Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Hydrogen sulfide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Deltafgas-20.6 ± 0.5kJ/molReviewCox, Wagman, et al., 1984CODATA Review value
Deltafgas-20.50kJ/molReviewChase, 1998Data last reviewed in June, 1977
Quantity Value Units Method Reference Comment
gas,1 bar205.81 ± 0.05J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar205.77J/mol*KReviewChase, 1998Data last reviewed in June, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. - 1400.1400. - 6000.
A 26.8841251.22136
B 18.678094.147486
C 3.434203-0.643566
D -3.3787020.041621
E 0.135882-10.46385
F -28.91211-55.87606
G 233.3747243.6900
H -20.50202-20.50202
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1977 Data last reviewed in June, 1977

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Kenneth Kroenlein director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil212.87KN/AGoodwin, 1983Uncertainty assigned by TRC = 0.07 K; TRC
Quantity Value Units Method Reference Comment
Tfus190.85KN/ABeckmann and Waentig, 1910Uncertainty assigned by TRC = 1.5 K; TRC
Quantity Value Units Method Reference Comment
Ttriple187.66KN/AGoodwin, 1983Uncertainty assigned by TRC = 0.06 K; TRC
Ttriple187.61KN/AGiauque and Blue, 1936Crystal phase 1 phase; Uncertainty assigned by TRC = 0.03 K; temp. scale for transition tempertures, T0 = 273.10 K Nature of transition C2 - C1 not definitely established; TRC
Quantity Value Units Method Reference Comment
Ptriple0.232barN/AGoodwin, 1983Uncertainty assigned by TRC = 0.005 bar; TRC
Quantity Value Units Method Reference Comment
Tc373.3KN/ACubitt, Henderson, et al., 1987Uncertainty assigned by TRC = 0.37 K; Tc from H.Kopper, 1936-450; TRC
Tc373.4KN/AGoodwin, 1983Uncertainty assigned by TRC = 0.15 K; TRC
Quantity Value Units Method Reference Comment
Pc89.70barN/ACubitt, Henderson, et al., 1987Uncertainty assigned by TRC = 0.18 bar; from VP equation fitted to lit. values of vapour pressure; TRC
Pc89.6291barN/AGoodwin, 1983Uncertainty assigned by TRC = 0.30 bar; TRC
Quantity Value Units Method Reference Comment
rhoc10.2mol/lN/AGoodwin, 1983Uncertainty assigned by TRC = 0.1 mol/l; TRC

Enthalpy of vaporization

DeltavapH (kJ/mol) Temperature (K) Reference Comment
19.5200.Dykyj, Svoboda, et al., 1999Based on data from 185. - 228. K.; AC
18.6243.Dykyj, Svoboda, et al., 1999Based on data from 228. - 363. K.; AC
21.9200.Giauque and Blue, 1936, 2Based on data from 187. - 213. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
138.8 - 212.84.43681829.439-25.412Stull, 1947Coefficents calculated by NIST from author's data.
212.8 - 349.54.52887958.587-0.539Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

DeltasubH (kJ/mol) Temperature (K) Method Reference Comment
22.5135.MGClark, Cockett, et al., 1951Based on data from 128. - 142. K.; AC
25.4175.N/AGiauque and Blue, 1936, 2Based on data from 164. - 187. K.; AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

HS- + Hydrogen cation = Hydrogen sulfide

By formula: HS- + H+ = H2S

Quantity Value Units Method Reference Comment
Deltar1470. ± 3.kJ/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar1441. ± 13.kJ/molH-TSRempala and Ervin, 2000gas phase; B
Deltar1443. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Deltar1443.1 ± 0.42kJ/molH-TSShiell, Hu, et al., 1900gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05; B
Deltar1446. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B
Deltar1432.2kJ/molN/ACheck, Faust, et al., 2001gas phase; MnO2-(t); ; «DELTA»S(EA)=5.4; B

Fluorine anion + Hydrogen sulfide = (Fluorine anion bullet Hydrogen sulfide)

By formula: F- + H2S = (F- bullet H2S)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Deltar145. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Deltar78.7J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Deltar121. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

H3S+ + Hydrogen sulfide = (H3S+ bullet Hydrogen sulfide)

By formula: H3S+ + H2S = (H3S+ bullet H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Deltar64.4kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Deltar45.2kJ/molPIWalters and Blais, 1984gas phase; M
Deltar44.4kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Deltar102.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
Deltar74.5J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Deltar78.2J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

CN- + Hydrogen sulfide = (CN- bullet Hydrogen sulfide)

By formula: CN- + H2S = (CN- bullet H2S)

