Oxygen

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar205.152 ± 0.005J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar205.15J/mol*KReviewChase, 1998Data last reviewed in March, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 100. to 700.700. to 2000.2000. to 6000.
A 31.3223430.0323520.91111
B -20.235318.77297210.72071
C 57.86644-3.988133-2.020498
D -36.506240.7883130.146449
E -0.007374-0.7415999.245722
F -8.903471-11.324685.337651
G 246.7945236.1663237.6185
H 0.00.00.0
ReferenceChase, 1998Chase, 1998Chase, 1998
Comment Data last reviewed in March, 1977; New parameter fit January 2009 Data last reviewed in March, 1977; New parameter fit January 2009 Data last reviewed in March, 1977; New parameter fit January 2009

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Tboil90.2KN/AStreng, 1971Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tfus54.8KN/AStreng, 1971Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Ttriple54.33KN/AHenning and Otto, 1936Uncertainty assigned by TRC = 0.06 K; temperature measured with He gas thermometer; TRC
Quantity Value Units Method Reference Comment
Tc154.58KN/APentermann and Wagner, 1978Uncertainty assigned by TRC = 0.0015 K; TRC
Tc154.58KN/AWagner, Ewers, et al., 1976Uncertainty assigned by TRC = 0.0015 K; TRC
Tc155.15KN/ACardoso, 1915Uncertainty assigned by TRC = 0.3 K; 4 determinations with same result; TRC
Quantity Value Units Method Reference Comment
Pc50.43barN/AWagner, Ewers, et al., 1976Uncertainty assigned by TRC = 0.005 bar; Vapour-pressure measurements give pc=5.04332 MPa at Tc from L.A.Weber, 1970 PRT, IPTS-68, PP+ differential pressure transducer.; TRC
Pc50.0343barN/ACardoso, 1915Uncertainty assigned by TRC = 0.3039 bar; TRC
Pc49.9228barN/ACardoso, 1915Uncertainty assigned by TRC = 0.3039 bar; TRC
Pc49.8519barN/ACardoso, 1915Uncertainty assigned by TRC = 0.3039 bar; TRC
Quantity Value Units Method Reference Comment
ρc13.60mol/lN/APentermann and Wagner, 1978Uncertainty assigned by TRC = 0.014 mol/l; from density measurements 65 to 300 K, Tc from Weber, 1970; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
54.36 to 100.163.85845325.675-5.667Brower and Thodos, 1968Coefficents calculated by NIST from author's data.
54.36 to 154.333.9523340.024-4.144Brower and Thodos, 1968Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Oxygen anion + Oxygen = (Oxygen anion • Oxygen)

By formula: O2- + O2 = (O2- • O2)

Quantity Value Units Method Reference Comment
Δr48. ± 20.kJ/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr130.J/mol*KPHPMSConway and Nesbit, 1968gas phase; M
Quantity Value Units Method Reference Comment
Δr13. ± 4.6kJ/molTDAsHiraoka, 1888gas phase; see also Sherwood, Hanold, et al., 1996. Aquino, Taylor, et al., 2001 calns indicate rectangular anion; B
Δr23. ± 4.2kJ/molIMREPayzant J.D. and Kebarle, 1972gas phase; B
Δr13. ± 4.2kJ/molIMREPack and Phelps, 1971gas phase; B
Δr16.7 ± 2.1kJ/molIMREParkes, 1971gas phase; B
Δr16. ± 4.2kJ/molTDAsConway and Nesbit, 1968gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.300.DTPack and Phelps, 1971gas phase; M

Oxygen cation + Oxygen = (Oxygen cation • Oxygen)

By formula: O2+ + O2 = (O2+ • O2)

Quantity Value Units Method Reference Comment
Δr41. ± 5.kJ/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr104.7J/mol*KPHPMSConway and Janik, 1970gas phase; M
Δr84.J/mol*KPHPMSDurden, Kebarle, et al., 1969gas phase; M
Δr86.2J/mol*KPHPMSYang and Conway, 1964gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
16.300.DTRakshit and Warneck, 1981gas phase; M
14.300.DTRakshit and Warneck, 1980gas phase; M
14.296.FAHoward, Bierbaum, et al., 1972gas phase; M
25.200.FAAdams and Bohme, 1970gas phase; M

(HO2+ • 2Oxygen) + Oxygen = (HO2+ • 3Oxygen)

By formula: (HO2+ • 2O2) + O2 = (HO2+ • 3O2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr13.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KN/AHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.6105.PHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

(Oxygen anion • 7Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 8Nitrogen • Oxygen)

By formula: (O2- • 7N2 • O2) + N2 = (O2- • 8N2 • O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Δr6.40kJ/molPHPMSHiraoka, 1988, 2gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1988, 2gas phase; M
Δr75.3J/mol*KN/AHiraoka, 1988, 2gas phase; Entropy change calculated or estimated; M

O- + Oxygen = (O- • Oxygen)

By formula: O- + O2 = (O- • O2)

Quantity Value Units Method Reference Comment
Δr130.kJ/molPDissHiller and Vestal, 1981gas phase; From thermochemical cycle, ΔrH<; M
Δr163.kJ/molPESNovich, Engelking, et al., 1979gas phase; From thermochemical cycle, from EA(O3), D(O-O2) AND EA(O); M
Δr160.kJ/molPDissCosby, Moseley, et al., 1978gas phase; M
Δr180.kJ/molCIDLifschitz, Wu, et al., 1978gas phase; M

(Oxygen cation • Oxygen) + Oxygen = (Oxygen cation • 2Oxygen)

By formula: (O2+ • O2) + O2 = (O2+ • 2O2)

Quantity Value Units Method Reference Comment
Δr25. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Δr28.7 ± 0.3kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr133.0J/mol*KPHPMSConway and Janik, 1970gas phase; M

(HO2+ • Oxygen) + Oxygen = (HO2+ • 2Oxygen)

By formula: (HO2+ • O2) + O2 = (HO2+ • 2O2)

Quantity Value Units Method Reference Comment
Δr29. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr28.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr96.7J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr92.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Oxygen cation • 3Oxygen) + Oxygen = (Oxygen cation • 4Oxygen)

By formula: (O2+ • 3O2) + O2 = (O2+ • 4O2)

Quantity Value Units Method Reference Comment
Δr9.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr10.3 ± 0.75kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr100.J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 2Oxygen) + Oxygen = (Oxygen cation • 3Oxygen)

By formula: (O2+ • 2O2) + O2 = (O2+ • 3O2)

Quantity Value Units Method Reference Comment
Δr10.4 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr10.6 ± 0.4kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr82.8J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 4Oxygen) + Oxygen = (Oxygen cation • 5Oxygen)

By formula: (O2+ • 4O2) + O2 = (O2+ • 5O2)

Quantity Value Units Method Reference Comment
Δr8.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr8. ± 3.kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr71.1J/mol*KPHPMSConway and Janik, 1970gas phase; M

O3- + Oxygen = (O3- • Oxygen)

By formula: O3- + O2 = (O3- • O2)

Quantity Value Units Method Reference Comment
Δr8.79 ± 0.84kJ/molTDAsHiraoka, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-15.1 ± 2.1kJ/molTDAsHiraoka, 1988, 2gas phase; B

Nitric oxide anion + Oxygen = (Nitric oxide anion • Oxygen)

By formula: NO- + O2 = (NO- • O2)

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr60.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
-2.200.FADunkin, Fehsenfeld, et al., 1971gas phase; DG>; M

(Oxygen anion • 6Oxygen) + Oxygen = (Oxygen anion • 7Oxygen)

By formula: (O2- • 6O2) + O2 = (O2- • 7O2)

Quantity Value Units Method Reference Comment
Δr5.86kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr67.J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated; M

(Oxygen cation • 7Oxygen) + Oxygen = (Oxygen cation • 8Oxygen)

By formula: (O2+ • 7O2) + O2 = (O2+ • 8O2)

Quantity Value Units Method Reference Comment
Δr7.61kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated; M

(Oxygen cation • Oxygen) + Nitrogen = (Oxygen cation • Nitrogen • Oxygen)

By formula: (O2+ • O2) + N2 = (O2+ • N2 • O2)

Quantity Value Units Method Reference Comment
Δr12.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr42.3J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(H3+ • Oxygen) + Oxygen = (H3+ • 2Oxygen)

By formula: (H3+ • O2) + O2 = (H3+ • 2O2)

Quantity Value Units Method Reference Comment
Δr48.1kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M

(O3- • 4Oxygen) + Oxygen = (O3- • 5Oxygen)

By formula: (O3- • 4O2) + O2 = (O3- • 5O2)

Quantity Value Units Method Reference Comment
Δr6.44kJ/molPHPMSHiraoka, 1988, 2gas phase; ΔrH, ΔrS approximate; M
Quantity Value Units Method Reference Comment
Δr68.6J/mol*KPHPMSHiraoka, 1988, 2gas phase; ΔrH, ΔrS approximate; M

H3+ + Oxygen = (H3+ • Oxygen)

By formula: H3+ + O2 = (H3+ • O2)

Quantity Value Units Method Reference Comment
Δr52.3kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M

(O2S- • 2Sulfur dioxide • Oxygen) + Sulfur dioxide = (O2S- • 3Sulfur dioxide • Oxygen)

By formula: (O2S- • 2O2S • O2) + O2S = (O2S- • 3O2S • O2)

Quantity Value Units Method Reference Comment
Δr15.1 ± 1.7kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr6. ± 13.kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • Sulfur dioxide • Oxygen) + Sulfur dioxide = (O2S- • 2Sulfur dioxide • Oxygen)

By formula: (O2S- • O2S • O2) + O2S = (O2S- • 2O2S • O2)

Quantity Value Units Method Reference Comment
Δr19.2 ± 1.7kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr10. ± 8.4kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O3S- • Sulfur dioxide • Oxygen) + Sulfur dioxide = (O3S- • 2Sulfur dioxide • Oxygen)

By formula: (O3S- • O2S • O2) + O2S = (O3S- • 2O2S • O2)

Quantity Value Units Method Reference Comment
Δr23.8 ± 2.5kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr15. ± 8.8kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

Oxygen cation + Oxygen = (Oxygen cation • Oxygen)

By formula: O+ + O2 = (O+ • O2)

Quantity Value Units Method Reference Comment
Δr179.kJ/molPDissHiller and Vestal, 1982gas phase; M
Δr200.kJ/molPILinn, Ono, et al., 1981gas phase; M
Δr209.kJ/molPDissMosely, Ozenne, et al., 1981gas phase; M

(O3S- • Oxygen) + Sulfur dioxide = (O3S- • Sulfur dioxide • Oxygen)

By formula: (O3S- • O2) + O2S = (O3S- • O2S • O2)

Quantity Value Units Method Reference Comment
Δr27.2 ± 3.3kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr18. ± 9.2kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • Oxygen) + Sulfur dioxide = (O2S- • Sulfur dioxide • Oxygen)

By formula: (O2S- • O2) + O2S = (O2S- • O2S • O2)

Quantity Value Units Method Reference Comment
Δr46.0 ± 4.2kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr26. ± 9.2kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(Oxygen anion • 2Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 3Nitrogen • Oxygen)

By formula: (O2- • 2N2 • O2) + N2 = (O2- • 3N2 • O2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Oxygen anion • 3Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 4Nitrogen • Oxygen)

By formula: (O2- • 3N2 • O2) + N2 = (O2- • 4N2 • O2)

Quantity Value Units Method Reference Comment
Δr9.0 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Oxygen anion • 4Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 5Nitrogen • Oxygen)

By formula: (O2- • 4N2 • O2) + N2 = (O2- • 5N2 • O2)

Quantity Value Units Method Reference Comment
Δr8.1 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Oxygen anion • 5Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 6Nitrogen • Oxygen)

By formula: (O2- • 5N2 • O2) + N2 = (O2- • 6N2 • O2)

Quantity Value Units Method Reference Comment
Δr7.6 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Oxygen anion • 6Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 7Nitrogen • Oxygen)

By formula: (O2- • 6N2 • O2) + N2 = (O2- • 7N2 • O2)

Quantity Value Units Method Reference Comment
Δr7.1 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Oxygen anion • Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 2Nitrogen • Oxygen)

By formula: (O2- • N2 • O2) + N2 = (O2- • 2N2 • O2)

Quantity Value Units Method Reference Comment
Δr11.7 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Nitric oxide anion • 2Oxygen) + Oxygen = (Nitric oxide anion • 3Oxygen)

By formula: (NO- • 2O2) + O2 = (NO- • 3O2)

Quantity Value Units Method Reference Comment
Δr11.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 3Oxygen) + Oxygen = (Nitric oxide anion • 4Oxygen)

By formula: (NO- • 3O2) + O2 = (NO- • 4O2)

Quantity Value Units Method Reference Comment
Δr10.2 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr67.4J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 4Oxygen) + Oxygen = (Nitric oxide anion • 5Oxygen)

By formula: (NO- • 4O2) + O2 = (NO- • 5O2)

Quantity Value Units Method Reference Comment
Δr9.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr80.3J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • Oxygen) + Oxygen = (Nitric oxide anion • 2Oxygen)

By formula: (NO- • O2) + O2 = (NO- • 2O2)

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(HO2+ • 3Oxygen) + Oxygen = (HO2+ • 4Oxygen)

By formula: (HO2+ • 3O2) + O2 = (HO2+ • 4O2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr88.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 4Oxygen) + Oxygen = (HO2+ • 5Oxygen)

By formula: (HO2+ • 4O2) + O2 = (HO2+ • 5O2)

Quantity Value Units Method Reference Comment
Δr9. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 5Oxygen) + Oxygen = (HO2+ • 6Oxygen)

