1-Propanol, 2-methyl-
- Formula: C4H10O
- Molecular weight: 74.1216
- IUPAC Standard InChIKey: ZXEKIIBDNHEJCQ-UHFFFAOYSA-N
- CAS Registry Number: 78-83-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Isobutyl alcohol; Isobutanol; Isopropylcarbinol; 2-Methyl-1-propanol; iso-C4H9OH; Fermentation butyl alcohol; 1-Hydroxymethylpropane; 2-Methylpropanol; 2-Methylpropan-1-ol; 2-Methylpropanol-1; 2-Methylpropyl alcohol; Butanol-iso; Alcool isobutylique; Isobutylalkohol; Rcra waste number U140; UN 1212; i-Butyl alcohol; Isopropyl carbitol; Propanol, 2-methyl-; 2-methyl-1-propanyl alcohol; i-Butanol; Methyl-2 propanol-1; NSC 5708; 2-methylpropanoI
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -283.8 ± 0.9 | kJ/mol | Eqk | Connett, 1975 | Heat of dehydrogenation; ALS |
ΔfH°gas | -282.9 | kJ/mol | N/A | Chao and Rossini, 1965 | Value computed using ΔfHliquid° value of -333.6±0.6 kj/mol from Chao and Rossini, 1965 and ΔvapH° value of 50.7 kj/mol from Skinner and Snelson, 1960.; DRB |
ΔfH°gas | -284. ± 1.5 | kJ/mol | Ccb | Skinner and Snelson, 1960 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 350.0 | J/mol*K | N/A | Counsell J.F., 1968 | GT |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
133.74 | 379.99 | Stromsoe E., 1970 | Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 0.71 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Counsell J.F., 1970.; GT |
134.34 | 381.23 | ||
140.10 ± 0.71 | 390.55 | ||
141.76 ± 0.71 | 397.65 | ||
139.55 | 400.03 | ||
143.92 ± 0.71 | 406.95 | ||
146.25 ± 0.71 | 416.95 | ||
147.91 ± 0.71 | 424.05 | ||
146.35 | 425.01 | ||
152.05 ± 0.71 | 441.85 | ||
152.97 | 450.06 | ||
154.24 ± 0.71 | 451.25 | ||
159.62 ± 0.71 | 474.35 | ||
158.94 | 475.09 | ||
160.41 ± 0.71 | 477.75 | ||
165.96 ± 0.71 | 501.55 | ||
171.62 ± 0.71 | 525.85 | ||
176.39 ± 0.71 | 546.35 | ||
184.92 ± 0.71 | 582.95 | ||
189.48 ± 0.71 | 602.55 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -334.6 ± 0.9 | kJ/mol | Eqk | Connett, 1975 | Heat of dehydrogenation; ALS |
ΔfH°liquid | -333.6 ± 0.63 | kJ/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; ALS |
ΔfH°liquid | -334.7 ± 0.84 | kJ/mol | Ccb | Skinner and Snelson, 1960 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -2669.6 ± 0.59 | kJ/mol | Ccb | Chao and Rossini, 1965 | see Rossini, 1934; Corresponding ΔfHºliquid = -333.5 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -2668.5 ± 0.84 | kJ/mol | Ccb | Skinner and Snelson, 1960 | Corresponding ΔfHºliquid = -334.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -2665.79 | kJ/mol | Ccb | Richards and Davis, 1920 | At 291 K; Corresponding ΔfHºliquid = -337.40 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 214.5 | J/mol*K | N/A | Counsell, Lees, et al., 1968 | DH |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 140.7 | J/mol*K | N/A | Counsell, Lees, et al., 1968 | glass phase; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
181.05 | 298.15 | Okano, Ogawa, et al., 1988 | DH |
182.01 | 298.15 | Piekarski and Somsen, 1988 | DH |
185.6 | 303.15 | Rybalkin, Emel'yanov, et al., 1978 | T = 293.15 to 353.15 K. Cp given as 2504 J/kg*K.; DH |
185.4 | 301.2 | Paz Andrade, Paz, et al., 1970 | T = 28, 40°C.; DH |
181.0 | 298.15 | Counsell, Lees, et al., 1968 | T = 10 to 350 K.; DH |
201.3 | 323. | Swietoslawski and Zielenkiewicz, 1960 | Mean value 21 to 78°C.; DH |
215.1 | 333. | Swietoslawski and Zielenkiewicz, 1958 | Mean value 21 to 99°C.; DH |
184.1 | 298.1 | Zhdanov, 1941 | T = 5 to 46°C.; DH |
187.0 | 303. | Willams and Daniels, 1924 | T = 303 to 343 K. Equation only.; DH |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
129.2 | 180. | Counsell, Lees, et al., 1968 | glass phase; T = 10 to 180 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 380.8 ± 0.9 | K | AVG | N/A | Average of 77 out of 89 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 165.15 | K | N/A | Anonymous, 1958 | TRC |
