L., Dissociation energy of F2, J. Chem. Phys., 1970, 53, 936. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References