By formula: (HO2+ • 5O2) + O2 = (HO2+ • 6O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr93.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 6Oxygen) + Oxygen = (HO2+ • 7Oxygen)

By formula: (HO2+ • 6O2) + O2 = (HO2+ • 7O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 7Oxygen) + Oxygen = (HO2+ • 8Oxygen)

By formula: (HO2+ • 7O2) + O2 = (HO2+ • 8O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr88.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 8Oxygen) + Oxygen = (HO2+ • 9Oxygen)

By formula: (HO2+ • 8O2) + O2 = (HO2+ • 9O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr86.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • Oxygen) + Hydrogen = (HO2+ • Hydrogen • Oxygen)

By formula: (HO2+ • O2) + H2 = (HO2+ • H2 • O2)

Quantity Value Units Method Reference Comment
Δr17.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr71.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Oxygen anion • Oxygen) + Nitrogen = (Oxygen anion • Nitrogen • Oxygen)

By formula: (O2- • O2) + N2 = (O2- • N2 • O2)

Quantity Value Units Method Reference Comment
Δr12.0 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr69.0J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

2Dimethyl sulfide + Oxygen = 2Dimethyl Sulfoxide

By formula: 2C2H6S + O2 = 2C2H6OS

Quantity Value Units Method Reference Comment
Δr-277.7 ± 0.84kJ/molCmDouglas, 1946liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -278.3 ± 0.8 kJ/mol; At 291°K; ALS

Dimethyl sulfone = Dimethyl Sulfoxide + 0.5Oxygen

By formula: C2H6O2S = C2H6OS + 0.5O2

Quantity Value Units Method Reference Comment
Δr243.3 ± 0.84kJ/molCmDouglas, 1946liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 246.9 ± 0.8 kJ/mol; At 291°K; ALS

(Oxygen anion • 2Oxygen) + Oxygen = (Oxygen anion • 3Oxygen)

By formula: (O2- • 2O2) + O2 = (O2- • 3O2)

Quantity Value Units Method Reference Comment
Δr10.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr89.1J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 3Oxygen) + Oxygen = (Oxygen anion • 4Oxygen)

By formula: (O2- • 3O2) + O2 = (O2- • 4O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 4Oxygen) + Oxygen = (Oxygen anion • 5Oxygen)

By formula: (O2- • 4O2) + O2 = (O2- • 5O2)

Quantity Value Units Method Reference Comment
Δr6.4 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 5Oxygen) + Oxygen = (Oxygen anion • 6Oxygen)

By formula: (O2- • 5O2) + O2 = (O2- • 6O2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr67.8J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen cation • 5Oxygen) + Oxygen = (Oxygen cation • 6Oxygen)

By formula: (O2+ • 5O2) + O2 = (O2+ • 6O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen cation • 6Oxygen) + Oxygen = (Oxygen cation • 7Oxygen)

By formula: (O2+ • 6O2) + O2 = (O2+ • 7O2)

Quantity Value Units Method Reference Comment
Δr8. ± 2.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSHiraoka, 1988gas phase; M

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.00131500.LN/A 
0.00131700.QN/AOnly the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical.
0.0013 N/AN/A 
0.00121700.XN/A 
0.00131500.LN/A 
0.00121800.MN/A 
0.00131700.XN/AThe value is taken from the compilation of solubilities by W. Asman (unpublished).

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to O2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)12.0697 ± 0.0002eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)421.kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity396.3kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.4480 ± 0.0060LPESErvin, Anusiewicz, et al., 2003B
0.4510 ± 0.0070LPESTravers, Cowles, et al., 1989B
0.4400 ± 0.0080LPESCelotta, Bennett, et al., 197289SAW puts DH(H-O2.) at 59 kcal/mol, implying ΔHacid=362.5; B
0.451 ± 0.052ECDChen and Wentworth, 1983B
0.44 ± 0.10CIDTTiernan and Wu, 1978From O2-; B
0.40 ± 0.10NBIEDurup, Parlant, et al., 1977B
0.450 ± 0.024ETSBurrow, 1974B
0.50 ± 0.10NBIEBaeda, 1972B
0.430 ± 0.030LPESCelotta, Bennett, et al., 1971B
0.460 ± 0.050NBIENalley and Compton, 1971B
>0.45 ± 0.10EndoTiernan, Hughes, et al., 1971B
0.50 ± 0.20NBIELacmann and Herschbach, 1970B
0.430 ± 0.020KinePack and Phelps, 1966B
>0.479998EndoBerkowitz, Chupka, et al., 1971B
>0.56 ± 0.10EndoChantry, 1971B
0.725005ECDChen and Chen, 2003B
>1.27 ± 0.20EndoBailey and Mahadevan, 1970B
1.119 ± 0.069IMRBVogt, Hauffle, et al., 1970B
>1.10 ± 0.10EIAEStockdale, Compton, et al., 1969From NO2; B
0.150 ± 0.050PDBurch, Smith, et al., 1958B

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
421. ± 3.Litorja and Ruscic, 1998T = 298K; MM

Ionization energy determinations

IE (eV) Method Reference Comment
12.0697 ± 0.0002STonkyn, Winniczek, et al., 1989LL
12.1 ± 0.1EIGrade, Wienecke, et al., 1983LBLHLM
12.8 ± 0.5EIGomez, Chatillon, et al., 1982LBLHLM
12.0 ± 1.0SFarber, Srivastava, et al., 1982LBLHLM
12.076 ± 0.002PEMacNeil and Dixon, 1977LLK
12.071PEKronebusch and Berkowitz, 1976LLK
12.071 ± 0.001PESamson and Gardner, 1975LLK
12.0 ± 0.5EIHildenbrand, 1975LLK
12.2 ± 0.2EIBennett, Lin, et al., 1974LLK
12.07 ± 0.01PITanaka and Tanaka, 1973LLK
12.08PENatalis, 1973LLK
12.077PEDromey, Morrison, et al., 1973LLK
12.127PEVilesov and Lopatin, 1972LLK
12.072 ± 0.008PIDibeler and Walker, 1967RDSH
12.059 ± 0.001SSamson and Cairns, 1966RDSH
12.078 ± 0.005PIBrehm, 1966RDSH
12.065 ± 0.003PINicholson, 1963RDSH
12.08 ± 0.01PIWatanabe, 1957RDSH
12.30PEKimura, Katsumata, et al., 1981Vertical value; LLK
12.33 ± 0.01PEBanna and Shirley, 1976Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
O+18.734OPIPECOBlyth, Powis, et al., 1981LLK
O+17.28O-PIOertel, Schenk, et al., 1980LLK
O+18.69 ± 0.04OEILocht and Schopman, 1974LLK
O+17.3 ± 0.2O-EILocht and Momigny, 1971LLK
O+17.25 ± 0.01O-PIDibeler and Walker, 1967RDSH
O+17.272 ± 0.024O-PIElder, Villarejo, et al., 1965RDSH
O+18.8 ± 0.4OPIWeissler, Samson, et al., 1959RDSH
O+18.99 ± 0.05OEIFrost and McDowell, 1959RDSH

Anion protonation reactions

Oxygen anion + Hydrogen cation = Hydroperoxy radical

By formula: O2- + H+ = HO2

Quantity Value Units Method Reference Comment
Δr1476.9 ± 3.0kJ/molD-EATravers, Cowles, et al., 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr1450.5 ± 3.4kJ/molH-TSTravers, Cowles, et al., 1989gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Calcium ion (1+) + Oxygen = (Calcium ion (1+) • Oxygen)

By formula: Ca+ + O2 = (Ca+ • O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
25.296.FASpears and Fehsenfeld, 1972gas phase; M

HO2+ + Oxygen = (HO2+ • Oxygen)

By formula: HO2+ + O2 = (HO2+ • O2)

Quantity Value Units Method Reference Comment
Δr83.7kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HO2+ • Oxygen) + Oxygen = (HO2+ • 2Oxygen)

By formula: (HO2+ • O2) + O2 = (HO2+ • 2O2)

Quantity Value Units Method Reference Comment
Δr29. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr28.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr96.7J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr92.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HO2+ • 2Oxygen) + Oxygen = (HO2+ • 3Oxygen)

By formula: (HO2+ • 2O2) + O2 = (HO2+ • 3O2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr13.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KN/AHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.6105.PHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

(HO2+ • 3Oxygen) + Oxygen = (HO2+ • 4Oxygen)

By formula: (HO2+ • 3O2) + O2 = (HO2+ • 4O2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr88.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 4Oxygen) + Oxygen = (HO2+ • 5Oxygen)

By formula: (HO2+ • 4O2) + O2 = (HO2+ • 5O2)

Quantity Value Units Method Reference Comment
Δr9. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 5Oxygen) + Oxygen = (HO2+ • 6Oxygen)

By formula: (HO2+ • 5O2) + O2 = (HO2+ • 6O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr93.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 6Oxygen) + Oxygen = (HO2+ • 7Oxygen)

By formula: (HO2+ • 6O2) + O2 = (HO2+ • 7O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 7Oxygen) + Oxygen = (HO2+ • 8Oxygen)

By formula: (HO2+ • 7O2) + O2 = (HO2+ • 8O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr88.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 8Oxygen) + Oxygen = (HO2+ • 9Oxygen)

By formula: (HO2+ • 8O2) + O2 = (HO2+ • 9O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr86.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

H3+ + Oxygen = (H3+ • Oxygen)

By formula: H3+ + O2 = (H3+ • O2)

Quantity Value Units Method Reference Comment
Δr52.3kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M

(H3+ • Oxygen) + Oxygen = (H3+ • 2Oxygen)

By formula: (H3+ • O2) + O2 = (H3+ • 2O2)

Quantity Value Units Method Reference Comment
Δr48.1kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M

Lithium ion (1+) + Oxygen = (Lithium ion (1+) • Oxygen)

By formula: Li+ + O2 = (Li+ • O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
18.319.DTColonna-Romano and Keller, 1976gas phase; low E/N; M

Nitric oxide anion + Oxygen = (Nitric oxide anion • Oxygen)

By formula: NO- + O2 = (NO- • O2)

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr60.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
-2.200.FADunkin, Fehsenfeld, et al., 1971gas phase; DG>; M

(Nitric oxide anion • Oxygen) + Oxygen = (Nitric oxide anion • 2Oxygen)

By formula: (NO- • O2) + O2 = (NO- • 2O2)

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 2Oxygen) + Oxygen = (Nitric oxide anion • 3Oxygen)

By formula: (NO- • 2O2) + O2 = (NO- • 3O2)

Quantity Value Units Method Reference Comment
Δr11.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 3Oxygen) + Oxygen = (Nitric oxide anion • 4Oxygen)

By formula: (NO- • 3O2) + O2 = (NO- • 4O2)

Quantity Value Units Method Reference Comment
Δr10.2 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr67.4J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 4Oxygen) + Oxygen = (Nitric oxide anion • 5Oxygen)

By formula: (NO- • 4O2) + O2 = (NO- • 5O2)

Quantity Value Units Method Reference Comment
Δr9.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr80.3J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

Sodium ion (1+) + Oxygen = (Sodium ion (1+) • Oxygen)

By formula: Na+ + O2 = (Na+ • O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
0.8310.DTKeller and Beyer, 1971gas phase; low E/N; M

Oxygen cation + Oxygen = (Oxygen cation • Oxygen)

By formula: O+ + O2 = (O+ • O2)

Quantity Value Units Method Reference Comment
Δr179.kJ/molPDissHiller and Vestal, 1982gas phase; M
Δr200.kJ/molPILinn, Ono, et al., 1981gas phase; M
Δr209.kJ/molPDissMosely, Ozenne, et al., 1981gas phase; M

(Oxygen cation • Oxygen) + Oxygen = (Oxygen cation • 2Oxygen)

By formula: (O+ • O2) + O2 = (O+ • 2O2)

Quantity Value Units Method Reference Comment
Δr29.kJ/molPILinn, Ono, et al., 1981gas phase; M

(Oxygen cation • 2Oxygen) + Oxygen = (Oxygen cation • 3Oxygen)

By formula: (O+ • 2O2) + O2 = (O+ • 3O2)

Quantity Value Units Method Reference Comment
Δr4.kJ/molPILinn, Ono, et al., 1981gas phase; M

O- + Oxygen = (O- • Oxygen)

By formula: O- + O2 = (O- • O2)

Quantity Value Units Method Reference Comment
Δr130.kJ/molPDissHiller and Vestal, 1981gas phase; From thermochemical cycle, ΔrH<; M
Δr163.kJ/molPESNovich, Engelking, et al., 1979gas phase; From thermochemical cycle, from EA(O3), D(O-O2) AND EA(O); M
Δr160.kJ/molPDissCosby, Moseley, et al., 1978gas phase; M
Δr180.kJ/molCIDLifschitz, Wu, et al., 1978gas phase; M

Oxygen cation + Oxygen = (Oxygen cation • Oxygen)

By formula: O2+ + O2 = (O2+ • O2)

Quantity Value Units Method Reference Comment
Δr41. ± 5.kJ/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr104.7J/mol*KPHPMSConway and Janik, 1970gas phase; M
Δr84.J/mol*KPHPMSDurden, Kebarle, et al., 1969gas phase; M
Δr86.2J/mol*KPHPMSYang and Conway, 1964gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
16.300.DTRakshit and Warneck, 1981gas phase; M
14.300.DTRakshit and Warneck, 1980gas phase; M
14.296.FAHoward, Bierbaum, et al., 1972gas phase; M
25.200.FAAdams and Bohme, 1970gas phase; M

(Oxygen cation • Oxygen) + Oxygen = (Oxygen cation • 2Oxygen)