Tfus | 169. | K | N/A | Kanda, Otsubo, et al., 1950 | Uncertainty assigned by TRC = 2. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 171.2 | K | N/A | Wilhoit, Chao, et al., 1985 | Uncertainty assigned by TRC = 0.01 K; TRC |
Ttriple | 171.18 | K | N/A | Counsell, Lees, et al., 1968, 2 | Uncertainty assigned by TRC = 0.02 K; IPTS-48; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 548. ± 8. | K | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 45. ± 5. | bar | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.274 | l/mol | N/A | Gude and Teja, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.66 ± 0.02 | mol/l | N/A | Gude and Teja, 1995 | |
ρc | 3.672 | mol/l | N/A | Ambrose and Townsend, 1963 | TRC |
ρc | 3.63 | mol/l | N/A | Kay and Donham, 1955 | TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 51. ± 1. | kJ/mol | AVG | N/A | Average of 10 out of 11 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
41.82 | 381.1 | N/A | Majer and Svoboda, 1985 | |
45.4 | 365. | EB | Susial and Ortega, 1993 | Based on data from 350. to 400. K.; AC |
49.5 | 328. | A | Stephenson and Malanowski, 1987 | Based on data from 313. to 411. K.; AC |
46.0 | 396. | A | Stephenson and Malanowski, 1987 | Based on data from 381. to 524. K.; AC |
55.0 | 228. | A | Stephenson and Malanowski, 1987 | Based on data from 202. to 243. K.; AC |
44.2 | 379. | A | Stephenson and Malanowski, 1987 | Based on data from 369. to 389. K.; AC |
42.6 | 398. | A | Stephenson and Malanowski, 1987 | Based on data from 383. to 416. K.; AC |
41.1 | 416. | A | Stephenson and Malanowski, 1987 | Based on data from 401. to 493. K.; AC |
36.2 | 498. | A | Stephenson and Malanowski, 1987 | Based on data from 483. to 548. K.; AC |
46.2 | 357. | A,EB | Stephenson and Malanowski, 1987 | Based on data from 342. to 389. K. See also Ambrose, Counsell, et al., 1970.; AC |
49.7 ± 0.1 | 313. | C | Majer, Svoboda, et al., 1984 | AC |
48.3 ± 0.1 | 328. | C | Majer, Svoboda, et al., 1984 | AC |
45.0 ± 0.1 | 358. | C | Majer, Svoboda, et al., 1984 | AC |
48.1 | 335. | N/A | Sachek, Peshchenko, et al., 1982 | Based on data from 320. to 382. K.; AC |
52.6 | 308. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 293. to 388. K.; AC |
46.2 ± 0.1 | 347. | C | Counsell, Fenwick, et al., 1970 | AC |
44.2 ± 0.1 | 363. | C | Counsell, Fenwick, et al., 1970 | AC |
41.9 ± 0.1 | 381. | C | Counsell, Fenwick, et al., 1970 | AC |
47.0 | 348. | N/A | Brown, Fock, et al., 1969 | Based on data from 333. to 381. K. See also Boublik, Fried, et al., 1984.; AC |
40.1 | 438. | N/A | Ambrose and Townsend, 1963, 2 | Based on data from 423. to 548. K.; AC |
45.2 | 368. | EB | Biddiscombe, Collerson, et al., 1963 | Based on data from 353. to 388. K.; AC |
50.71 | 106.90 | V | Skinner and Snelson, 1960 | ALS |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 381. |
---|---|
A (kJ/mol) | 49.05 |
α | -1.6587 |
β | 1.1038 |
Tc (K) | 547.7 |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
422.64 to 547.71 | 4.40062 | 1260.453 | -92.588 | Ambrose and Townsend, 1963, 3 | Coefficents calculated by NIST from author's data. |
353.36 to 388.77 | 4.43126 | 1236.991 | -101.528 | Biddiscombe, Collerson, et al., 1963, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
6.322 | 171.18 | Counsell, Lees, et al., 1968 | DH |
6.32 | 171.2 | Counsell, Lees, et al., 1968, 2 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
36.93 | 171.18 | Counsell, Lees, et al., 1968 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1567. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 1568. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1539. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 1540. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