Quantity Value Units Method Reference Comment
Deltar79.1 ± 4.2kJ/molTDEqMeot-ner, 1988gas phase; B
Deltar83. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar99.6J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Deltar54.0 ± 4.2kJ/molTDEqMeot-ner, 1988gas phase; B
Deltar51.9 ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

(H3S+ bullet 3Hydrogen sulfide) + Hydrogen sulfide = (H3S+ bullet 4Hydrogen sulfide)

By formula: (H3S+ bullet 3H2S) + H2S = (H3S+ bullet 4H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Deltar28.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Deltar10.kJ/molPIWalters and Blais, 1984gas phase; M
Deltar14.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Deltar103.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
Deltar42.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M

(H3S+ bullet 2Hydrogen sulfide) + Hydrogen sulfide = (H3S+ bullet 3Hydrogen sulfide)

By formula: (H3S+ bullet 2H2S) + H2S = (H3S+ bullet 3H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Deltar18.kJ/molPIWalters and Blais, 1984gas phase; M
Deltar35.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Deltar23.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Deltar103.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
Deltar59.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M

(H3S+ bullet Hydrogen sulfide) + Water = (H3S+ bullet Water bullet Hydrogen sulfide)

By formula: (H3S+ bullet H2S) + H2O = (H3S+ bullet H2O bullet H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Deltar79.9kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; From thermochemical cycle,switching reaction(H3S+ H2O)H2O; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Deltar91.2J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; From thermochemical cycle,switching reaction(H3S+ H2O)H2O; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M

(H3S+ bullet Hydrogen sulfide) + Hydrogen sulfide = (H3S+ bullet 2Hydrogen sulfide)

By formula: (H3S+ bullet H2S) + H2S = (H3S+ bullet 2H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Deltar38.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Deltar25.kJ/molPIWalters and Blais, 1984gas phase; M
Deltar30.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
Deltar87.4J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
Deltar72.4J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(H3S+ bullet 4Hydrogen sulfide) + Hydrogen sulfide = (H3S+ bullet 5Hydrogen sulfide)

By formula: (H3S+ bullet 4H2S) + H2S = (H3S+ bullet 5H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Deltar26.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Quantity Value Units Method Reference Comment
Deltar100.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
7.1185.PHPMSHiraoka and Kebarle, 1977gas phase; M

CH6N+ + Hydrogen sulfide = (CH6N+ bullet Hydrogen sulfide)

By formula: CH6N+ + H2S = (CH6N+ bullet H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Deltar45.2kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Deltar84.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
23.270.PHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

HS- + Hydrogen sulfide = (HS- bullet Hydrogen sulfide)

By formula: HS- + H2S = (HS- bullet H2S)

Quantity Value Units Method Reference Comment
Deltar55.2 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar82.4J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Deltar31. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

NH4+ + Hydrogen sulfide = (NH4+ bullet Hydrogen sulfide)

By formula: H4N+ + H2S = (H4N+ bullet H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Deltar47.7kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Deltar69.9J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

C3H7+ + Hydrogen sulfide = (C3H7+ bullet Hydrogen sulfide)

By formula: C3H7+ + H2S = (C3H7+ bullet H2S)

Quantity Value Units Method Reference Comment
Deltar134.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M
Quantity Value Units Method Reference Comment
Deltar146.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M

Carbonyl sulfide + Water = Carbon dioxide + Hydrogen sulfide

By formula: COS + H2O = CO2 + H2S

Quantity Value Units Method Reference Comment
Deltar-33.4 ± 0.96kJ/molEqkTerres and Wesemann, 1932gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -35.66 kJ/mol; ALS

(H2S+ bullet Hydrogen sulfide) + Hydrogen sulfide = (H2S+ bullet 2Hydrogen sulfide)

By formula: (H2S+ bullet H2S) + H2S = (H2S+ bullet 2H2S)

Quantity Value Units Method Reference Comment
Deltar18.kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
Deltar13.kJ/molPIWalters and Blais, 1981gas phase; M

Iodide + Hydrogen sulfide = (Iodide bullet Hydrogen sulfide)

By formula: I- + H2S = (I- bullet H2S)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Deltar37. ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

H2S+ + Hydrogen sulfide = (H2S+ bullet Hydrogen sulfide)

By formula: H2S+ + H2S = (H2S+ bullet H2S)

Quantity Value Units Method Reference Comment
Deltar88.7kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
Deltar71.1kJ/molPIWalters and Blais, 1981gas phase; M

Thioacetic acid + Water = Acetic acid + Hydrogen sulfide

By formula: C2H4OS + H2O = C2H4O2 + H2S

Quantity Value Units Method Reference Comment
Deltar-2.7 ± 0.3kJ/molCmSunner and Wadso, 1957liquid phase; Heat of hydrolysis; ALS

F5S- + Hydrogen sulfide = (F5S- bullet Hydrogen sulfide)