By formula: (O2+ • O2) + O2 = (O2+ • 2O2)

Quantity Value Units Method Reference Comment
Δr25. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Δr28.7 ± 0.3kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr133.0J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 2Oxygen) + Oxygen = (Oxygen cation • 3Oxygen)

By formula: (O2+ • 2O2) + O2 = (O2+ • 3O2)

Quantity Value Units Method Reference Comment
Δr10.4 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr10.6 ± 0.4kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr82.8J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 3Oxygen) + Oxygen = (Oxygen cation • 4Oxygen)

By formula: (O2+ • 3O2) + O2 = (O2+ • 4O2)

Quantity Value Units Method Reference Comment
Δr9.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr10.3 ± 0.75kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr100.J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 4Oxygen) + Oxygen = (Oxygen cation • 5Oxygen)

By formula: (O2+ • 4O2) + O2 = (O2+ • 5O2)

Quantity Value Units Method Reference Comment
Δr8.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr8. ± 3.kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr71.1J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 5Oxygen) + Oxygen = (Oxygen cation • 6Oxygen)

By formula: (O2+ • 5O2) + O2 = (O2+ • 6O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen cation • 6Oxygen) + Oxygen = (Oxygen cation • 7Oxygen)

By formula: (O2+ • 6O2) + O2 = (O2+ • 7O2)

Quantity Value Units Method Reference Comment
Δr8. ± 2.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen cation • 7Oxygen) + Oxygen = (Oxygen cation • 8Oxygen)

By formula: (O2+ • 7O2) + O2 = (O2+ • 8O2)

Quantity Value Units Method Reference Comment
Δr7.61kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated; M

Oxygen anion + Oxygen = (Oxygen anion • Oxygen)

By formula: O2- + O2 = (O2- • O2)

Quantity Value Units Method Reference Comment
Δr48. ± 20.kJ/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr130.J/mol*KPHPMSConway and Nesbit, 1968gas phase; M
Quantity Value Units Method Reference Comment
Δr13. ± 4.6kJ/molTDAsHiraoka, 1888gas phase; see also Sherwood, Hanold, et al., 1996. Aquino, Taylor, et al., 2001 calns indicate rectangular anion; B
Δr23. ± 4.2kJ/molIMREPayzant J.D. and Kebarle, 1972gas phase; B
Δr13. ± 4.2kJ/molIMREPack and Phelps, 1971gas phase; B
Δr16.7 ± 2.1kJ/molIMREParkes, 1971gas phase; B
Δr16. ± 4.2kJ/molTDAsConway and Nesbit, 1968gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.300.DTPack and Phelps, 1971gas phase; M

(Oxygen anion • Oxygen) + Oxygen = (Oxygen anion • 2Oxygen)

By formula: (O2- • O2) + O2 = (O2- • 2O2)

Quantity Value Units Method Reference Comment
Δr10.5 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 2Oxygen) + Oxygen = (Oxygen anion • 3Oxygen)

By formula: (O2- • 2O2) + O2 = (O2- • 3O2)

Quantity Value Units Method Reference Comment
Δr10.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr89.1J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 3Oxygen) + Oxygen = (Oxygen anion • 4Oxygen)

By formula: (O2- • 3O2) + O2 = (O2- • 4O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 4Oxygen) + Oxygen = (Oxygen anion • 5Oxygen)

By formula: (O2- • 4O2) + O2 = (O2- • 5O2)

Quantity Value Units Method Reference Comment
Δr6.4 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 5Oxygen) + Oxygen = (Oxygen anion • 6Oxygen)

By formula: (O2- • 5O2) + O2 = (O2- • 6O2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr67.8J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 6Oxygen) + Oxygen = (Oxygen anion • 7Oxygen)

By formula: (O2- • 6O2) + O2 = (O2- • 7O2)

Quantity Value Units Method Reference Comment
Δr5.86kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr67.J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated; M

O3- + Oxygen = (O3- • Oxygen)

By formula: O3- + O2 = (O3- • O2)

Quantity Value Units Method Reference Comment
Δr8.79 ± 0.84kJ/molTDAsHiraoka, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-15.1 ± 2.1kJ/molTDAsHiraoka, 1988, 2gas phase; B

(O3- • Oxygen) + Oxygen = (O3- • 2Oxygen)

By formula: (O3- • O2) + O2 = (O3- • 2O2)

Quantity Value Units Method Reference Comment
Δr8.5 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr81.2J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(O3- • 2Oxygen) + Oxygen = (O3- • 3Oxygen)

By formula: (O3- • 2O2) + O2 = (O3- • 3O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(O3- • 3Oxygen) + Oxygen = (O3- • 4Oxygen)

By formula: (O3- • 3O2) + O2 = (O3- • 4O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(O3- • 4Oxygen) + Oxygen = (O3- • 5Oxygen)

By formula: (O3- • 4O2) + O2 = (O3- • 5O2)

Quantity Value Units Method Reference Comment
Δr6.44kJ/molPHPMSHiraoka, 1988, 2gas phase; ΔrH, ΔrS approximate; M
Quantity Value Units Method Reference Comment
Δr68.6J/mol*KPHPMSHiraoka, 1988, 2gas phase; ΔrH, ΔrS approximate; M

O4- + Nitrogen + Oxygen = N2O4-

By formula: O4- + N2 + O2 = N2O4-

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.84kJ/molTDAsHiraoka, 1988, 2gas phase; B
Quantity Value Units Method Reference Comment
Δr-8.8 ± 2.1kJ/molTDAsHiraoka, 1988, 2gas phase; B

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY
NIST MS number 61306

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through March, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 16O2
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
A detailed review of the entire spectrum of molecular oxygen has been published by Krupenie, 1972. Potential energy diagrams Gilmore, 1965, Freund, 1971, Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979; predicted electronic states and potential functions Buenker and Peyerimhoff, 1975, Moss and Goddard, 1975, Beebe, Thulstrup, et al., 1976.
Several Rydberg states converging to the oxygen K limits at 543.1(4Σ-) and 544.2(2Σ-) eV, in X-ray absorption and electron energy loss spectrum.
Nakamura, Morioka, et al., 1971; Wight and Brion, 1974; LaVilla, 1975
Z (3Πu) 2           Z ← X 532 eV 1
Nakamura, Morioka, et al., 1971; Wight and Brion, 1974; LaVilla, 1975
Absorption cross sections and cross sections fot the production of atomic fluorescence by photodissociation in the region 175 - 850 Angstrom (570000 - 115000 cm-1) Lee, Carlson, et al., 1973, Watson, Lang, et al., 1973, Carlson, 1974, Lee, Carlson, et al., 1974. Earlier results in Weissler and Lee, 1952, Aboud, Curtis, et al., 1955, De Reilhac and Damany-Astoin, 1964.
RydbergRydberg states with the outer electrons in 3sσ, 3pσ, 3dσ orbitals and the O2+ core in the highest ...1πu3g2 2Πu state have been tentatively identified in the electroionizaton spectrum O2 at 20.73, 21.75, 22.28 eV, respectively.
Codling and Madden's Rydberg series converging to c 4Σu+(v=0) of O2+:
ν = 198125 - R/(n-0.16)2 n=3(Y state), 4...11 3, 4 Similar series with v'=1.
Codling and Madden, 1965
ν = 198125 - R/(n-0.95)2 n=3(W state), 4...8 3, 4, 5 Similar series with v'=1.
Codling and Madden, 1965
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Y (184440) 3 [1510]   4      Y ← X 184410
missing citation
W (3Σu-) (168290) 3 [1510]   4      W ← X 168260
missing citation
VYoshino and Tanaka's weak Rydberg series converging to B 2Σg-(v=0) of O2+:
ν = 163700 - R/(n-0.54)2 n=6(V state), 7...12.3 Similar series with v'=1,2,3.
Yoshino and Tanaka, 1968
(160270) 3 (1100)         V ← X 160031
Yoshino and Tanaka, 1968
RydbergTanaka and Takamine's strong Rydberg s. of R shaded dif. b. converging to B 2Σg-(v=0) of O2+:
ν = 163702 - R/(n-0.70)2 n=3(U state),4...23.3,6 Similar series with v'=1,2,3.
Tanaka and Takamine, 1941; Ogawa, 1968; Yoshino and Tanaka, 1968
Fragments of Rydberg series (155000 - 160000 cm-1) converging to D 2Δg of O2+.
Lindholm, 1968
Namioka, Ogawa and Tanaka's Rydberg s. of weak R shaded b. converging to b 4Σg-(v=0) of O2+:
ν = 1465607 - R/(n-0.53)2 n=4(R state),5...16.3 Similar series with v'=1,2.
Namioka, Ogawa, et al., 1962; Yoshino and Tanaka, 1968
Tanaka and Takamine's Rydberg s. of strong R shaded b. converging to b 4Σg-(v=0) of O2+:
ν = 1465567 - R/(n-0.68)2 n=4(Q state),5...30.3,8 Similar series with v'=1...4.
Tanaka and Takamine, 1941; Namioka, Ogawa, et al., 1962; Yoshino and Tanaka, 1968
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
U 142548 3 1148 H 23  6      U ← X R 142329 H
Tanaka and Takamine, 1941; Ogawa, 1968
R (137643) 3 (1152) H         R ← X R 137432 H
Yoshino and Tanaka, 1968
Q 136759 3 1207 H 18  6      Q ← X R 136571 H
Price and Collins, 1935; Namioka, Ogawa, et al., 1962; Yoshino and Tanaka, 1968
Additional unclassified bands in the region 100000 - 135000 cm-1 Tanaka and Takamine, 1941. Absorption and photoionization cross sections of O2 (X 3Σg-) 100000 - 170000 cm-1 Watanabe, 1958, Huffman, Larrabee, et al., 1964, Cook and Metzger, 1964, Matsunaga and Watanabe, 1967. Dissociation continua with maxima at 125000, 131000, 138000 cm-1 Cook, Ogawa, et al., 1973.
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
p 1Φu 118951 1071 9 H 8.3  1.116 10 0.014  4.5E-6  1.374 p ← a R 110815 H
missing citation; missing citation; missing citation
I" (118200) (1050) 11 (15)  12      I" ← X (117900)
Tanaka and Takamine, 1941; Dehmer and Chupka, 1975
I' 117750 1050 13 9.9  12 14      I' ← X 117490
missing citation; missing citation; missing citation
116420 1070 13 14.5  12 14      I ← X 116160
missing citation; missing citation; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
H (3Πu) 99880 [1070] 15   12      H ← X 99630
missing citation; missing citation; missing citation; missing citation
Additional discrete and diffuse absorption bands in the region 80000 - 100000 cm-1 (only partly assigned) may belong to various Rydberg series converging to the first ionziation potential. Onset of the ionzation continuum observed at 1027.6 Angstrom (97314 cm-1) by photoionization mass spectrometry Dehmer and Chupka, 1975. Absorption cross sections of O2 (X 3Σg-) 51000 - 100000 cm-1 Watanabe, 1958, Kosinskaya and Startsev, 1965, Ogawa and Ogawa, 1975. Absorption cross sections of O2 (X 1Δg) have been measured Ogawa and Ogawa, 1975 from 63000 to 92000 cm-1 (see also Ogawa, 1970), photoionization cross sections Clark and Wayne, 1970, from 89400 to 96600 cm-1.
missing citation; Tanaka, 1952; Yamawaki and Ogawa, 1972; Chang and Ogawa, 1973; Ogawa, Yamawaki, et al., 1975
4f complex [91300] 16          4f ← a 82500
Collins, Husain, et al., 1973
           4f ← X 90500
Chang and Ogawa, 1973
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
L (3Πu) [90044] 17    [1.588] 17   [29E-6] 17  [1.152] 17 L ← X V 89257.3 Z
Chang and Ogawa, 1973
[89948] 17    [1.531] 17   [20E-6] 17  [1.173] 17 L ← X V 89161.0 17 Z
Chang and Ogawa, 1973
[89858]    [1.486] 17   [30E-6] 17  [1.191] 17 L ← X V 89070.7 Z
Chang and Ogawa, 1973
k (1Δu) [89066]    [1.451]   [20.8E-6]  [1.205] k ← a V 80395.8 Z
Alberti, Ashby, et al., 1968; Yamawaki and Ogawa, 1972
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
j (1Σu+) (87209) 18 [1896]   [1.701] 19  [12E-6] 19  [1.113] j ← X V 87370.2 Z
missing citation; Chang and Ogawa, 1973
G (3Σu+) (86998) [1822] 20  [1.698] 0.026 20    [1.114] G ← X V 87122 21 Z
Chang and Ogawa, 1973; missing citation
A Rydberg series (observed in absorption from a 1Δg) joins on to e, e' and i, i' and converges to X 2Πg of O2+.
Chang and Ogawa, 1972; Collins, Husain, et al., 1973
i (1Δ2u) (86846) [2062]   [1.688] 0.042  [10.5E-6]  [1.117] i ← a V 79208.0 22 Z
Alberti, Ashby, et al., 1968; Yamawaki and Ogawa, 1972; Collins, Husain, et al., 1973
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
i' (3Δ2u) (86843) [1699]   [1.791]   [140E-6]  [1.085] i' ← a V 79022.6 22 Z
Alberti, Ashby, et al., 1968; Yamawaki and Ogawa, 1972; Collins, Husain, et al., 1973
h (1Πu) (86750) (2200)   [1.451] 23     [1.205] 23 h ← a V 81362.5 23 Z
Alberti, Ashby, et al., 1968; Yamawaki and Ogawa, 1972
g (1Πu) (86604) [2048]   [1.615] 24   [6.0E-6] 24  [1.142] g ← X V 86841.4 Z
Chang and Ogawa, 1973
F' [87510] 25          F' ← X 86720
Tanaka, 1952; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
F 3Πu (85868) [2008] H 26   [1.434]   [11E-6]  [1.212] F ← X 86085.0 Z
Chang and Ogawa, 1972; Chang and Ogawa, 1973; missing citation
(85780) [2000] H 26   [1.398]   [6.0E-6]  [1.228] F ← X 85992.6 27 Z
Chang and Ogawa, 1972; Chang and Ogawa, 1973; missing citation
(85689) [2001] H 26   [1.352]   [5.3E-6]  [1.249] F ← X 85902.3 Z
Chang and Ogawa, 1972; Chang and Ogawa, 1973; missing citation
E 3Σu- (79883) [2547] 28  28      E ← X R 80369 28
missing citation; Tanaka, 1952; Cartwright, Hunt, et al., 1973; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
f 1Σu+ 76091 29 1927 19.0  1.703 30 0.020  31  1.113 f ← b V 63141.5 Z
Alberti, Ashby, et al., 1968
           f ← X V 76262.4 32
Alberti, Ashby, et al., 1968; missing citation; missing citation
D (3Σu+) (75260) 33 1957 19.7  1.73 34 0.025  35  1.104 D ← X V (75450)
Alberti, Ashby, et al., 1968; missing citation; missing citation
e (1Δ2u) (75254) [1830] H   [1.682] 36     [1.119] e ← a V 67499.6 37 Z
Alberti, Ashby, et al., 1968; Ogawa, 1970; Yamawaki and Ogawa, 1972; Collins, Husain, et al., 1973
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
e' (3Δ2u) (74915) [2052] H 38        e' ← a V 67272 37 H
Alberti, Ashby, et al., 1968; Ogawa, 1970; Yamawaki and Ogawa, 1972; Collins, Husain, et al., 1973
d (1Πg) (69180) [1860] 39        (d ← X) 69320 40
Trajmar, Cartwright, et al., 1976
C (3Πg) (65530) [1840] 41        (C ← X) 65670 40
Cartwright, Hunt, et al., 1973; Huebner, Celotta, et al., 1975
B 3Σu- 49793.28 709.31 42 Z 10.65 42 -0.139 0.81902 42 43 44 0.01206 42 -5.56E-4 4.55E-6 45  1.60426 B ↔ X 46 47 R 49358.15 Z
missing citation; missing citation; missing citation; missing citation; missing citation; Ackerman and Biaume, 1970; Creek and Nicholls, 1975
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
A 3Σu+ 35397.8 799.07 Z 12.16 48 -0.550 0.9106 0.01416 48 -9.7E-4 4.7E-6 49  1.5215 (A → b) 50 (21886)
           (A → a) 50 (27125
           A ↔ X 51 52 R 35007.15 Z
missing citation; missing citation; missing citation
A' 3Δu (34690) 53 (850) 54 (20) 54  (0.96) 55 (0.0262) 55    (1.48) (A' → a) 50 (26440)
           A' ← X 56 57 R (34320) 54
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
c 1Σu- 33057.3 794.29 Z 12.736 58 -.2444 0.9155 0.01391 58 -7.40E-4 [7.4E-6]  1.5174 c → a 59 (24782)
Richards and Johnson, 1976
           c ↔ X 60 R 32664.1 Z
missing citation; Degen, 1968
b 1Σg+ 13195.1 1432.77 61Z 14.00 61  1.40037 61 0.01820 61  5.351E-6 62  1.22688 b → a 63 5238.5
Noxon, 1961
           b ↔ → X 64 65 R 13120.91 66 Z
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
a 1Δg 7918.1 [1483.50] Z (12.9)  1.4264 0.0171  [4.86E-6]  1.21563 a ↔ X 67 68 65 R 7882.39 Z
missing citation
X 3Σg- 0 1580.193 Z 11.981 69 .04747 [1.4376766] 70 0.01593 71 72  [4.839E-6] 70 72  1.20752 73  
Crawford, Welsh, et al., 1949; Shapiro and Gush, 1966; McKellar, Rich, et al., 1972
Rotation sp. 74 75
McKnight and Gordy, 1968; Gebbie, Burroughs, et al., 1969
Spin reorientation (fine structure) sp. 74 76
Miller and Townes, 1953; Zimmerer and Mizushima, 1961; West and Mizushima, 1966; Wilheit and Barrett, 1970; Amano and Hirota, 1974
Raman sp. 77
missing citation; missing citation; Fletcher and Rayside, 1974; missing citation
EPR sp.
Tinkham and Strandberg, 1955; Gerber, 1972; Cook, Zegarski, et al., 1973