By formula: H2 + C4H8O = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -87.4 ± 0.3 | kJ/mol | Cm | Wiberg, Crocker, et al., 1991 | liquid phase; ALS |
ΔrH° | -68.1 ± 0.9 | kJ/mol | Eqk | Connett, 1975 | gas phase; Heat of dehydrogenation; ALS |
By formula: Na+ + C4H10O = (Na+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 105. ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 105. ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
By formula: C4H10O = H2 + C4H8O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68.1 ± 0.9 | kJ/mol | Eqk | Connett, 1975 | gas phase; Heat of dehydrogenation; ALS |
By formula: C4H8 + C4H10O = C8H18O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -36.3 ± 1.8 | kJ/mol | Eqk | Sharonov, Mishentseva, et al., 1991 | liquid phase; ALS |
By formula: C2H2O + C4H10O = C6H12O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -143.8 | kJ/mol | Cm | Rice and Greenberg, 1934 | liquid phase; ALS |
By formula: Li+ + C4H10O = (Li+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 169. ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
100. | M | N/A | |
83. | M | Butler, Ramchandani, et al., 1935 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.02 ± 0.02 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 793.7 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 762.2 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.02 ± 0.05 | PIPECO | Shao, Baer, et al., 1988 | LL |
10.11 ± 0.07 | EI | Bowen and Maccoll, 1984 | LBLHLM |
10.12 ± 0.04 | EI | Holmes, Fingas, et al., 1981 | LLK |
10.09 ± 0.02 | PE | Cocksey, Eland, et al., 1971 | LLK |
10.47 ± 0.03 | PE | Peel and Willett, 1975 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH5O+ | 10.43 ± 0.03 | C3H5 | PIPECO | Shao, Baer, et al., 1988 | LL |
CH5O+ | 10.54 ± 0.05 | CH2CHCH2 | EI | Holmes and Lossing, 1984 | LBLHLM |
C3H6+ | 11.00 ± 0.03 | CH3OH | PIPECO | Shao, Baer, et al., 1988 | LL |
C3H7+ | 11.28 ± 0.05 | CH2OH | PIPECO | Shao, Baer, et al., 1988 | LL |
C4H8+ | 10.33 ± 0.03 | H2O | PIPECO | Shao, Baer, et al., 1988 | LL |
De-protonation reactions
C4H9O- + =
By formula: C4H9O- + H+ = C4H10O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1567. ± 8.4 | kJ/mol | CIDC | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrH° | 1568. ± 8.8 | kJ/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1539. ± 8.8 | kJ/mol | H-TS | Haas and Harrison, 1993 | gas phase; Both metastable and 50 eV collision energy.; B |
ΔrG° | 1540. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Li+ + C4H10O = (Li+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 169. ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Na+ + C4H10O = (Na+ • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 105. ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | |
ΔrH° | 105. ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 1999 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Connett, 1975
Connett, J.E.,
Chemical equilibria 6. Measurement of equilibrium constants for the dehydrogenation of 2-methylpropan-1-ol by a vapour-flow technique,
J. Chem. Thermodyn., 1975, 7, 1159-1162. [all data]
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Skinner and Snelson, 1960
Skinner, H.A.; Snelson, A.,
The heats of combustion of the four isomeric butyl alcohols,
Trans. Faraday Soc., 1960, 56, 1776-1783. [all data]
Counsell J.F., 1968
Counsell J.F.,
Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol,
J. Chem. Soc. A, 1968, 1819-1823. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Counsell J.F., 1970
Counsell J.F.,
Thermodynamic properties of organic oxygen compounds. 24. Vapor heat capacities and enthalpies of vaporization of ethanol, 2-methyl-1-propanol, and 1-pentanol,
J. Chem. Thermodyn., 1970, 2, 367-372. [all data]
Rossini, 1934
Rossini, F.D.,
Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages,
J. Res. NBS, 1934, 13, 189-197. [all data]