By formula: F5S- + H2S = (F5S- bullet H2S)

Quantity Value Units Method Reference Comment
Deltar212. ± 48.kJ/molSIFTZangerle, Hansel, et al., 1993gas phase; CID with Ar; M

(H2S+ bullet 2Hydrogen sulfide) + Hydrogen sulfide = (H2S+ bullet 3Hydrogen sulfide)

By formula: (H2S+ bullet 2H2S) + H2S = (H2S+ bullet 3H2S)

Quantity Value Units Method Reference Comment
Deltar5.0kJ/molPIWalters and Blais, 1981gas phase; M

(H2S+ bullet 3Hydrogen sulfide) + Hydrogen sulfide = (H2S+ bullet 4Hydrogen sulfide)

By formula: (H2S+ bullet 3H2S) + H2S = (H2S+ bullet 4H2S)

Quantity Value Units Method Reference Comment
Deltar5.9kJ/molPIWalters and Blais, 1981gas phase; M

(H2S+ bullet 4Hydrogen sulfide) + Hydrogen sulfide = (H2S+ bullet 5Hydrogen sulfide)

By formula: (H2S+ bullet 4H2S) + H2S = (H2S+ bullet 5H2S)

Quantity Value Units Method Reference Comment
Deltar11.kJ/molPIWalters and Blais, 1981gas phase; M

trithiocarbonic acid = Carbon disulfide + Hydrogen sulfide

By formula: CH2S3 = CS2 + H2S

Quantity Value Units Method Reference Comment
Deltar44. ± 1.kJ/molCmGattow and Krebes, 1963liquid phase; ALS

Nitric oxide anion + Hydrogen sulfide = H2NOS-

By formula: NO- + H2S = H2NOS-

Quantity Value Units Method Reference Comment
Deltar23.4kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Coblentz Society, Inc.

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View scan of original (hardcopy) spectrum.

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner COBLENTZ SOCIETY
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin DOW CHEMICAL COMPANY
Source reference COBLENTZ NO. 8759
Date 1964
State GAS (600 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2)
Instrument DOW KBr FOREPRISM
Instrument parameters GRATING CHANGED AT 5.0, 7.5, 15.0 MICRON
Path length 12.5 CM
Resolution 4
Sampling procedure TRANSMISSION
Data processing DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS)

This IR spectrum is from the Coblentz Society's evaluated infrared reference spectra collection.


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 43

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C2nu     Symmetry Number sigma = 2


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 Sym str 2615  A 2614.6 gas
a1 2 Bend 1183  A 1182.7 gas
b1 3 Anti str 2626  B 2626 gas

Source: Shimanouchi, 1972

Notes

A0~1 cm-1 uncertainty
B1~3 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Goodwin, 1983
Goodwin, R.D., Hydrogen sulfide provisional thermophysical properties from 188 to 700K at pressures to 75 MPa, Report, NBSIR-83-1694; NTIS No. PB84-122704, 177 pp., 1983. [all data]

Beckmann and Waentig, 1910
Beckmann, E.; Waentig, P., Cryoscopic Measurements at Low Temperatures, Z. Anorg. Chem., 1910, 67, 17. [all data]

Giauque and Blue, 1936
Giauque, W.F.; Blue, R.W., Hydrogen Sulfide. The Heat Capacity and Vapor Pressure of Solid and Liquid. The HEat of Vaporization. A Comparison of Thermooodynamic and Spectroscopic Values of the Entropy, J. Am. Chem. Soc., 1936, 58, 831. [all data]

Cubitt, Henderson, et al., 1987
Cubitt, A.G.; Henderson, C.; Staveley, L.A.K.; Fonseca, I.M.A.; Ferreira, A.G.M., Some thermodynamic properties of liquid hydrogen sulphide and deuterium sulphide, J. Chem. Thermodyn., 1987, 19, 703. [all data]

Dykyj, Svoboda, et al., 1999
Dykyj, J.; Svoboda, J.; Wilhoit, R.C.; Frenkel, M.L.; Hall, K.R., Vapor Pressure of Chemicals: Part A. Vapor Pressure and Antoine Constants for Hydrocarbons and Sulfur, Selenium, Tellurium and Hydrogen Containing Organic Compounds, Springer, Berlin, 1999, 373. [all data]

Giauque and Blue, 1936, 2
Giauque, W.F.; Blue, R.W., Hydrogen Sulfide. The Heat Capacity and Vapor Pressure of Solid and Liquid. The Heat of Vaporization. A Comparison of Thermodynamic and Spectroscopic Values of the Entropy, J. Am. Chem. Soc., 1936, 58, 5, 831-837, https://doi.org/10.1021/ja01296a045 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Clark, Cockett, et al., 1951
Clark, A.M.; Cockett, A.H.; Eisner, H.S., The Vapour Pressure of Hydrogen Sulphide, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1951, 209, 1098, 408-415, https://doi.org/10.1098/rspa.1951.0214 . [all data]