Notes

1 Wight and Brion, 1974 obtain 530.8 eV from the electron energy loss spectrum.
2Strong X-ray absorption peak (excitation 1s0 → 1πg).
3Possible upper state symmetries have been discussed on theoretical Leclercq, 1967 and empirical Lindholm, 1968 grounds. Several of these Rydberg levels have also been observed in the high resolution electron energy loss spectrum Geiger and Schroder, 1968.
4Strongly preionized.
5A weak satellite series approximately 50 cm-1 longward of the main bands has been observed by Codling and Madden, 1965.
6Preionization observed by photoionization mass-spectrometry Dehmer and Chupka, 1975.
7The limits refer to band origins; the approximate head-origin separation has been subtracted from the observed heads.
8Both preionization (to O2+ + e-) and predissociation (to O+ + O- for n≥5) have been established by photoionization mass- spectrometry Dehmer and Chupka, 1975.
9The 0-0, 1-0, 2-0 bands are overlapped. Vibrational numbering confirmed by 18O2 isotope shifts.
10Rotational analyses for v=3,5,7; v=4,6,8,9 are diffuse.
11Probably progression II of Tanaka and Takamine, 1941, extended and reassigned by Katayama, Huffman, Tanaka [unpublished, see Figure 1 of Dehmer and Chupka, 1975].
12Preionization observed by photoionization mass-spectrometry Dehmer and Chupka, 1975. Several autoionizing levels have been studied by photoelectron spectroscopy Bahr, Blake, et al., 1971, Kinsinger and Taylor, 1973, Tanaka and Tanaka, 1973. See also Nicholson, 1963.
13These progressions have been reassigned and extended by Katayana, Huffman, Tanaka (see 11) and include most of the bands of progressions I, N, I', P of Price and Collins, 1935. They occur in the region of the second member (4sσg) of the Rydberg series beginning with H [ Lindholm, 1968, see 15). Other Rydberg series going to a 4Πu or A 2Πu may also be present; higher members possibly account for many unassigned bands in the region 810-740 Å (123000 - 135000 cm-1).
14That the diffuse nature of the bands is at least partly due to predissociation has been shown by the observation of 0-I lines in fluorescence; Carlson, 1974 gives cross sections for this reaction from 850 to 650 Å (117000 - 154000 cm-1).
15Long but strongly perturbed v' progression composed of bands previously Price and Collins, 1935 assigned to four shorter progressions H, H', M, M'; first member (3sσg) of a Rydberg series converging to a 4Πu of O2+ Lindholm, 1968, Edqvist, Lindholm, et al., 1970). The intensity distribution [ Huffman, Larrabee, et al., 1964, Matsunaga and Watanabe, 1967, see also Dehmer and Chupka, 1975] closely resembles that of the a 4Πu progression in the photoelectron spectrum Edqvist, Lindholm, et al., 1970.
16Very complex spectrum 90400 - 90700 cm-1.
17Vibrational numbering uncertain.
18 Ogawa and Yamawaki, 1969 assumed this to be a 3Σu+ state; reassigned by Chang and Ogawa, 1973.
19B1 = 1.698, D1 = 42E-6.
20Partial rotational analyses of a weak and diffuse 0-0 band and of stronger 1-0 and 2-0 bands Chang and Ogawa, 1973.
21The 1802 isotope effect shows that this is a 0-0 band Ogawa, Yamawaki, et al., 1975.
22The two components are assumed to correspond to the ground state splitting (A = 200) of O2+ Yamawaki and Ogawa, 1972, Collins, Husain, et al., 1973.
23Perturbed rotational structure. According to Yamawaki and Ogawa, 1972 these constants refer to the 1-0 band, the unresolved 0-0 band being at 79180 cm-1.
24Constants for Π+; B0-) = 1.611, D0-) = 14E-6. Constants for the diffuse v=1 level were also determined.
25Group of six line-like features similar to F ← X.
26v=1 diffuse
27The 18O2 isotope shift shows that this is a 0-0 band. F 3Πu is a mixed state resulting from the avoided crossing of the unstable 3Πu state (arising from 3P + 3P) with the lowest 3Πu Rydberg state (3pσu); see Buenker and Peyerimhoff, 1975, Buenker, Peyerimhoff, et al., 1976. Oscillator strengths Huebner, Celotta, et al., 1975.
28The three strongest bands in this region at 80369, 82916, 85345 cm-1 [called "longest band", "second band", "third band" by Tanaka, 1952] have long resisted attempts at identification. Recent ab initio calculations Yoshimine, Tanaka, et al., 1976, Buenker, Peyerimhoff, et al., 1976 have shown that very probably they correspond to the second 3Σu- state formed by the avoided crossing of B 3Σu- with the lowest 3Σu- Rydberg state (3pπu). The predicted ωe is of the order of 3000 cm-1. All three bands are diffuse [O(1D) atoms have been detected in the predissociation of E 3Σu- Stone, Lawrence, et al., 1976] and show double peaks (two close double peaks for the "second band"). In 1802 the rotational structure of the "longest band" is resolved [B'= 1.3072 Ogawa, 1975, D'= 1.8E-6 Ogawa, 1975, λ'= 3.37 Ogawa, 1975, γ'= +0.045 Ogawa, 1975] and confirms that the upper state is indeed 3Σu- Ogawa, Yamawaki, et al., 1975. On the basis of the observed isotope shift Ogawa, Yamawaki, et al., 1975 prefer the assignment of the "longest band" as 1-0b. [see also Buenker, Peyerimhoff, et al., 1976]. f values of 0.0102, 0.0080, 0.0015, for three bands have been determined from electron energy loss measurements Huebner, Celotta, et al., 1975.
29α state of Alberti, Ashby, et al., 1968, progression II of Tanaka, 1952.
30v=2 diffuse. Rotational constants for 18O2 in Ogawa, 1975.
31D2= 25.8E-6, D3= 7E-6, D4= 10E-6.
32The 0-0 band is not observed since it is in the continuum which covers the 1300 Å region.
33β state of Alberti, Ashby, et al., 1968 who assumed it to be 1Σu+; reassigned by Ogawa and Yamawaki, 1969. Progression I of Tanaka, 1952.
34Levels other than v=2 and 3 are too diffuse for analysis, both in 16O2 and 18O2; for the latter see Ogawa, 1975.
35D2 = 14.8E-6; D3 = 21.0E-6.
36(diffuse lines)
37See 22.
38ΔG(3/2) = 1698, ΔG(5/2) = 1838.
39ΔG(3/2) = 1770, ΔG(5/2) ~1800.
40From electron energy loss spectra. C and d are considered to be the lowest Rydberg states (3sσg) of O2. Apparent oscillator strengths, summed over the first four bands of the C-X progression, yield an f value of f= 0.00074 Huebner, Celotta, et al., 1975.
41ΔG(3/2) = 1960 Cartwright, Hunt, et al., 1973, Huebner, Celotta, et al., 1975, ΔG(5/2) = 1780 Cartwright, Hunt, et al., 1973, Huebner, Celotta, et al., 1975 [average of values given by Cartwright, Hunt, et al., 1973 and Huebner, Celotta, et al., 1975].
42ωeye = -0.139, γe = -0.000556 from a low order fit to v ≤ 4; the representation of levels having v ≤ 13 requires seven Yi0 and seven Yi1 coefficients Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979; T0 values of Ackerman and Biaume, 1970 (absorption) and Creek and Nicholls, 1975 (emission) agree to better than 0.1 cm-1 [note, however, two typographical errors for G0 and G3 in Table 5 of Creek and Nicholls, 1975]. Convergence limit of the vibrational levels at 57127.5~ cm-1 Brix and Herzberg, 1954. RKR potential Krupenie, 1972, Vanderslice, Mason, et al., 1960, Ginter and Battino, 1965.
43The spin splitting constants at low v are λ = 1.5, -γ ~ 0.04 cm-1. They increase rapidly above v~12 Brix and Herzberg, 1954, Bergeman and Wofsy, 1972.
44Predissociation above v=2 established by line width measurements in absorption Wilkinson and Mulliken, 1957, Carroll, 1959, Hudson and Carter, 1968, Ackerman and Biaume, 1970, Snopko, 1970, Hudson and Mahle, 1972; maximum at v=4, subsidiary peaks at v=7,11. Ab initio calculations Schaefer and Miller, 1971, Julienne and Krauss, 1975, Julienne, 1976 show that the repulsive 5Πu state from normal atoms is the main contributor to the predissociation with smaller contributions from 1Πu, 3Πu [earlier investigators assumed this to be the only contributor Riess and Ben-Aryeh, 1969, Murrell and Taylor, 1969, Child, 1970, Durmaz and Murrell, 1971] and 3Σu+. Evidence for inverse predissociation has been foumd by Myers and Bartle, 1968; see also Wray and Fried, 1971, Sharma and Wray, 1971.
45β =0.22E-6 for low v; Dv increases rapidly above v~4.
46The B state levels have been observed in absorption from v'=0 to the convergence limit (see 42) Brix and Herzberg, 1954, Ackerman and Biaume, 1970. Absorption by vibrationally excited O2(v" ≤ 5) Ogawa, 1966, Ogawa and Chang, 1968; data for 17O16O, 18O16O, 18O2 Halmann, 1964, Halmann and Laulicht, 1965; absorption in inert gas matrices Bass and Broida, 1964, Schnepp and Dressler, 1965, Boursey, Roncin, et al., 1970 and Fugol, Gimpelevich, et al., 1976. The formation of O(1D) atoms by photoabsorption in the adjoining continuum has been verified by Stone, Lawrence, et al., 1976. Emission bands with low v' and high v" are observed in various electrical discharges Feast, 1950, Herman, Herman, et al., 1961, Creek and Nicholls, 1975.
47For intensity measurements in the discrete portion of the B-X system see Bethke, 1959, Blake, Carver, et al., 1966, Farmer, Fabian, et al., 1968, Hudson and Carter, 1968, Ackerman, Biaume, et al., 1970, Hasson, Hebert, et al., 1970, Huebner, Celotta, et al., 1975, and in the continuum Kosinskaya and Startsev, 1965, Blake, Carver, et al., 1966, Goldstein and Mastrup, 1966, Huebner, Celotta, et al., 1975; at the absorption maximum near 1445 Å (69200 cm-1) the absorption coefficient is 382 cm-1 (σ = 1.42E-17 cm2) Goldstein and Mastrup, 1966. Absorption f values vary from 3.4E-10 for the 0-0 band to 3.4E-5 for the 14-0, 15-0 bands to 1.3E-5 for the 20-0 band, yielding an oscillator strength sum of ~32E-5 for the Schumann-Runge bands. The overall electronic absorption oscillator strength is 0.162 which represents an upper limit if, as suggested by Huebner, Celotta, et al., 1975 and recently confirmed by Cartwright, Fiamengo, et al., 1976, the continuum contains contributions from other dissociative states; see also Julienne, Neumann, et al., 1976. A rather different total f value of 0.040 is derived from shock-tube absorption and emission studies Treanor and Wurster, 1960, Krindach, Sobolev, et al., 1963, Buttrey, 1969; the discrepancy is probably due to the r-dependence of the electronic transition moment Marr, 1964, Halmann and Laulicht, 1967, Allison, Dalgarno, et al., 1971, Julienne, Neumann, et al., 1976. Franck-Condon factors based on RKR and similar potentials Jarmain, 1963, Halmann and Laulicht, 1967, Harris, Blackledge, et al., 1969, Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979; Halmann and Laulicht, 1967 give data for 18O2. The spectral emissivity in the Schumann-Runge bands has been discussed by Ben-Aryeh, 1968, Buttrey, 1969. Franck-Condon densities Jarmain and Nicholls, 1964.