Richards and Davis, 1920
Richards, T.W.; Davis, H.S.,
The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds,
J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]
Counsell, Lees, et al., 1968
Counsell, J.F.; Lees, E.B.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part XIX. Low temperature heat capacity and entropy of propan-1-ol, 2-methyl-propan-1-ol,
and pentan-1-ol, 1968, J. [all data]
Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, S.,
Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K,
Can. J. Chem., 1988, 66, 713-717. [all data]
Piekarski and Somsen, 1988
Piekarski, H.; Somsen, G.,
Heat capacities and volumes of mixtures of N,N-dimethylformamide with isobutanol, sec-butanol and t-pentanol, J. Chem. Soc.,
Faraday Trans. 1, 1988, 84(2), 529-537. [all data]
Rybalkin, Emel'yanov, et al., 1978
Rybalkin, V.I.; Emel'yanov, V.M.; Stupak, P.M.; Litovchenko, N.P.; Z'ola, M.I.,
Study of the heat capacity of initial compounds and reaction products in the production of metal dialkyldithiophosphates,
B.S.R. Inst. Neftepererab. Neftekhim. Prom. (Kiev), 1978, (16), 48-50. [all data]
Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E.,
Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos,
An. Quim., 1970, 66, 961-967. [all data]
Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat in homologous series of binary and ternary positive azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]
Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heats of binary positive azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 367-369. [all data]
Zhdanov, 1941
Zhdanov, A.K.,
Specific heats of some liquids and azeotropic mixtures,
Zhur. Obshch. Khim., 1941, 11, 471-482. [all data]
Willams and Daniels, 1924
Willams, J.W.; Daniels, F.,
The specific heats of certain organic liquids at elevated temperatures,
J. Am. Chem. Soc., 1924, 46, 903-917. [all data]
Anonymous, 1958
Anonymous, X.,
Am. Pet. Inst. Res. Proj. 50, 1958, Unpublished, 1958. [all data]
Kanda, Otsubo, et al., 1950
Kanda, E.; Otsubo, A.; Haseda, T.,
Sci. Rep. Res. Inst., Tohoku Univ. Ser. A, 1950, 2, 9. [all data]
Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R.,
Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases,
J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]
Counsell, Lees, et al., 1968, 2
Counsell, J.F.; Lees, E.B.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part XIX. Low-temperature heat capacity and entropy of propan-1-ol, 2-methylpropan-1-ol, and pentan-1-ol,
J. Chem. Soc., A, 1968, 1819, https://doi.org/10.1039/j19680001819
. [all data]
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds IX. The Critical Properties and Vapor Pressures Above Five Atmospheres of Six Aliphatic Alcohols,
J. Chem. Soc., 1963, 54, 3614-25. [all data]
Kay and Donham, 1955
Kay, W.B.; Donham, W.E.,
Liquid-Vapor Equilibrium in the Isobutyl Alcohol-Butanol, Methanol- Butanol, and Diethyl Ether-Butanol Systems,
Chem. Eng. Sci., 1955, 4, 1-16. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Susial and Ortega, 1993
Susial, Pedro; Ortega, Juan,
Isobaric vapor-liquid equilibria for methyl propanoate + isobutyl alcohol,
J. Chem. Eng. Data, 1993, 38, 3, 434-436, https://doi.org/10.1021/je00011a028
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J.,
The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point,
The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5
. [all data]
Majer, Svoboda, et al., 1984
Majer, V.; Svoboda, V.; Hynek, V.,
On the enthalpy of vaporization of isomeric butanols,
J. Chem. Thermodyn., 1984, 16, 1059-1066. [all data]
Sachek, Peshchenko, et al., 1982
Sachek, A.I.; Peshchenko, A.D.; Markovnik, V.S.; Ral'ko, O.V.; Andreevskii, D.N.; Leont'eva, A.A.,
Termodin. Org. Soedin., 1982, 94. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Counsell, Fenwick, et al., 1970
