sulphuryl dichloride
- Formula: Cl2O2S
- Molecular weight: 134.970
- IUPAC Standard InChIKey: YBBRCQOCSYXUOC-UHFFFAOYSA-N
- CAS Registry Number: 7791-25-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Sulfuryl chloride
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -84.799 | kcal/mol | Review | Chase, 1998 | Data last reviewed in June, 1971 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 74.352 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1971 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1100. | 1100. to 6000. |
---|---|---|
A | 14.27670 | 25.58650 |
B | 24.55361 | 0.137432 |
C | -20.54860 | -0.027726 |
D | 6.253681 | 0.001916 |
E | -0.134496 | -1.308571 |
F | -90.43021 | -95.98251 |
G | 84.41090 | 100.0640 |
H | -84.80000 | -84.80000 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in June, 1971 | Data last reviewed in June, 1971 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: CH3+ + Cl2O2S = (CH3+ • Cl2O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62.1 | kcal/mol | PHPMS | McMahon, Heinis, et al., 1988 | gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M |
By formula: C8H20N2O2S + 2C4H12ClN = 4C4H11N + Cl2O2S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 130.0 ± 1.7 | kcal/mol | Cm | Claydon and Mortimer, 1962 | liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 129.8 ± 1.7 kcal/mol; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
B - John E. Bartmess
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
>2.42397 | IMRB | Robbiani and Franklin, 1979 | EA: > Cl2-; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
11.4 ± 0.5 | EI | Sullivan and Beauchamp, 1978 | LLK |
12.05 | PE | Chadwick, Frost, et al., 1973 | LLK |
12.41 | PE | Solouki, Bock, et al., 1975 | Vertical value; LLK |
12.41 | PE | Solouki, Bock, et al., 1972 | Vertical value; LLK |
12.42 | PE | Mines, Thomas, et al., 1972 | Vertical value; LLK |
12.4 | PE | Chadwick, Cornford, et al., 1972 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
O2SCl+ | 11.8 ± 0.5 | Cl | EI | Sullivan and Beauchamp, 1978 | LLK |
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Symmetry: C2ν Symmetry Number σ = 2
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
a1 | 1 | SO2 s-str | 1205 | C | 1205 S | gas | 1182 S p | liq. | ||
a1 | 2 | SO2 scis | 577 | D | 577 VS | gas | 560 VS p | liq. | ||
a1 | 3 | SCl2 s-str | 408 | D | 408 VS p | liq. | ||||
a1 | 4 | SCl2 scis | 218 | D | 218 VS p | liq. | ||||
a2 | 5 | SO2 twist | 282 | D | ia | 282 S dp | liq. | |||
b1 | 6 | SO2 a-str | 1434 | C | 1434 S | gas | 1414 M dp | liq. | ||
b1 | 7 | SO2 rock | 388 | D | 388 S dp | liq. | ||||
b2 | 8 | SCl2 a-str | 586 | D | 586 VS | gas | 580 VW dp | liq. | ||
b2 | 9 | SO2 wag | 362 | D | 362 sh dp | liq. | ||||
Source: Shimanouchi, 1972
Notes
VS | Very strong |
S | Strong |
M | Medium |
VW | Very weak |
ia | Inactive |
sh | Shoulder |
p | Polarized |
dp | Depolarized |
C | 3~6 cm-1 uncertainty |
D | 6~15 cm-1 uncertainty |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P.,
Methyl Cation Affinities,
J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002
. [all data]
Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L.,
Photoionization mass spectrometry of trans-azomethane,
Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]
Claydon and Mortimer, 1962
Claydon, A.P.; Mortimer, C.T.,
Heats of formation and bond energies. Part VIII. Diethylaminotrimethylsilane, NN'-dithiodiethylamine, NN'-thionylbisdiethylamine, and NN'-sulphurylbisdiethylamine,
J. Chem. Soc., 1962, 3212-3216. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Robbiani and Franklin, 1979
Robbiani, R.; Franklin, J.L.,
Negative ion-molecule reaction in sulfuryl halides,
J. Am. Chem. Soc., 1979, 101, 3709. [all data]
Sullivan and Beauchamp, 1978
Sullivan, S.A.; Beauchamp, J.L.,
Positive and negative ion chemistry of sulfuryl halides,
Int. J. Mass Spectrom. Ion Phys., 1978, 28, 69. [all data]
Chadwick, Frost, et al., 1973
Chadwick, D.; Frost, D.C.; Herring, F.G.; Katrib, A.; McDowell, C.A.; McLean, R.A.N.,
Photoelectron spectra of sulfuryl and thionyl halides,
Can. J. Chem., 1973, 51, 1893. [all data]
Solouki, Bock, et al., 1975
Solouki, B.; Bock, H.; Appel, R.,
Photoelektronenspektren und Molekuleigenschaften, XLV Schwefelsaure-Derivate X2SY2: Alkyl-, Vinyl- und Arylsulfone, Alkylsulfoimide und Sulfurylhalogenide,
Chem. Ber., 1975, 108, 897. [all data]
Solouki, Bock, et al., 1972
Solouki, B.; Bock, H.; Appel, R.,
Sequence of orbitals in sulfones and sulfodiimides,
Angew. Chem. Int. Ed. Engl., 1972, 11, 927. [all data]
Mines, Thomas, et al., 1972
Mines, G.W.; Thomas, R.K.; Thompson, H.,
Photoelectron spectra of compounds containing thionyl and sulphuryl groups,
Proc. R. Soc. London A:, 1972, 329, 275. [all data]
Chadwick, Cornford, et al., 1972
Chadwick, D.; Cornford, A.B.; Frost, D.C.; Herring, F.G.; Katrib, A.; McDowell, C.A.; McLean, R.A.N.,
Photoelectron spectra of some dihalocompounds
in Electron spectroscopy, ed. D.A. Shirley (North-Holland Publixhing Co, Amsterdam), 1972, 453. [all data]
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume II,
J. Phys. Chem. Ref. Data, 1972, 6, 3, 993-1102. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.