48The constants of Herzberg, 1952 have been adjusted Jarmain and Nicholls, 1967, Krupenie, 1972 to the revised vibrational numbering (v' raised by one unit) of Broida and Gaydon, 1954. The spin- splitting constants for low v are λ= -4.95 and γ ~0; they decrease appreciably above v~7. RKR potential Vanderslice, Mason, et al., 1960, Degen, Innanen, et al., 1968, Jarmain, 1972, Krupenie, 1972.
49Dv increases rapidly above v~4.
50The tentative identification of the A → b transition in an oxygen afterglow by Broida and Gaydon, 1954 was not confirmed by Barth and Kaplan, 1957. Other unidentified features in the nightglow and in the oxygen afterglow have been variously attributed to the A → a and A' → a transitions by Wraight, 1976 and Chamberlain, 1958, respectively. A high resolution trace of one of these bands at 4007 Å can be seen in Figure 1 of Degen, 1968.
51First observed in absorption at atmospheric pressure and a path of >25 m Herzberg, 1932, Herzberg, 1952. The bands occur in emission in the nightglow Chamberlain, 1955, Chamberlain, 1958 and in various afterglows Broida and Gaydon, 1954, Barth and Kaplan, 1957, Barth and Patapoff, 1962, Degen and Nicholls, 1968. According to Broida and Peyron, 1960, Bass and Broida, 1964 bands correlated with this system have also been observed in matrix isolation studies; these bands have recently been reassigned, see 57.
52For detailed intensity measurements in the discrete region and in the adjoining continuum see Ditchburn and Young, 1962, Blake, Carver, et al., 1966, Degen and Nicholls, 1969, Ogawa, 1971, Hasson and Nicholls, 1971. The electronic absorption oscillator strength is cross sections ~E-7; Cross sections in the continuum vary from ~0.5E-24 cm2 at 2400 Å to ~30E-24 cm2 at 1920 Å where transitions to other dissociative states begin to make significant contributions to the observed intensity Hasson and Nicholls, 1971. Franck-Condon factors and Franck-Condon densities Jarmain and Nicholls, 1967, Degen, Innanen, et al., 1968, Jarmain, 1972, Krupenie, 1972.
53The separation of the F3 and F2 components in v=6, extrapolated to J=0, is 145.9 cm-1.
54The vibrational constants and v00 have been estimated from measurements of the diffuse high-pressure bands (see 56). The only accurately known vibrational interval is ΔG(11/2) = 611.2 for the F3 component Herzberg, 1953. The vibrational numbering is uncertain.
55Extrapolated from B5 and B6 assuming a linear Bv curve; the v numbering has been estimated (see 54).
56Only two weak bands have been analyzed at low pressure and 800 m path length Herzberg, 1953. At high pressure and in liquid O2 a fairly strong progression of diffuse triplets has been studied by many investigators. This progression appears to be the analogue in (O2)2 of the A' ← X bands (their intensity increases with the square of the pressure) Wulf, 1928, Finkelnburg and Steiner, 1932, Herman, 1939, Herzberg, 1953. For lack of other information the A' ← X 0-0 band is assumed to be at the position of the first diffuse high-pressure band.
57Visible emission bands of oxygen in low temperature matrices Broida and Peyron, 1960 have recently been reinterpreted Richards and Johnson, 1976 as belonging to the A' → X system.
58ωeze ~ +0.00055. The constants refer to the revised vibrational numbering suggested by Degen, 1968; see 60.
59This system was only observed in Xe matrices (v00 = 24552) by excitation with VUV light.
60In absorption the 6-0,... ,11-0 bands [new v' numbering of Degen, 1968, 1-0,... ,6-0 in the old numbering of Herzberg, 1953] have been observed with path lengths of 800 m atm Herzberg, 1953; in emission several bands with low v' are seen in the afterglow of an oxygen-argon mixture Degen and Nicholls, 1966, Degen, 1968. The v'=0 progression is the strongest feature of the Venus night airglow Lawrence, Barth, et al., 1977.
61These constants have been re-evaluated [ Albritton, Harrop, et al., 1973, see also Creek and Nicholls, 1975] from the measurements of the b-X system Babcock and Herzberg, 1948 using improved lower state constants; γe = -0.000042. RKR potential curve Albritton, Harrop, et al., 1973. Constants for 16O18O, 16O17O in Babcock and Herzberg, 1948.
62Dv= +0.0318(v+1/2) + 0.00l2(v+1/2)2 Albritton, Harrop, et al., 1973. The Dv values have been calculated Albritton, Harrop, et al., 1973 using vibrational wavefunctions computed from the experimental potential curve; see Albritton, Harrop, et al., 1973, 2.
63Q branch of the 0-0 band observed in a discharge through O2 and He. Absolute transition probability ~2.5E-3s-1.
64In absorption observed in the solar spectrum; in the laboratory with more than 1m path. In emission in the aurora and nightglow Meinel, 1950 as well as in various discharges Kaplan, 1947, Kvifte, 1951, Herman, Herman, et al., 1961, Noxon, 1961. Band intensities [in cm-1 km-1 atm-1 (STP)] for the 0-0, 1-0, 2-0 bands are 532, 40.8, 1.52, respectively Miller, Boese, et al., 1969; slightly smaller values in Galkin, Zhukova, et al., 1972. The transition probability for the 0-0 band is 0.075 s-1 [average of values given by Miller, Boese, et al., 1969 and Galkin, Zhukova, et al., 1972]. Dianov-Klokov, 1964 gives the band oscillator strengths f00 = 2.5E-10 Dianov-Klokov, 1964, f10 ~0.2E-10 Dianov-Klokov, 1964. RKR Franck- Condon factors Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979; rotational intensity distribution and pressure broadening Burch and Gryvnak, 1969, Miller, Boese, et al., 1969, Galkin, Zhukova, et al., 1972.
65Pressure induced spectra a ← X, b ← X as well as simultaneous transitions in two colliding molecules have been studied by many investigators. See recent papers by Findlay, 1970, McKellar, Rich, et al., 1972 which refer to earlier work.
66 Albritton, Harrop, et al., 1973 give v00 = 13122.235 cm-1 Albritton, Harrop, et al., 1973, differing by +2/3 λ (spin-spin interaction in X 3Σg-) from the zero line of Babcock and Herzberg, 1948.
67EPR spectra of O2(1Δg) Falick, Mahan, et al., 1965, Miller, 1971; for 17O16O see Arrington, Falick, et al., 1971.
68Observed in absorption in the solar spectrum Herzberg and Herzberg, 1947, in emission in a discharge Noxon, 1961 and in the day and twilight glow Jones and Harrison, 1958, Noxon and Jones, 1962, Gattinger, 1968. Values given for the transition probability A00(s-1) are 2.58E-4 Badger, Wright, et al., 1965, 1.9E-4 Jones and Harrison, 1958, 1.5E-4 Jones and Gattinger, 1963. Franck-Condon factors Nicholls, Fraser, et al., 1960, Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979; Haslett and Fehsenfeld, 1969.
69ωeze = -0.001273 Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979, see also Curry and Herzberg, 1934. ΔG(1/2) = 1556.381 Babcock and Herzberg, 1948, Albritton, Harrop, et al., 1973, Fletcher and Rayside, 1974, higher ΔG values are less accurately known. G(v) values for v ≤ 28 are listed in Creek and Nicholls, 1975. RKR potential curve Vanderslice, Mason, et al., 1960, 2, Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979.
70From a re-evaluation by Johns and Lepard, 1975 of all available microwave and photographic (electronic and Raman) data; these constants supersede earlier results of Welch and Mizushima, 1972 and are in very good agreement with Steinbach and Gordy, 1975, Tomuta, Mizushima, et al., 1975. Spin splitting constants λ0 = +1.9847511, γ0 = -0.00842536; higher order (centrifugal distortion) constants in Johns and Lepard, 1975, Steinbach and Gordy, 1975, Tomuta, Mizushima, et al., 1975, see also Veseth and Lofthus, 1974. For v=1, λ1 = +1.989586 Amano and Hirota, 1974, γ1 = -0.0084468 Amano and Hirota, 1974, see also Cook, Zegarski, et al., 1973.
71αv= +0.0000641(v+1/2)2 - 2.85E-6(v+1/2)3 Krupenie, 1972, Albritton, Schmeltekopf, et al., 1979. B1 = 1.42192 Albritton, Harrop, et al., 1973, Amano and Hirota, 1974, Creek and Nicholls, 1975; see also Babcock and Herzberg, 1948.
72Bv and Dv values for v ≤ 28 are listed in Creek and Nicholls, 1975.
73Rot.-Vibr. sp. (collision induced)
74For microwave data on 18O2 see Steinbach and Gordy, 1973, on 16O18O Amano and Hirota, 1974, Steinbach and Gordy, 1975.
75Laser magnetic resonance spectra Mizushima, Wells, et al., 1972, Evenson and Mizushima, 1972, Tomuta, Mizushima, et al., 1975.
76The Stark effect of the 118 GHz fine structure transition (N=1,J=1←J=0) has been observed by Gustafson and Gordy, 1974 leading to a reliable value for the polarizability anisotropy α(parallel) - α(perp) = 1.12 Å3 Gustafson and Gordy, 1974.
77For Raman data on 16O18O and 18O2 see Edwards, Good, et al., 1976, Harney and Milanovich, 1976. The 2-1 hot band was recently resolved in the purely isotropic part of the scattered light Altmann, Klockner, et al., 1977. Spin structure Rich and Lepard, 1971.
7841260 ± 15 cm-1, from the convergence limit of the B ← X bands Brix and Herzberg, 1954.
79From the high resolution photoelectron spectrum of Samson and Gardner, 1975, see also Al-Joboury, May, et al., 1965, Turner and May, 1966, Turner, 1968. Photoionization studies [ McNeal and Cook, 1966, Samson and Cairns, 1966, additional references in Samson and Gardner, 1975] give appearance potentials of ~12.067 eV.
80Calculated from the energy levels of O2+
81From the X-ray photoelectron spectrum Siegbahn, Nordling, et al., 1969.