Rempala and Ervin, 2000
Rempala, K.; Ervin, K.M., Collisional activation of the Endoergic Hydrogen Atom Transfer Reaction S-(2P) + H2 - SH- + H, J. Chem. Phys., 2000, 112, 10, 4579, https://doi.org/10.1063/1.481016 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Shiell, Hu, et al., 1900
Shiell, R.C.; Hu, X.K.; Hu, Q.J.; Hepburn, J.W., A determination of the bond dissociation energy (D-0(H-SH)): Threshold ion-pair production spectroscopy (TIPPS) of a triatomic molecule, J. Phys. Chem. A, 1900, 104, 19, 4339-4342, https://doi.org/10.1021/jp000025k . [all data]

Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]

Breyer, Frey, et al., 1981
Breyer, F.; Frey, P.; Hotop, H., High Resolution Photoelectron Spectrometry of Negative Ions: Rotational Transitions in Laser-Photodetachment of OH-, SH-, and SD-, Z. Phys. A, 1981, 300, 1, 7, https://doi.org/10.1007/BF01412609 . [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Hiraoka and Kebarle, 1977
Hiraoka, K.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Proton in Hydrogen Sulfide and Hydrogen Sulfide - Water Mixtures. Stabilities of the Hydrogen Bonded Complexes H+(H2S)x(H2O)y, Can. J. Chem., 1977, 55, 1, 24, https://doi.org/10.1139/v77-005 . [all data]

Walters and Blais, 1984
Walters, E.A.; Blais, N.C., Molecular beam photoionization and fragmentation of D2S, (H2S)2, (D2S)2, and H2S.H2O, J. Chem. Phys., 1984, 80, 3501. [all data]

Prest, Tzeng, et al., 1983
Prest, H.F.; Tzeng, W.-B.; Brom, J.M., Jr.; Ng, C.Y., Photoionization study of (H2S)2 and (H2S)3, J. Am. Chem. Soc., 1983, 105, 7531. [all data]

Meot-Ner (Mautner) and Field, 1977
Meot-Ner (Mautner), M.; Field, F.H., Stability, Association and Dissociation in the Cluster Ions H3S+.nH2S, H3O+.nH2O and H3O+.H2O, J. Am. Chem. Soc., 1977, 99, 4, 998, https://doi.org/10.1021/ja00446a004 . [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Cunningham, Payzant, et al., 1972
Cunningham, A.J.; Payzant, J.D.; Kebarle, P., A Kinetic Study of the Proton Hydrate H+(H2O)n Equilibria in the Gas Phase, J. Am. Chem. Soc., 1972, 94, 22, 7627, https://doi.org/10.1021/ja00777a003 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Meot-Ner (Mautner) and Sieck, 1985
Meot-Ner (Mautner), M.; Sieck, L.W., The Ionic Hydrogen Bond and Ion Solvation. 4. SH+ O and NH+ S Bonds. Correlations with Proton Affinity. Mutual Effects of Weak and Strong Ligands in Mixed Clusters, J. Phys. Chem., 1985, 89, 24, 5222, https://doi.org/10.1021/j100270a021 . [all data]

Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W., Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range, J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012 . [all data]

Terres and Wesemann, 1932
Terres, E.; Wesemann, H., Uber Gleichgewichtsmessungen der teilreaktionen bei der umsetzung von scnwefelkohlenstoff mit wasserdampf im temperaturgebiet von 350° bis 900° C, Angew. Chem., 1932, 45, 795-832. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Walters and Blais, 1981
Walters, E.A.; Blais, N.C., Molecular beam photoionization of (H2S)n,n = 1 - 7, J. Chem. Phys., 1981, 75, 4208. [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Sunner and Wadso, 1957
Sunner, S.; Wadso, I., The heat of hydrolysis of thiolacetic acid, Trans. Faraday Soc., 1957, 53, 455-459. [all data]

Zangerle, Hansel, et al., 1993
Zangerle, R.; Hansel, A.; Richter, R.; Lindinger, W., The Reaction of SF5+ + H2S at Near Thermal Energies: Competition between Association and Binary Reactions, Int. J. Mass Spectrom. Ion Proc., 1993, 129, 117, https://doi.org/10.1016/0168-1176(93)87035-Q . [all data]

Gattow and Krebes, 1963
Gattow, V.G.; Krebes, B., Das kohlenstoffsulfid-di-(hydrogensulfid) SC(SH)2 und das system H2S-CS2. 2. Thermochemie des SC(SH)2, Z. Anorg. Allg. Chem., 1963, 322, 113. [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References