Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

NOTICE: Due to scheduled maintenance at our Gaithersburg campus, this site will not be available from 5:00 pm EDT (21:00 UTC) on Friday October 25 until 5:00 pm (21:00 UTC) on Sunday October 27. We apologize for any inconvenience this outage may cause.

Acenaphthene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Deltafsolid17. ± 0.74kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Deltafsolid16.8 ± 0.6kcal/molCcbBoyd, Christensen, et al., 1965ALS
Quantity Value Units Method Reference Comment
Deltacsolid-1487.0 ± 0.6kcal/molCcbBoyd, Christensen, et al., 1965Corresponding «DELTA»fsolid = 16.8 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar45.141cal/mol*KN/AFinke, Messerly, et al., 1977DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
45.500298.15Finke, Messerly, et al., 1977T = 10 to 440 K.; DH
44.41298.Sadowska, Stepniewska, et al., 1969T = 20 to 93°C, equation only; liquid, 93 to 200°C, equation only.; DH
50.31298.1Eibert, 1944T = 25 to 200°C, equations only in t°C. Cp(c) = 0.2756 + 0.001854t cal/g*K (25 to 60°C); Cp(liq) = 0.409 + 0.000598t cal/g*K (95 to 200°C).; DH

References

Go To: Top, Condensed phase thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Boyd, Christensen, et al., 1965
Boyd, R.H.; Christensen, R.L.; Pua, R., The heats of combustion of acenaphthene, acenaphthylene, and fluoranthene. Strain and delocalization in bridged naphthalenes, J. Am. Chem. Soc., 1965, 87, 3554-3559. [all data]

Finke, Messerly, et al., 1977
Finke, H.L.; Messerly, J.F.; Lee, S.H.; Osborn, A.G.; Douslin, D.R., Comprehensive thermodynamic studies of seven aromatic hydrocarbons, J. Chem. Thermodyn., 1977, 9, 937-956. [all data]

Sadowska, Stepniewska, et al., 1969
Sadowska, K.W.; Stepniewska, G.B.; Recko, W.M., Specific heat and enthalpy of fusion of acenaphthene and acenaphthylene, Przem. Chem., 1969, 48, 282-285. [all data]

Eibert, 1944
Eibert, J., Thesis Washington University (St. Louis), 1944. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, References