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Henning and Otto, 1936
Henning, F.; Otto, J., Vapor pressure curves and triple points in the temperature region from 14 to 90 k, Phys. Z., 1936, 37, 633-8. [all data]

Pentermann and Wagner, 1978
Pentermann, W.; Wagner, W., New pressure-density-temperature measurements and new rational equations for the saturated liquid and vapor densities of oxygen, J. Chem. Thermodyn., 1978, 10, 1161-1172. [all data]

Wagner, Ewers, et al., 1976
Wagner, W.; Ewers, J.; Pentermann, W., A New Vapor-Pressure Measurement and a New Rational Vapor-Pressure Equation for Oxygen, J. Chem. Thermodyn., 1976, 8, 1049. [all data]

Cardoso, 1915
Cardoso, E., Study of the Critical Point of Several Difficultly LIquifiable Gases: Nitrogen, Carbon Monoxide, Oxygen and Methane, J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 312. [all data]

Brower and Thodos, 1968
Brower, G.T.; Thodos, G., Vapor Pressures of Liquid Oxygen Between the Triple Point and Critical Point, J. Chem. Eng. Data, 1968, 13, 2, 262-264, https://doi.org/10.1021/je60037a038 . [all data]

Hiraoka, 1988
Hiraoka, K., A Determination of the Stabilities of O2+(O2)n and O2-(O2)n with n = 1 - 8 from Measurements of the Gas-Phase Ion Equilibria, J. Chem. Phys., 1988, 89, 5, 3190, https://doi.org/10.1063/1.454976 . [all data]

Conway and Nesbit, 1968
Conway, D.C.; Nesbit, L.E., Stability of O4-, J. Chem. Phys., 1968, 48, 1, 509, https://doi.org/10.1063/1.1667956 . [all data]

Hiraoka, 1888
Hiraoka, K., A Determination of the Stability of O2+(O2)n and O2-(O2)n with n=1-8 from Measurements of the Gas Phase Ion Equilibria, J. Chem. Phys., 1888, 89, 5, 3190, https://doi.org/10.1063/1.454976 . [all data]

Sherwood, Hanold, et al., 1996
Sherwood, C.R.; Hanold, K.A.; Garner, M.C.; Strong, K.M.; Continetti, R.E., Translational Spectroscopy Studies of the Photodissociation Dynamics of O4-, J. Chem. Phys., 1996, 105, 24, 10803, https://doi.org/10.1063/1.472888 . [all data]

Aquino, Taylor, et al., 2001
Aquino, A.J.A.; Taylor, P.R.; Walch, S.P., Structure, properties, and photodissociation of O-4(-), J. Chem. Phys., 2001, 114, 7, 3010-3017, https://doi.org/10.1063/1.1288379 . [all data]

Payzant J.D. and Kebarle, 1972
Payzant J.D.; Kebarle, P., Kinetics and Reactions Leading to O2-(H2O)n in Moist Oxygen, J. Chem. Phys., 1972, 56, 7, 3482, https://doi.org/10.1063/1.1677723 . [all data]

Pack and Phelps, 1971
Pack, J.L.; Phelps, A.V., Hydration of Oxygen Negative Ions, Bull. Am. Phys. Soc., 1971, 16, 214. [all data]

Parkes, 1971
Parkes, D.A., Electron Attachment and Negative Ion-Molecule Reactions in Pure O2, Trans. Farad. Soc., 1971, 97, 711, https://doi.org/10.1039/tf9716700711 . [all data]

Conway and Janik, 1970
Conway, D.C.; Janik, G.S., Determination of the Bond Energies for the Series O2 - O2+ through O2 - O10+, J. Chem. Phys., 1970, 53, 5, 1859, https://doi.org/10.1063/1.1674262 . [all data]

Durden, Kebarle, et al., 1969
Durden, D.A.; Kebarle, P.; Good, A., Thermal Ion-Molecule Reaction Rate Constants at Pressures up to 10 torr with a Pulsed Mass Spectrometer. Reactions in Methane, Krypton, and Oxygen, J. Chem. Phys., 1969, 50, 2, 805, https://doi.org/10.1063/1.1671133 . [all data]

Yang and Conway, 1964
Yang, J.H.; Conway, D.C., Bonding in Ion Clusters. I. O4+, J. Chem. Phys., 1964, 40, 6, 1729, https://doi.org/10.1063/1.1725389 . [all data]

Rakshit and Warneck, 1981
Rakshit, A.B.; Warneck, P., Formation and Reactions of O2+.CO2, O2+.H2O and O2+(CO2)2 Ions, Int. J. Mass Spectrom Ion Phys., 1981, 40, 2, 135, https://doi.org/10.1016/0020-7381(81)80037-X . [all data]

Rakshit and Warneck, 1980
Rakshit, A.B.; Warneck, P., A Drift Chamber Study of the Formation of Water Cluster Ions in Oxygen, J. Chem. Phys., 1980, 73, 10, 5074, https://doi.org/10.1063/1.439985 . [all data]

Howard, Bierbaum, et al., 1972
Howard, C.J.; Bierbaum, V.M.; Rundle, H.W.; Kaufman, F., Kinetics and Mechanism of Formation of Water Cluster Ions from O2+ and H2O+, J. Chem. Phys., 1972, 57, 8, 3491, https://doi.org/10.1063/1.1678783 . [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas Phase Stabilities of the Cluster Ions H+(CO)2(CO)n, H+(N2)2(N2)n and H+(O2)2(O2)n with n = 1 - 14, Chem. Phys., 1989, 137, 1-3, 345, https://doi.org/10.1016/0301-0104(89)87119-8 . [all data]

Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P., Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements, Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346 . [all data]

Hiraoka, 1988, 2
Hiraoka, K., Determination of the Stabilities of O3-(N2)n, O3-(O2)n, and O4-(N2)n from Measurements of the Gas Phase Equilibria, Chem. Phys., 1988, 125, 2-3, 439, https://doi.org/10.1016/0301-0104(88)87096-4 . [all data]

Hiller and Vestal, 1981
Hiller, J.F.; Vestal, M.L., Laser Photodissociation of O3- by Triple Quadrupole Mass Spectrometry, J. Chem. Phys., 1981, 74, 11, 6096, https://doi.org/10.1063/1.441053 . [all data]

Novich, Engelking, et al., 1979
Novich, S.E.; Engelking, P.C.; Jones, P.L.; Futrell, J.H.; Lineberger, W.C., Laser photoelectron, photodetachment, and photodestruction spectra of O3-, J. Chem. Phys., 1979, 70, 2652. [all data]

Cosby, Moseley, et al., 1978
Cosby, P.C.; Moseley, J.T.; Peterson, J.R.; Ling, J.H., Photodissociation spectroscopy of O3, J. Chem. Phys., 1978, 69, 2771. [all data]

Lifschitz, Wu, et al., 1978
Lifschitz, C.; Wu, R.L.C.; Tiernan, T.O.; Terwillinger, D.T., Negative Ion - Molecule Reactions of Ozone and Their Implications on the Thermochemistry of O3-, J. Chem. Phys., 1978, 68, 1, 247, https://doi.org/10.1063/1.435489 . [all data]

Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S., Cluster Ions: Gas Phase Stabilities of NO+(O2)n and NO+(CO2)n with n = 1 - 5, J. Chem. Phys., 1991, 95, 9, 6800, https://doi.org/10.1063/1.461518 . [all data]

Dunkin, Fehsenfeld, et al., 1971
Dunkin, D.B.; Fehsenfeld, F.C.; Schelmetekopf, A.L.; Ferguson, E.E., Three-Body Association Reactions of NO+ with O2, N2, and CO2, J. Chem. Phys., 1971, 54, 9, 3817, https://doi.org/10.1063/1.1675432 . [all data]

Speller and Fitaire, 1983
Speller, C.V.; Fitaire, M., Proceedings of the 16th International Conference on Phenomena of Ionized Gases, H. Boetticher, H. Wenk and E. Shulz - Gulde, ed(s)., ICPIG, Dusseldorf, 1983, 568. [all data]

Vacher, Jorda, et al., 1992
Vacher, J.R.; Jorda, M.; Leduc, E.; Fitaire, M., A Determination of the Stabilities of Negative Ion Clusters in SO2 and SO2-O2 Mixtures, Int. J. Mass Spectrom. Ion Proc., 1992, 114, 3, 149, https://doi.org/10.1016/0168-1176(92)80033-W . [all data]

Hiller and Vestal, 1982
Hiller, J.F.; Vestal, M.L., Laser Photodissociation of O3+ and the Energetics of Ozone and its Ions, J. Chem. Phys., 1982, 77, 3, 1248, https://doi.org/10.1063/1.444000 . [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., A Study of the Ion - Molecule Half Reactions O2+(a4piu, v)...(O2)m ---> O2m+1 + O, m=1, 2, 3, Using the Molecular Beam Photoionization Method, J. Chem. Phys., 1981, 74, 6, 3348, https://doi.org/10.1063/1.441487 . [all data]

Mosely, Ozenne, et al., 1981
Mosely, J.T.; Ozenne, J.B.; Cosby, P.C., Photofragment Spectroscopy of O3+, J. Chem. Phys., 1981, 74, 1, 337, https://doi.org/10.1063/1.440839 . [all data]

Douglas, 1946
Douglas, T.B., Heats of formation of liquid methyl sulfoxide and crystalline methyl sulfone at 18°, J. Am. Chem. Soc., 1946, 68, 1072-1076. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Ervin, Anusiewicz, et al., 2003
Ervin, K.M.; Anusiewicz, W.; Skurski, P.; Simons, J.; Lineberger, W.C., The only stable state of O-2(-) is the X (2)Pi(g) ground state and it (still!) has an adiabatic electron detachment energy of, J. Phys. Chem. A, 2003, 107, 41, 8521-8529, https://doi.org/10.1021/jp0357323 . [all data]

Travers, Cowles, et al., 1989
Travers, M.J.; Cowles, D.C.; Ellison, G.B., Reinvestigation of the Electron Affinities of O2 and NO, Chem. Phys. Lett., 1989, 164, 5, 449, https://doi.org/10.1016/0009-2614(89)85237-6 . [all data]

Celotta, Bennett, et al., 1972
Celotta, R.J.; Bennett, R.A.; Hall, J.L.; Siegel, M.W.; Levine, J., Molecular photodetachment spectrometry. II. The electron affinity of O2 and the structure of O2-, Phys. Rev. A:, 1972, 6, 631. [all data]

Chen and Wentworth, 1983
Chen, E.C.M.; Wentworth, W.E., Determination of molecular electron affinities using the electron capture detector in the pulse sampling mode at steady state, J. Phys. Chem., 1983, 87, 45. [all data]

Tiernan and Wu, 1978
Tiernan, T.O.; Wu, R.L.C., Thermochemical Data for Molecular Negative Ions from Collisional Dissociation Thresholds, Adv. Mass Spectrom., 1978, 7A, 136. [all data]

Durup, Parlant, et al., 1977
Durup, M.; Parlant, G.; Appell, J.; Durup, J.; Ozenne, J.-B., Translational spectroscopy of neutralization-reionization double collision processes of Ar+ ions at keV energies, Chem. Phys., 1977, 25, 245. [all data]

Burrow, 1974
Burrow, P.D., Temporary negative ion formation in NO and O2, Chem. Phys. Lett., 1974, 26, 265. [all data]

Baeda, 1972
Baeda, A.P.M., The adiabatic electron affinities of Cl2, Br2, I2, IBr, NO2, and O2, Physica, 1972, 59, 541. [all data]

Celotta, Bennett, et al., 1971
Celotta, R.J.; Bennett, R.A.; Hall, J.L.; Levine, J.; Siegel, M.W., Electron affinity of O2 by laser photodetachment, Bull. Am. Phys. Soc., 1971, 16, 212. [all data]

Nalley and Compton, 1971
Nalley, S.J.; Compton, R.N., Collisional ionization of cesium by oxygen: The electron affinity of O2, Chem. Phys. Lett., 1971, 9, 529. [all data]

Tiernan, Hughes, et al., 1971
Tiernan, T.O.; Hughes, B.M.; Lifschitz, C., Electron affinities from endothermic negative ion charge transfer reactions. II. O2, J. Chem. Phys., 1971, 55, 5692. [all data]

Lacmann and Herschbach, 1970
Lacmann, K.; Herschbach, D.R., Collisional Excitation and Ionization of K Atoms by Diatomic Molecules: Role of Ion-pair States, Chem. Phys. Lett., 1970, 6, 2, 106, https://doi.org/10.1016/0009-2614(70)80144-0 . [all data]

Pack and Phelps, 1966
Pack, J.L.; Phelps, A.V., Electron Attachment and Detachment. I. Pure O2 at Low Energy, J. Chem. Phys., 1966, 44, 5, 1870, https://doi.org/10.1063/1.1726956 . [all data]

Berkowitz, Chupka, et al., 1971
Berkowitz, J.; Chupka, W.A.; Gutman, D., Electron Affinities of O2, O3, NO, NO2, and NO3 by Endothermic Charge Transfer, J. Chem. Phys., 1971, 55, 6, 2733, https://doi.org/10.1063/1.1676488 . [all data]

Chantry, 1971
Chantry, P.J., Doppler broadening in beam experiments, J. Chem. Phys., 1971, 55, 2746. [all data]

Chen and Chen, 2003
Chen, E.S.; Chen, E.C.M., Semiempirical characterization of homonuclear diatomic ions: 6. Group VI and VII anions, J. Phys. Chem. A, 2003, 107, 1, 169-177, https://doi.org/10.1021/jp0268922 . [all data]

Bailey and Mahadevan, 1970
Bailey, T.L.; Mahadevan, P., Electron Transfer and Detachment in Collisions of Low Energy Negative Ions with O2, J. Chem. Phys., 1970, 52, 1, 179, https://doi.org/10.1063/1.1672663 . [all data]

Vogt, Hauffle, et al., 1970
Vogt, D.; Hauffle, B.; Neuert, H., Ladungsaustausch-Reaktionen Einiger Negativer Ionen mit O2 und die Elektronenaffinitat des O2, Z. Phys., 1970, 232, 5, 439, https://doi.org/10.1007/BF01395674 . [all data]

Stockdale, Compton, et al., 1969
Stockdale, J.A.D.; Compton, R.N.; Hurst, G.S.; Reinhardt, P.W., Collisions of Monoenergetic Electrons with NO2: Possible Lower Limits to the Electron Affinities of O2 and NO, J. Chem. Phys., 1969, 50, 5, 2176, https://doi.org/10.1063/1.1671347 . [all data]

Burch, Smith, et al., 1958
Burch, D.S.; Smith, S.J.; Branscomb, L.M., Photodetachment of O2-., Phys. Rev., 1958, 112, 1, 171, https://doi.org/10.1103/PhysRev.112.171 . [all data]

