Borane, triethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Ion clustering data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

CN- + Borane, triethyl- = (CN- • Borane, triethyl-)

By formula: CN- + C6H15B = (CN- • C6H15B)

Quantity Value Units Method Reference Comment
Δr150.2 ± 3.3kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSLarson, Szulejko, et al., 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr115.5 ± 0.84kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B

Chlorine anion + Borane, triethyl- = (Chlorine anion • Borane, triethyl-)

By formula: Cl- + C6H15B = (Cl- • C6H15B)

Quantity Value Units Method Reference Comment
Δr99.6 ± 8.4kJ/molIMRELarson and McMahon, 1985gas phase; B,M
Δr99.6kJ/molICRLarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/ALarson and McMahon, 1985gas phase; switching reaction,Thermochemical ladder(t-C4H9OH), Entropy change calculated or estimated; M
Δr92.0J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Quantity Value Units Method Reference Comment
Δr72.0 ± 8.4kJ/molIMRELarson and McMahon, 1985gas phase; B,M
Δr72.0kJ/molICRLarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M

Fluorine anion + Borane, triethyl- = (Fluorine anion • Borane, triethyl-)

By formula: F- + C6H15B = (F- • C6H15B)

Quantity Value Units Method Reference Comment
Δr259.4kJ/molIMRBMurphy and Beauchamp, 1977gas phase; iPr3B>Et3B>MeSiF3; B
Δr213. ± 8.4kJ/molIMRELarson and McMahon, 1985gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/ALarson and McMahon, 1985gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr182. ± 8.4kJ/molIMRELarson and McMahon, 1985gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

Hydrogen anion + Borane, triethyl- = (Hydrogen anion • Borane, triethyl-)

By formula: H- + C6H15B = (H- • C6H15B)

Quantity Value Units Method Reference Comment
Δr290. ± 10.kJ/molEndoWorkman and Squires, 1988gas phase; From Endo threshold for hydride transfer to CO2; B

References

Go To: Top, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B., Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements., J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004 . [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Murphy and Beauchamp, 1977
Murphy, M.K.; Beauchamp, J.L., Fluorine and Alkyl Substituent Effects on Gas-Phase Lewis Acidities of Boranes by ICR Spectroscopy, Inorg. Chem., 1977, 16, 2437. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Workman and Squires, 1988
Workman, D.B.; Squires, R.R., Hydride Binding Energies of Boranes, Inorg. Chem., 1988, 27, 11, 1846, https://doi.org/10.1021/ic00284a003 . [all data]


Notes

Go To: Top, Ion clustering data, References