Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

NOTICE: Due to scheduled maintenance at our Gaithersburg campus, this site will not be available from 5:00 pm EDT (21:00 UTC) on Friday October 25 until 5:00 pm (21:00 UTC) on Sunday October 27. We apologize for any inconvenience this outage may cause.

1-Propanol, 2-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Deltafgas-283.8 ± 0.9kJ/molEqkConnett, 1975Heat of dehydrogenation; ALS
Deltafgas-282.9kJ/molN/AChao and Rossini, 1965Value computed using «DELTA»fHliquid° value of -333.6±0.6 kj/mol from Chao and Rossini, 1965 and «DELTA»vapH° value of 50.7 kj/mol from Skinner and Snelson, 1960.; DRB
Deltafgas-284. ± 1.5kJ/molCcbSkinner and Snelson, 1960ALS
Quantity Value Units Method Reference Comment
gas350.0J/mol*KN/ACounsell J.F., 1968GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
133.74379.99Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 0.71 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Counsell J.F., 1970.; GT
134.34381.23
140.10 ± 0.71390.55
141.76 ± 0.71397.65
139.55400.03
143.92 ± 0.71406.95
146.25 ± 0.71416.95
147.91 ± 0.71424.05
146.35425.01
152.05 ± 0.71441.85
152.97450.06
154.24 ± 0.71451.25
159.62 ± 0.71474.35
158.94475.09
160.41 ± 0.71477.75
165.96 ± 0.71501.55
171.62 ± 0.71525.85
176.39 ± 0.71546.35
184.92 ± 0.71582.95
189.48 ± 0.71602.55

References

Go To: Top, Gas phase thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Connett, 1975
Connett, J.E., Chemical equilibria 6. Measurement of equilibrium constants for the dehydrogenation of 2-methylpropan-1-ol by a vapour-flow technique, J. Chem. Thermodyn., 1975, 7, 1159-1162. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Skinner and Snelson, 1960
Skinner, H.A.; Snelson, A., The heats of combustion of the four isomeric butyl alcohols, Trans. Faraday Soc., 1960, 56, 1776-1783. [all data]

Counsell J.F., 1968
Counsell J.F., Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol, J. Chem. Soc. A, 1968, 1819-1823. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Counsell J.F., 1970
Counsell J.F., Thermodynamic properties of organic oxygen compounds. 24. Vapor heat capacities and enthalpies of vaporization of ethanol, 2-methyl-1-propanol, and 1-pentanol, J. Chem. Thermodyn., 1970, 2, 367-372. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, References