Litorja and Ruscic, 1998
Litorja, M.; Ruscic, B., A photoionization study of the hydroperoxyl radical, HO2, and hydrogen peroxide, H2O2, J. Electron Spectroscopy and Related Phenomena, 1998, 97, 131. [all data]

Tonkyn, Winniczek, et al., 1989
Tonkyn, R.G.; Winniczek, J.W.; White, M.G., Rotationally resolved photoionization of O2 near threshold, Chem. Phys. Lett., 1989, 164, 137. [all data]

Grade, Wienecke, et al., 1983
Grade, M.; Wienecke, J.; Rosinger, W.; Hirschwald, W., Electron impact investigation of the molecules SeS(g) and TeSe(g) under high-temperature equilibrium conditions, Ber. Bunsen-Ges. Phys. Chem., 1983, 87, 355. [all data]

Gomez, Chatillon, et al., 1982
Gomez, M.; Chatillon, C.; Allibert, M., Thermodynamics of gaseous and condensed indium oxides by mass spectrometry with controlled oxygen oressure, J. Chem. Thermodyn., 1982, 14, 447. [all data]

Farber, Srivastava, et al., 1982
Farber, M.; Srivastava, R.D.; Moyer, J.W., Mass spectrometric determination of the thermodynamics of potassium hydroxide and minor potassium-containing species required in magnetohydrodynamic power systems, J. Chem. Thermodyn., 1982, 14, 1103. [all data]

MacNeil and Dixon, 1977
MacNeil, K.A.G.; Dixon, R.N., High-resolution photoelectron spectroscopy of methanol and its deuterated derivatives: Internal rotation in the ground ionic state, J. Electron Spectrosc. Relat. Phenom., 1977, 11, 315. [all data]

Kronebusch and Berkowitz, 1976
Kronebusch, P.L.; Berkowitz, J., Photodissociative ionization in the 21-41 eV region: O2, N2, CO, NO, CO2, H2O, NH3 and CH4, Int. J. Mass Spectrom. Ion Phys., 1976, 22, 283. [all data]

Samson and Gardner, 1975
Samson, J.A.R.; Gardner, J.L., On the ionization potential of molecular oxygen, Can. J. Phys., 1975, 53, 1948. [all data]

Hildenbrand, 1975
Hildenbrand, D.L., Vertical ionization potential of the CF2 radical, Chem. Phys. Lett., 1975, 32, 30. [all data]

Bennett, Lin, et al., 1974
Bennett, S.L.; Lin, S.-S.; Gilles, P.W., High-temperature vaporization of ternary systems. I. Mass spectrometry of oxygen-rich vanadium-tungsten-oxygen species, J. Phys. Chem., 1974, 78, 266. [all data]

Tanaka and Tanaka, 1973
Tanaka, K.; Tanaka, I., Photoelectron spectra from some autoionizing state of O2 near the ionization threshold, J. Chem. Phys., 1973, 59, 5042. [all data]

Natalis, 1973
Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

Dromey, Morrison, et al., 1973
Dromey, R.G.; Morrison, J.D.; Peel, J.B., Time-averaged and deconvoluted photoelectron spectrum of the first band of O2, Chem. Phys. Lett., 1973, 23, 30. [all data]

Vilesov and Lopatin, 1972
Vilesov, F.I.; Lopatin, S.N., Photoelectron spectrometer, Zh. Tekh. Fiz., 1972, 42, 176. [all data]

Dibeler and Walker, 1967
Dibeler, V.H.; Walker, J.A., Mass spectrometric study of the photoionization of small polyatomic molecules, Advan. Mass Spectrom., 1967, 4, 767. [all data]

Samson and Cairns, 1966
Samson, J.A.R.; Cairns, R.B., Ionization potential of O2, J. Opt. Soc. Am., 1966, 56, 769. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Nicholson, 1963
Nicholson, A.J.C., Photo-ionization efficiency curves. Measurement of ionization potentials and interpretation of fine structure, J. Chem. Phys., 1963, 39, 954. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Banna and Shirley, 1976
Banna, M.S.; Shirley, D.A., Molecular photoelectron spectroscopy at 132.3 eV: N2, CO, C2H4 and O2, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 255. [all data]

Blyth, Powis, et al., 1981
Blyth, R.C.G.; Powis, I.; Danby, C.J., Competing pre-dissociations of O2+(B 2Σg-), Chem. Phys. Lett., 1981, 84, 272. [all data]

Oertel, Schenk, et al., 1980
Oertel, H.; Schenk, H.; Baumgartel, H., Ion pair formation from photon irradiation of O2, NO and CO in 17-30 eV, Chem. Phys., 1980, 46, 251. [all data]

Locht and Schopman, 1974
Locht, R.; Schopman, J., The dissociative ionization in oxygen, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 361. [all data]

Locht and Momigny, 1971
Locht, R.; Momigny, J., Mass spectrometric study of ion-pair processes in diatomic molecules: H2, CO, NO and O2, Int. J. Mass Spectrom. Ion Phys., 1971, 7, 121. [all data]

Elder, Villarejo, et al., 1965
Elder, F.A.; Villarejo, D.; Inghram, M.G., Electron affinity of oxygen, J. Chem. Phys., 1965, 43, 758. [all data]

Weissler, Samson, et al., 1959
Weissler, G.L.; Samson, J.A.R.; Ogawa, M.; Cook, G.R., Photoionization analysis by mass spectroscopy, J. Opt. Soc. Am., 1959, 49, 338. [all data]

Frost and McDowell, 1959
Frost, D.C.; McDowell, C.A., Recent electron impact studies on simple molecules (O2, Cl2, I2), Advan. Mass Spectrom., 1959, 1, 413. [all data]

Spears and Fehsenfeld, 1972
Spears, K.G.; Fehsenfeld, F.C., Termolecular Association Reactions of Mg, Ca, and Ba Ions, J. Chem. Phys., 1972, 56, 11, 5698, https://doi.org/10.1063/1.1677091 . [all data]

Colonna-Romano and Keller, 1976
Colonna-Romano, L.M.; Keller, G.E., The Clustering of O2 and He to Li+, J. Chem. Phys., 1976, 64, 6, 2684, https://doi.org/10.1063/1.432522 . [all data]

Keller and Beyer, 1971
Keller, G.E.; Beyer, R.A., CO2 and O2 Clustering to Sodium Ions, J. Geophys. Res., 1971, 74, 1, 289, https://doi.org/10.1029/JA076i001p00289 . [all data]

Krupenie, 1972
Krupenie, P.H., The spectrum of molecular oxygen, J. Phys. Chem. Ref. Data, 1972, 1, 423. [all data]

Gilmore, 1965
Gilmore, F.R., Potential energy curves for N2, NO, O2 and corresponding ions, J. Quant. Spectry. Radiative Transfer, 1965, 5, 369. [all data]

Freund, 1971
Freund, R.S., Dissociation by electron impact of oxygen into metastable quintet and long-lived high-Rydberg atoms, J. Chem. Phys., 1971, 54, 3125. [all data]

Albritton, Schmeltekopf, et al., 1979
Albritton; Schmeltekopf; Zare, Diatomic Intensity Factors, to be published, cited in Huber and Herzberg, 1979, Wiley, 1979, 1. [all data]

Buenker and Peyerimhoff, 1975
Buenker, R.J.; Peyerimhoff, S.D., Ab initio study of the mixing of valence and Rydberg states in O2: CI potential curves for the 3Σu-, 3Δu and 3Πu states, Chem. Phys. Lett., 1975, 34, 225. [all data]

Moss and Goddard, 1975
Moss, B.J.; Goddard, W.A., III, Configuration interaction studies on low-lying states of O2, J. Chem. Phys., 1975, 63, 3523. [all data]

Beebe, Thulstrup, et al., 1976
Beebe, N.H.F.; Thulstrup, E.W.; Andersen, A., Configuration interaction calculations of low-lying electronic states of O2,O2+, and O22+, J. Chem. Phys., 1976, 64, 2080. [all data]

Nakamura, Morioka, et al., 1971
Nakamura; Morioka; Hayaishi; Ishiguro; Sasanuma, 3rd International Conference on Vacuum Ultraviolet Radiation Physics - Paper 1pA1-6, Tokyo, 1971, 0. [all data]

Wight and Brion, 1974
Wight, G.R.; Brion, C.E., K-shell excitations in NO and O2 by 2.5 keV electron impact, J. Electron Spectrosc. Relat. Phenom., 1974, 4, 313. [all data]

LaVilla, 1975
LaVilla, R.E., The O Kα and C Kα emission and O K absorption spectra from O2 and CO2. IV, J. Chem. Phys., 1975, 63, 2733. [all data]

Lee, Carlson, et al., 1973
Lee, L.C.; Carlson, R.W.; Judge, D.L.; Ogawa, M., The absorption cross sections of N2, O2, CO, NO, CO2, N2O, CH4, C2H4, C2H6 and C4H10 from 180 to 700 Å, J. Quant. Spectrosc. Radiat. Transfer, 1973, 13, 1023. [all data]

Watson, Lang, et al., 1973
Watson, W.S.; Lang, J.; Stewart, D.T., Photoabsorption coefficients of molecular oxygen in the 400-600 Å region, Phys. Lett. A, 1973, 44, 293. [all data]

Carlson, 1974
Carlson, R.W., Extreme ultraviolet photodissociative excitation of molecular oxygen, J. Chem. Phys., 1974, 60, 2350. [all data]

Lee, Carlson, et al., 1974
Lee, L.C.; Carlson, R.W.; Judge, D.L.; Ogawa, M., Vacuum ultraviolet fluorescence from photodissocciation fragments of O2 and N2, J. Chem. Phys., 1974, 61, 3261. [all data]

Weissler and Lee, 1952
Weissler, G.L.; Lee, P., Absorption coefficients of oxygen in the vacuum ultraviolet, J. Opt. Soc. Am., 1952, 42, 200. [all data]

Aboud, Curtis, et al., 1955
Aboud, A.A.; Curtis, J.P.; Mercure, R.; Rense, W.A., Oxygen gas continuous absorption in the extreme ultraviolet, J. Opt. Soc. Am., 1955, 45, 767. [all data]

De Reilhac and Damany-Astoin, 1964
De Reilhac, L.; Damany-Astoin, N., Sur le spectre d'absorption de l'oxygene dans l'ultraviolet extreme, C.R. Acad. Sci. Paris, 1964, 258, 519. [all data]

Codling and Madden, 1965
Codling, K.; Madden, R.P., New Rydberg series in molecular oxygen near 500 A, Chem. Phys., 1965, 42, 3935. [all data]

Yoshino and Tanaka, 1968
Yoshino, K.; Tanaka, Y., Rydberg absorption series and ionization energies of the oxygen molecule. I, J. Chem. Phys., 1968, 48, 4859. [all data]

Tanaka and Takamine, 1941
Tanaka, Y.; Takamine, T., Vibrational structure of the 4Σg-(O2+)←3Σg- Rydberg series of O2, Phys. Rev., 1941, 59, 771. [all data]

Ogawa, 1968
Ogawa, M., Tanaka-Takamine Rydberg series of O2, Can. J. Phys., 1968, 46, 312. [all data]

Lindholm, 1968
Lindholm, E., Rydberg series in small molecules. IV. Rydberg series in O2, Ark. Fys., 1968, 40, 9, 117-124. [all data]

Namioka, Ogawa, et al., 1962
Namioka; Ogawa; Tanaka, (Reference not verified) in Proc. Int. Symp. Mol. Structure and Spectroscopy, Tokyo, 1962, 208. [all data]

Price and Collins, 1935
Price, W.C.; Collins, G., The far ultraviolet absorption spectrum of oxygen, Phys. Rev., 1935, 48, 714. [all data]

Watanabe, 1958
Watanabe, K., Ultraviolet absorbtion processes in the upper atmosphere, Adv. Geophys., 1958, 5, 153. [all data]

Huffman, Larrabee, et al., 1964
Huffman, R.E.; Larrabee, J.C.; Tanaka, Y., Absorption coefficients of oxygen in the 1060-580-Å wavelength region, J. Chem. Phys., 1964, 40, 356. [all data]

Cook and Metzger, 1964
Cook, G.R.; Metzger, P.H., Photoionization and absorption cross sections of O2 and N2 in the 600- to 1000-A region, J. Chem. Phys., 1964, 41, 321. [all data]

Matsunaga and Watanabe, 1967
Matsunaga, F.M.; Watanabe, K., Total and photoionization coefficients and dissociation continua of O2 in the 580-1070 Å region, Sci. Light (Tokyo), 1967, 16, 31. [all data]

Cook, Ogawa, et al., 1973
Cook, G.R.; Ogawa, M.; Carlson, R.W., Photodissociation continuums of N2 and O2, J. Geophys. Res., 1973, 78, 1663. [all data]

Dehmer and Chupka, 1975
Dehmer, P.M.; Chupka, W.A., High resolution study of photoionization processes in O2, J. Chem. Phys., 1975, 62, 4525. [all data]

Kosinskaya and Startsev, 1965
Kosinskaya, I.V.; Startsev, G.P., Absorption cross section of oxygen in the vacuum region of the spectrum, Opt. Spectrosc. Engl. Transl., 1965, 18, 416, In original 735. [all data]

Ogawa and Ogawa, 1975
Ogawa, S.; Ogawa, M., Absorption cross sections of O2(a1Δg) and O2(X3Σg-) in the region from 1087 to 1700 Å, Can. J. Phys., 1975, 53, 1845. [all data]

