Phenol, 2-nitro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-132.3 ± 1.4kJ/molCcrSabbah and Gouali, 1994Author was aware that data differs from previously reported values
Δfgas-128.8 ± 1.6kJ/molCcbFinch, Gardner, et al., 1983 

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfsolid-204.6 ± 1.4kJ/molCcrSabbah and Gouali, 1994Author was aware that data differs from previously reported values
Δfsolid-202.4 ± 1.0kJ/molCcbFinch, Gardner, et al., 1983 
Δfsolid-199.3kJ/molCcbMedard, 1954Heat of combustion corrected for pressure
Δfsolid-210.kJ/molCcbSwarts, 1914See 14SWA2
Quantity Value Units Method Reference Comment
Δcsolid-2871.0 ± 1.3kJ/molCcrSabbah and Gouali, 1994Author was aware that data differs from previously reported values
Δcsolid-2873.27 ± 0.62kJ/molCcbFinch, Gardner, et al., 1983 
Δcsolid-2876.3kJ/molCcbMedard, 1954Heat of combustion corrected for pressure
Δcsolid-2887.kJ/molCcbGarner and Abernethy, 1921 
Δcsolid-2878.8kJ/molCcbSwarts, 1914See 14SWA2

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil489.2KN/AWeast and Grasselli, 1989BS
Tboil490.4KN/ALecat, 1947Uncertainty assigned by TRC = 0.7 K; TRC
Tboil490.4KN/ALecat, 1943Uncertainty assigned by TRC = 0.4 K; TRC
Quantity Value Units Method Reference Comment
Tfus318. ± 2.KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap58.4 ± 0.5kJ/molGSHeintz, Kapteina, et al., 2007Based on data from 319. - 346. K.; AC
Quantity Value Units Method Reference Comment
Δsub72.30 ± 0.28kJ/molCSabbah and Gouali, 1994Author was aware that data differs from previously reported values; ALS
Δsub73.3kJ/molCSabbah and Gouali, 1994, 2AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
55.9381.AStephenson and Malanowski, 1987Based on data from 366. - 490. K.; AC
54.4337.AStull, 1947Based on data from 322. - 357. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
322.4 - 487.74.865922163.437-42.856Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
54.8282.5N/AStephenson and Malanowski, 1987Based on data from 273. - 292. K.; AC
73. ± 2.303.VWolf and Weghofer, 1938ALS
73.2 ± 1.3298. - 310.N/ATrieschmann, 1935See also Wolf and Weghofer, 1938, 2 and Jones, 1960.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
17.446318.0Poeti, Fanelli, et al., 1982DH
17.05316.3Musuc, Razus, et al., 2002AC
17.45318.2Acree, 1991See also Sabbah and Gouali, 1994, 2.; AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
54.86318.0Poeti, Fanelli, et al., 1982DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H4NO3- + Hydrogen cation = Phenol, 2-nitro-

By formula: C6H4NO3- + H+ = C6H5NO3

Quantity Value Units Method Reference Comment
Δr1379. ± 8.4kJ/molIMREKebarle and McMahon, 1977gas phase

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Sabbah and Gouali, 1994
Sabbah, R.; Gouali, M., Energetics of intra- and inter-molecular bonds in the three nitrophenols, Aust. J. Chem., 1994, 47, 1651-1660. [all data]

Finch, Gardner, et al., 1983
Finch, A.; Gardner, P.J.; Wu, D., Studies on nitrophenols. Part IV. The standard enthalpies of combustion and formation of 1,2-dihydroxybenzene, 1,2- and 1,4-nitrophenol, Thermochim. Acta, 1983, 66, 333-342. [all data]

Medard, 1954
Medard, L., Tables thermochimiques a l'usage des techniciens des substances explosives, Mem. Artillerie Fr. Sci. Tech. Armement, 1954, 28, 415-492. [all data]

Swarts, 1914
Swarts, F., Sur la chaleur de combustion de quelques derives nitres aromatlques, Recl. Trav. Chim. Pays-Bas, 1914, 33, 281-298. [all data]

Garner and Abernethy, 1921
Garner, W.E.; Abernethy, C.L., Heats of combustion and formation of nitro-compounds. Part I. - Benzene, toluene, phenol and methylaniline series, Proc. Roy. Soc. London A, 1921, 213-235. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Lecat, 1947
Lecat, M., Orthobaric Azeotropes of Sulfides, Bull. Cl. Sci., Acad. R. Belg., 1947, 33, 160-82. [all data]

Lecat, 1943
Lecat, M., Azeotropes of Ethyl Urethane and other Azeotropes, C. R. Hebd. Seances Acad. Sci., 1943, 217, 273. [all data]

Heintz, Kapteina, et al., 2007
Heintz, A.; Kapteina, S.; Verevkin, S.P., Pairwise-Substitution Effects and Intramolecular Hydrogen Bonds in Nitrophenols and Methylnitrophenols. Thermochemical Measurements and ab Initio Calculations, J. Phys. Chem. A, 2007, 111, 28, 6552-6562, https://doi.org/10.1021/jp0730388 . [all data]

Sabbah and Gouali, 1994, 2
Sabbah, R.; Gouali, M., Energetics of Intra- and Inter-molecular Bonds in the Three Nitrophenols, Aust. J. Chem., 1994, 47, 9, 1651-621, https://doi.org/10.1071/CH9941651 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H., Uber sublimationswarmen, Z. Phys. Chem., 1938, 39, 194-208. [all data]

Trieschmann, 1935
Trieschmann, H.G., , Ph.D. Dissertation, Inst. Fur Phys. Chem. and Electrochem. der Universitat Kiel, Germany, 1935. [all data]

Wolf and Weghofer, 1938, 2
Wolf, K.L.; Weghofer, H.Z., Z. Phys. Chem. Abt. B, 1938, 39, 194. [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Poeti, Fanelli, et al., 1982
Poeti, G.; Fanelli, E.; Braghetti, M., A differential scanning calorimetric study of some phenol derivatives, J. Therm. Anal., 1982, 24(2), 273-279. [all data]

Musuc, Razus, et al., 2002
Musuc, A.M.; Razus, D.; Oancea, D., Analele Universitatii Bucuresti Chimie, 2002, 11, 2, 147. [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Kebarle and McMahon, 1977
Kebarle, P.; McMahon, T.B., Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas Phase Proton Transfer Equilibria, J. Am. Chem. Soc., 1977, 99, 7, 2222, https://doi.org/10.1021/ja00449a032 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References