Naphthalene, 1-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C11H9- + Hydrogen cation = Naphthalene, 1-methyl-

By formula: C11H9- + H+ = C11H10

Quantity Value Units Method Reference Comment
Δr1565. ± 8.8kJ/molG+TSBartmess and Griffiths, 1990gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: ΔG=349.0±2.0, ΔS=27±2, ΔH=357.1; B
Δr1551. ± 10.kJ/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Quantity Value Units Method Reference Comment
Δr1531. ± 8.4kJ/molIMREBartmess and Griffiths, 1990gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: ΔG=349.0±2.0, ΔS=27±2, ΔH=357.1; B
Δr1516. ± 8.4kJ/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B

C11H10+ + Naphthalene, 1-methyl- = (C11H10+ • Naphthalene, 1-methyl-)

By formula: C11H10+ + C11H10 = (C11H10+ • C11H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr78.7kJ/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

C6H7N+ + Naphthalene, 1-methyl- = (C6H7N+ • Naphthalene, 1-methyl-)

By formula: C6H7N+ + C11H10 = (C6H7N+ • C11H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr66.1kJ/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; M

Henry's Law data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
2.7 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
2.3 LN/A 
3.9 MN/A 

Gas phase ion energetics data

Go To: Top, Reaction thermochemistry data, Henry's Law data, Ion clustering data, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C11H10+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)7.96 ± 0.03eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)834.8kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity805.3kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
<0.16 ± 0.12ECDWojnarovits and Foldiak, 1981EA is an upper limit: Chen and Wentworth, 1989. G3MP2B3 calculations indicate an EA of ca. -0.1 eV, anion unbound.; B

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
831.4Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kJ/mol) Reference Comment
803.3Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
7.90 ± 0.02PIGotkis and Lifshitz, 1993LL
8.50 ± 0.05EILoudon and Mazengo, 1974LLK
7.98CTSPitt, Carey, et al., 1972LLK
7.80 ± 0.03EIBonnier, Gelus, et al., 1965RDSH
7.98CTSKinoshita, 1962RDSH
7.96 ± 0.01PIWatanabe, 1957RDSH
8.01 ± 0.03PEHeilbronner, Hoshi, et al., 1976Vertical value; LLK
7.95PEHeilbronner, Hornung, et al., 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C11H9+12.1 ± 0.1HTRPIGotkis and Lifshitz, 1993LL
C11H9+10.2 ± 0.2HPIHuang and Dunbar, 1990LL
C11H9+13.2 ± 0.2HEILoudon and Mazengo, 1974LLK
C11H9+12.4 ± 0.1HEINounou, 1966RDSH

De-protonation reactions

C11H9- + Hydrogen cation = Naphthalene, 1-methyl-

By formula: C11H9- + H+ = C11H10

Quantity Value Units Method Reference Comment
Δr1565. ± 8.8kJ/molG+TSBartmess and Griffiths, 1990gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: ΔG=349.0±2.0, ΔS=27±2, ΔH=357.1; B
Δr1551. ± 10.kJ/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Quantity Value Units Method Reference Comment
Δr1531. ± 8.4kJ/molIMREBartmess and Griffiths, 1990gas phase; Isomer 1-methylene-1,4-dihydronaphthalene: ΔG=349.0±2.0, ΔS=27±2, ΔH=357.1; B
Δr1516. ± 8.4kJ/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B

Ion clustering data

Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C6H7N+ + Naphthalene, 1-methyl- = (C6H7N+ • Naphthalene, 1-methyl-)

By formula: C6H7N+ + C11H10 = (C6H7N+ • C11H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr66.1kJ/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase

C11H10+ + Naphthalene, 1-methyl- = (C11H10+ • Naphthalene, 1-methyl-)

By formula: C11H10+ + C11H10 = (C11H10+ • C11H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr78.7kJ/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase
Quantity Value Units Method Reference Comment
Δr126.J/mol*KPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase

UV/Visible spectrum

Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Adams and Richardson, 1951
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 580
Instrument Beckman DU
Melting point -30.4
Boiling point 244.7

References

Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, UV/Visible spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Bartmess and Griffiths, 1990
Bartmess, J.E.; Griffiths, S.S., Tautomerization Energetics of Benzoannelated Toluenes, J. Am. Chem. Soc., 1990, 112, 8, 2932, https://doi.org/10.1021/ja00164a014 . [all data]

Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A., Ionic Probes of Aromaticity in Annelated Rings, J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M., Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors, J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Wojnarovits and Foldiak, 1981
Wojnarovits, L.; Foldiak, G., Electron capture detection of aromatic hydrocarbons, J. Chromatogr. Sci., 1981, 206, 511. [all data]

Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E., Experimental Determination of Electron Affinities of Organic Molecules, Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Gotkis and Lifshitz, 1993
Gotkis, I.; Lifshitz, C., Time-dependent mass spectra and breakdown graphs. 16 - The methylnaphthalenes, Org. Mass Spectrom., 1993, 28, 372. [all data]

Loudon and Mazengo, 1974
Loudon, A.G.; Mazengo, R.Z., Steric strain and electron-impact. The behaviour of some n, n'-dimethyl- 1,1-binaphthyls, some n, n'-dimethylbiphenyls and model compounds, Org. Mass Spectrom., 1974, 8, 179. [all data]

Pitt, Carey, et al., 1972
Pitt, C.G.; Carey, R.N.; Toren, E.C., Nature of the electronic interactions in aryl-substituted polysilanes, J. Am. Chem. Soc., 1972, 94, 3806. [all data]

Bonnier, Gelus, et al., 1965
Bonnier, J.-M.; Gelus, M.; Nounou, P., Contribution a l'etude de l'effet inductif et de l'effet d'hyperconjugaison dans quelques methylaromatiques, J. Chim. Phys., 1965, 10, 1191. [all data]

Kinoshita, 1962
Kinoshita, M., The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil, Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Heilbronner, Hoshi, et al., 1976
Heilbronner, E.; Hoshi, T.; von Rosenberg, J.L.; Hafner, K., Alkyl-induced, natural hypsochromic shifts of the 2A←2X and 2B←2X transitions of azulene and naphthalene radical cations, Nouv. J. Chim., 1976, 1, 105. [all data]

Heilbronner, Hornung, et al., 1972
Heilbronner, E.; Hornung, V.; Pinkerton, F.H.; Thames, S.F., 31. Photoelectron spectra of azabenzenes and azanaphthalenes: III. The orbital sequence in methyl- and trimethylsilyl- substituted pyridines, Helv. Chim. Acta, 1972, 55, 289. [all data]

Huang and Dunbar, 1990
Huang, F.-S.; Dunbar, R.C., Time-resolved photodissociation of methylnaphthalene ion. An illustration of kinetic shifts in large-ion dissociations, J. Am. Chem. Soc., 1990, 112, 8167. [all data]

Nounou, 1966
Nounou, P., Etude des composes aromatiques par spectrometrie de masse. I. Mesure des potentials d'ionisation et d'apparition par la methode du potential retardateur et interpretation des courbes d'ionisation differentielle, J. Chim. Phys., 1966, 63, 994. [all data]

Adams and Richardson, 1951
Adams, N.G.; Richardson, D.M., Aromatic hydrocarbons in some diesel fuel fractions. Ultraviolet spectrometric identification, Anal. Chem., 1951, 23, 1, 129-133. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, UV/Visible spectrum, References