Propanoic acid
- Formula: C3H6O2
- Molecular weight: 74.0785
- IUPAC Standard InChIKey: XBDQKXXYIPTUBI-UHFFFAOYSA-N
- CAS Registry Number: 79-09-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Propionic acid; Carboxyethane; Ethanecarboxylic acid; Ethylformic acid; Luprisol; Luprosil; Metacetonic acid; Prozoin; Pseudoacetic acid; C2H5COOH; Methylacetic acid; Acide propionique; Kyselina propionova; Propionic acid grain preserver; Sentry grain preserver; Tenox P grain preservative; UN 1848; MonoProp; Antischim B; Propkorn; Propcorn; n-Propionic acid
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 414. ± 1. | K | AVG | N/A | Average of 62 out of 65 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 252. ± 2. | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 252.65 | K | N/A | Martin and Andon, 1982 | Uncertainty assigned by TRC = 0.06 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 607. ± 10. | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 46.07 | atm | N/A | Andereya and Chase, 1990 | Uncertainty assigned by TRC = 0.49 atm; TRC |
Pc | 44.71 | atm | N/A | Ambrose and Ghiassee, 1987 | Uncertainty assigned by TRC = 0.49 atm; TRC |
Pc | 47.4724 | atm | N/A | D'Souza and Teja, 1987 | Uncertainty assigned by TRC = 0.89 atm; Ambrose's procedure; TRC |
Pc | 40.07 | atm | N/A | Efremova and Sokolova, 1972 | Uncertainty assigned by TRC = 4.000 atm; TRC |
Pc | 52.90 | atm | N/A | Vespigniani, 1903 | Uncertainty assigned by TRC = 5.0000 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 4.51 | mol/l | N/A | Efremova and Sokolova, 1972 | Uncertainty assigned by TRC = 0.0450 mol/l; TRC |
ρc | 4.25 | mol/l | N/A | Anonymous, 1928 | Uncertainty assigned by TRC = 0.08 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 12. ± 4. | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
11.2 | 358. | A | Stephenson and Malanowski, 1987 | Based on data from 343. to 419. K.; AC |
14.5 | 429. | A | Stephenson and Malanowski, 1987 | Based on data from 414. to 511. K.; AC |
11.1 | 360. | A | Stephenson and Malanowski, 1987 | Based on data from 345. to 401. K.; AC |
13.4 | 303. | N/A | Tamir, Dragoescu, et al., 1983 | AC |
11.5 | 343. | N/A | Ambrose, Ellender, et al., 1981 | Based on data from 328. to 437. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
345.54 to 401.49 | 4.73987 | 1679.869 | -59.832 | Dreisbach and Shrader, 1949 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
17.7 ± 0.2 | 233. | TE | Calis-Van Ginkel, Calis, et al., 1978 | Based on data from 225. to 238. K.; AC |
17.5 ± 0.2 | 233. | ME | Calis-Van Ginkel, Calis, et al., 1978 | AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
2.548 | 252.7 | Domalski and Hearing, 1996 | See also Martin and Andon, 1982, 2.; AC |
Enthalpy of phase transition
ΔHtrs (kcal/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
2.5478 | 252.65 | crystaline, I | liquid | Martin and Andon, 1982, 2 | DH |
Entropy of phase transition
ΔStrs (cal/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
10.08 | 252.65 | crystaline, I | liquid | Martin and Andon, 1982, 2 | DH |
References
Go To: Top, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Martin and Andon, 1982
Martin, J.F.; Andon, R.J.L.,
Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids.,
J. Chem. Thermodyn., 1982, 14, 679-88. [all data]
Andereya and Chase, 1990
Andereya, E.; Chase, J.D.,
Chem. Eng. Technol., 1990, 13, 304-12. [all data]
Ambrose and Ghiassee, 1987
Ambrose, D.; Ghiassee, N.B.,
Vapor Pressures and Critical Temperatures and Critical Pressures of Some Alkanoic Acids: C1 to C10,
J. Chem. Thermodyn., 1987, 19, 505. [all data]
D'Souza and Teja, 1987
D'Souza, R.; Teja, A.S.,
The prediction of the vapor pressures of carboxylic acids,
Chem. Eng. Commun., 1987, 61, 13. [all data]
Efremova and Sokolova, 1972
Efremova, G.D.; Sokolova, E.S.,
Boundary curve and critical parameters of propionic acid,
Russ. J. Phys. Chem. (Engl. Transl.), 1972, 46, 1084. [all data]
Vespigniani, 1903
Vespigniani, G.R.,
Gazz. Chim. Ital., 1903, 33, 73-8. [all data]
Anonymous, 1928
Anonymous, B.,
International Critical Tables of Numerical Data, Phys., Chem. Technol. Vol. III, Washburn, E. W., Ed., McGraw-Hill, NY, 1928. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Tamir, Dragoescu, et al., 1983
Tamir, Abraham; Dragoescu, Claudia; Apelblat, Alexander; Wisniak, Jaime,
Heats of vaporization and vapor-liquid equilibria in associated solutions containing formic acid, acetic acid, propionic acid and carbon tetrachloride,
Fluid Phase Equilibria, 1983, 10, 1, 9-42, https://doi.org/10.1016/0378-3812(83)80002-8
. [all data]
Ambrose, Ellender, et al., 1981
Ambrose, D.; Ellender, J.H.; Gundry, H.A.; Lee, D.A.; Townsend, R.,
Thermodynamic properties of organic oxygen compounds LI. The vapour pressures of some esters and fatty acids,
The Journal of Chemical Thermodynamics, 1981, 13, 8, 795-802, https://doi.org/10.1016/0021-9614(81)90069-0
. [all data]
Dreisbach and Shrader, 1949
Dreisbach, R.R.; Shrader, S.A.,
Vapor Pressure--Temperature Data on Some Organic Compounds,
Ind. Eng. Chem., 1949, 41, 12, 2879-2880, https://doi.org/10.1021/ie50480a054
. [all data]
Calis-Van Ginkel, Calis, et al., 1978
Calis-Van Ginkel, C.H.D.; Calis, G.H.M.; Timmermans, C.W.M.; de Kruif, C.G.; Oonk, H.A.J.,
Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic, and butanoic acids,
The Journal of Chemical Thermodynamics, 1978, 10, 11, 1083-1088, https://doi.org/10.1016/0021-9614(78)90082-4
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Martin and Andon, 1982, 2
Martin, J.F.; Andon, R.J.L.,
Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids,
J. Chem. Thermodynam., 1982, 14, 679-688. [all data]
Notes
Go To: Top, Phase change data, References
- Symbols used in this document:
Pc Critical pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔfusH Enthalpy of fusion ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.