Counsell, J.F.; Fenwick, J.O.; Lees, E.B.,
Thermodynamic properties of organic oxygen compounds 24. Vapour heat capacities and enthalpies of vaporization of ethanol, 2-methylpropan-1-ol, and pentan-1-ol,
The Journal of Chemical Thermodynamics, 1970, 2, 3, 367-372, https://doi.org/10.1016/0021-9614(70)90007-8
. [all data]
Brown, Fock, et al., 1969
Brown, I.; Fock, W.; Smith, F.,
The thermodynamic properties of solutions of normal and branched alcohols in benzene and n-hexane,
The Journal of Chemical Thermodynamics, 1969, 1, 3, 273-291, https://doi.org/10.1016/0021-9614(69)90047-0
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R.,
681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols,
J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614
. [all data]
Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S.,
364. Thermodynamic properties of organic oxygen compounds. Part VIII. Purification and vapour pressures of the propyl and butyl alcohols,
J. Chem. Soc., 1963, 1954, https://doi.org/10.1039/jr9630001954
. [all data]
Ambrose and Townsend, 1963, 3
Ambrose, D.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols,
J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614
. [all data]
Biddiscombe, Collerson, et al., 1963, 2
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S.,
Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols,
J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954
. [all data]
Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G.,
The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols,
Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M.,
Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups,
J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B.,
Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]
Sharonov, Mishentseva, et al., 1991
Sharonov, K.G.; Mishentseva, Y.B.; Rozhnov, A.M.; Miroshnichenko, E.A.; Korchatova, L.I.,
Molar enthalpies of formation and vaporizqation of t-butoxybutanes and thermodynamics of their synthesis from a butanol and 2-methylpropene I. Equilibria of synthesis reactions of t-butoxybutanes in the liquid phase,
J. Chem. Thermodyn., 1991, 23, 141-145. [all data]
Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J.,
Ketene. III. Heat of formation and heat of reaction with alcohols,
J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]
Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W.,
The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols,
J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Shao, Baer, et al., 1988
Shao, J.D.; Baer, T.; Lewis, D.K.,
Dissociation dynamics of energy-selected ion-dipole complexes. 2. Butyl alcohol ions,
J. Phys. Chem., 1988, 92, 5123. [all data]
Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A.,
Low energy, low temperature mass spectra,
Org. Mass Spectrom., 1984, 19, 379. [all data]
Holmes, Fingas, et al., 1981
Holmes, J.L.; Fingas, M.; Lossing, F.P.,
Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part I. Odd-electron cations,
Can. J. Chem., 1981, 59, 80. [all data]
Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J.,
The effect of alkyl substitution on ionisation potential,
J. Chem. Soc., 1971, (B), 790. [all data]
Peel and Willett, 1975
Peel, J.B.; Willett, G.D.,
Photoelectron spectroscopic studies of the higher alcohols,
Aust. J. Chem., 1975, 28, 2357. [all data]
Holmes and Lossing, 1984
Holmes, J.L.; Lossing, F.P.,
Heats of formation of organic radicals from appearance energies,
Int. J. Mass Spectrom. Ion Processes, 1984, 58, 113. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Cp,solid Constant pressure heat capacity of solid IE (evaluated) Recommended ionization energy Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions S°solid,1 bar Entropy of solid at standard conditions (1 bar) Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.