Ogawa, 1970
Ogawa, M., Absorption coefficients of O2 in the metastable state, a1Δg, J. Chem. Phys., 1970, 53, 3754. [all data]

Clark and Wayne, 1970
Clark, I.D.; Wayne, R.P., The absolute cross section for photoionization of O2(1Δg), Mol. Phys., 1970, 18, 523. [all data]

Tanaka, 1952
Tanaka, Y., On the new absorption bands of the oxygen molecule in the far ultraviolet region, J. Chem. Phys., 1952, 20, 1728. [all data]

Yamawaki and Ogawa, 1972
Yamawaki; Ogawa, Internal Technical Report University of Southern California, Rpt. Vac-UV-130, 1972, 1. [all data]

Chang and Ogawa, 1973
Chang; Ogawa, Internal Technical Report University of Southern California, Rpt. Vac-UV-140, 1973, 1. [all data]

Ogawa, Yamawaki, et al., 1975
Ogawa, M.; Yamawaki, K.R.; Hashizume, A.; Tanaka, Y., Vibrational isotope shifts of absorption bands of 16O2 and 18O2 in the region 1130-1300 Å, J. Mol. Spectrosc., 1975, 55, 425. [all data]

Collins, Husain, et al., 1973
Collins, R.J.; Husain, D.; Donovan, R.J., Kinetic spectroscopic studies of O2(a1DELTAg8) by time-resolved absorption spectroscopy in the vacuum ultra-violet, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 145. [all data]

Alberti, Ashby, et al., 1968
Alberti, F.; Ashby, R.A.; Douglas, A.E., Absorption spectra of O2 in the a1Δg, b1Σg+, and X3Σg- states, Can. J. Phys., 1968, 46, 337. [all data]

Chang and Ogawa, 1972
Chang, H.C.; Ogawa, M., Rotational analysis of a high-resolution absorption band of O2 at 1161 Å, J. Mol. Spectrosc., 1972, 44, 405. [all data]

Cartwright, Hunt, et al., 1973
Cartwright, D.C.; Hunt, W.J.; Williams, W.; Trajmar, S.; Goddard, W.A., III, Theoretical and experimental (electron-impact) studies of the low-lying Rydberg states in O2, Phys. Rev. A: Gen. Phys., 1973, 8, 2436. [all data]

Trajmar, Cartwright, et al., 1976
Trajmar, S.; Cartwright, D.C.; Hall, R.I., Electron impact excitation of the Rydberg states in O2 in the 7-10 eV energy-loss region, J. Chem. Phys., 1976, 65, 5275. [all data]

Huebner, Celotta, et al., 1975
Huebner, R.H.; Celotta, R.J.; Mielczarek, S.R.; Kuyatt, C.E., Apparent oscillator strengths for molecular oxygen derived from electron energy-loss measurements, J. Chem. Phys., 1975, 63, 241. [all data]

Ackerman and Biaume, 1970
Ackerman, M.; Biaume, F., Structure of the Schumann-Runge bands from the 0-0 to the 13-0 band, J. Mol. Spectrosc., 1970, 35, 73. [all data]

Creek and Nicholls, 1975
Creek, D.M.; Nicholls, R.W., A comprehensive re-analysis of the O2(B3Σu- - X3Σg-) Schumann-Runge band system, Proc. R. Soc. London A, 1975, 341, 517. [all data]

Richards and Johnson, 1976
Richards, J.L.; Johnson, P.M., The visible emissions of molecular oxygen in rare gas solids, J. Chem. Phys., 1976, 65, 3948. [all data]

Degen, 1968
Degen, V., The Herzberg II (c1Σu- - X3Σg-) system of O2 in emission in the oxygen-argon afterglow, Can. J. Phys., 1968, 46, 783. [all data]

Noxon, 1961
Noxon, J.F., Observation of the (b1Σg+-a1Δg) transition in O2, Can. J. Phys., 1961, 39, 1110. [all data]

Crawford, Welsh, et al., 1949
Crawford, M.F.; Welsh, H.L.; Locke, J.L., Infra-red absorption of oxygen and nitrogen induced by intermolecular forces, Phys. Rev., 1949, 75, 1607. [all data]

Shapiro and Gush, 1966
Shapiro, M.M.; Gush, H.P., The collision-induced fundamental and first overtone bands of oxygen and nitrogen, Can. J. Phys., 1966, 44, 949. [all data]

McKellar, Rich, et al., 1972
McKellar, A.R.W.; Rich, N.H.; Welsh, H.L., Collision-induced vibrational and electronic spectra of gaseous oxygen at low temperatures, Can. J. Phys., 1972, 50, 1. [all data]

McKnight and Gordy, 1968
McKnight, J.S.; Gordy, W., Measurement of the submillimeter-wave rotational transition of oxygen at 424 kMc/sec, Phys. Rev. Lett., 1968, 21, 1787. [all data]

Gebbie, Burroughs, et al., 1969
Gebbie, H.A.; Burroughs, W.J.; Bird, G.R., Magnetic dipole rotation spectrum of oxygen, Proc. R. Soc. London A, 1969, 310, 579. [all data]

Miller and Townes, 1953
Miller, S.L.; Townes, C.H., The microwave absorption spectum of (O16)2 and O16O17, Phys. Rev., 1953, 90, 537. [all data]

Zimmerer and Mizushima, 1961
Zimmerer, R.W.; Mizushima, M., Precise measurement of the microwave absorption frequencies of the oxygen molecule and the velocity of light, Phys. Rev., 1961, 121, 152. [all data]

West and Mizushima, 1966
West, B.G.; Mizushima, M., Absorption spectrum of the oxygen molecule in the 55-65-Gc/sec region, Phys. Rev., 1966, 143, 31. [all data]

Wilheit and Barrett, 1970
Wilheit, T.T., Jr.; Barrett, A.H., Microwave spectrum of molecular oxygen, Phys. Rev. A: Gen. Phys., 1970, 1, 213. [all data]

Amano and Hirota, 1974
Amano, T.; Hirota, E., Microwave spectrum of the molecular oxygen in the excited vibrational state, J. Mol. Spectrosc., 1974, 53, 346. [all data]

Fletcher and Rayside, 1974
Fletcher, W.H.; Rayside, J.S., High resolution vibrational Raman spectrum of oxygen, J. Raman Spectrosc., 1974, 2, 3. [all data]

Tinkham and Strandberg, 1955
Tinkham, M.; Strandberg, M.W.P., Interaction of molecular oxygen with a magnetic field, Phys. Rev., 1955, 97, 951. [all data]

Gerber, 1972
Gerber, P., Hyperfeinstruktur des Elektronenspinresonanzspektrums von molekularem Sauerstoff in der Gasphase, Helv. Phys. Acta, 1972, 45, 655. [all data]

Cook, Zegarski, et al., 1973
Cook, T.J.; Zegarski, B.R.; Breckenridge, W.H.; Miller, T.A., Gas phase EPR of vibrationally excited O2, J. Chem. Phys., 1973, 58, 1548. [all data]

Leclercq, 1967
Leclercq, J., Calcul theorique des niveaux de Rydberg de la molecule d'oxygene, Ann. Astrophys., 1967, 30, 93. [all data]

Geiger and Schroder, 1968
Geiger, J.; Schroder, B., High-resolution energy-loss spectrum of molecular oxygen, J. Chem. Phys., 1968, 49, 740. [all data]

Bahr, Blake, et al., 1971
Bahr, J.L.; Blake, A.J.; Carver, J.H.; Gardner, J.L.; Kumar, V., Photoelectron spectroscopy for some autoionized states of molecular oxygen, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1853. [all data]

Kinsinger and Taylor, 1973
Kinsinger, J.A.; Taylor, J.W., Autoionization and the photoelectron spectra of oxygen, Int. J. Mass Spectrom. Ion Phys., 1973, 11, 461. [all data]

Edqvist, Lindholm, et al., 1970
Edqvist, O.; Lindholm, E.; Selin, L.E.; Asbrink, L., On the photoelectron spectrum of O2, Physica Scripta, 1970, 1, 25. [all data]

Ogawa and Yamawaki, 1969
Ogawa, M.; Yamawaki, K.R., Forbidden absorption bands of O2 in the argon continuum region, Can. J. Phys., 1969, 47, 1805. [all data]

Buenker, Peyerimhoff, et al., 1976
Buenker, R.J.; Peyerimhoff, S.D.; Peric, M., Ab initio vibrational analysis of the Schumann-Runge bands and the neighboring absorption region of molecular oxygen, Chem. Phys. Lett., 1976, 42, 383. [all data]

Yoshimine, Tanaka, et al., 1976
Yoshimine, M.; Tanaka, K.; Tatewaki, H.; Obara, S.; Sasaki, F.; Ohno, K., The second 3Σu- state of O2, J. Chem. Phys., 1976, 64, 2254. [all data]

Stone, Lawrence, et al., 1976
Stone, E.J.; Lawrence, G.M.; Fairchild, C.E., Kinetic energies and angular distributions of oxygen atom photofragments produced by photodissociation of O2 and N2O in the vacuum ultraviolet, J. Chem. Phys., 1976, 65, 5083. [all data]

Ogawa, 1975
Ogawa, M., Rotational analysis of the absorption spectrum of heavy oxygen (18O2) in the region 1200-1285 Å, Can. J. Phys., 1975, 53, 2703. [all data]

Brix and Herzberg, 1954
Brix, P.; Herzberg, G., Fine structure of the Schumann-Runge bands near the convergence limit and the dissociation energy of the oxygen molecule, Can. J. Phys., 1954, 32, 110. [all data]

Vanderslice, Mason, et al., 1960
Vanderslice, J.T.; Mason, E.A.; Maisch, W.G.; Lippincott, E.R., Potential curves for N2, NO, and O2, J. Chem. Phys., 1960, 33, 614. [all data]

Ginter and Battino, 1965
Ginter, M.L.; Battino, R., On the calculation of potential curves by the Rydberg-Klein-Rees method. I. Experimental limitations, extrapolation procedures, and applications to the third-group hydrides, J. Chem. Phys., 1965, 42, 3222. [all data]

Bergeman and Wofsy, 1972
Bergeman, T.H.; Wofsy, S.C., The fine structure of O2(B3Σu-), Chem. Phys. Lett., 1972, 15, 104. [all data]

Wilkinson and Mulliken, 1957
Wilkinson, P.G.; Mulliken, R.S., Dissociation processes in oxygen above 1750 A, Astrophys. J., 1957, 125, 594. [all data]

Carroll, 1959
Carroll, P.K., Predissociation in the Schumann-Runge bands of oxygen, Astrophys. J., 1959, 129, 794. [all data]

Hudson and Carter, 1968
Hudson, R.D.; Carter, V.L., Absorption of oxygen at elevated temperatures (300 to 900 K) in the Schumann-Runge system, J. Opt. Soc. Am., 1968, 58, 1621. [all data]

Snopko, 1970
Snopko, V.N., Absorption hot bands of the Schumann-Runge oxygen system, Opt. Spectrosc. Engl. Transl., 1970, 29, 445, In original 835. [all data]

Hudson and Mahle, 1972
Hudson, R.D.; Mahle, S.H., Photodissociation rates of molecular oxygen in the mesosphere and lower thermosphere, J. Geophys. Res., 1972, 77, 2902. [all data]

Schaefer and Miller, 1971
Schaefer, H.F., III; Miller, W.H., Curve crossing of the B3Σu- and 3Πu states of O2 and its relation to predissociation in the Schumann-Runge bands, J. Chem. Phys., 1971, 55, 4107. [all data]

Julienne and Krauss, 1975
Julienne, P.S.; Krauss, M., Predissociation of the Schumann-Runge bands of O2, J. Mol. Spectrosc., 1975, 56, 270. [all data]

Julienne, 1976
Julienne, P.S., 3Σu--3Σu+ coupling in the O2 B3Σu- predissociation, J. Mol. Spectrosc., 1976, 63, 60. [all data]

Riess and Ben-Aryeh, 1969
Riess, I.; Ben-Aryeh, Y., Application of the quantum Franck-Condon principle to predissociation in oxygen, J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 1463. [all data]

Murrell and Taylor, 1969
Murrell, J.N.; Taylor, J.M., Predissociation in diatomic spectra with special reference to the Schumann-Runge bands of O2, Mol. Phys., 1969, 16, 609. [all data]

Child, 1970
Child, M.S., Repulsive potential curves from predissociation data, J. Mol. Spectrosc., 1970, 33, 487. [all data]

Durmaz and Murrell, 1971
Durmaz, S.; Murrell, J.N., The effect of rotations on the predissociation probabilities of diatomic molecular spectra, Mol. Phys., 1971, 21, 209. [all data]

Myers and Bartle, 1968
Myers, B.F.; Bartle, E.R., Shock-tube study of the radiative combination of oxygen atoms by inverse predissociation, J. Chem. Phys., 1968, 48, 3935. [all data]

Wray and Fried, 1971
Wray, K.L.; Fried, S.S., ARC study of the oxygen Schumann-Runge system, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1171. [all data]

Sharma and Wray, 1971
Sharma, R.D.; Wray, K.L., Excitation mechanism for the O2 Schumann-Runge system, J. Chem. Phys., 1971, 54, 4578. [all data]

Ogawa, 1966
Ogawa, M., Absorption spectrum of electrically excited oxygen molecules in the ultraviolet region, Sci. Light (Tokyo), 1966, 15, 97. [all data]

Ogawa and Chang, 1968
Ogawa, M.; Chang, H.-C., Absorption spectrum of electrically excited oxygen molecules. Part II, Sci. Light (Tokyo), 1968, 17, 45. [all data]

Halmann, 1964
Halmann, M., The far-ultraviolet absorption spectrum of 18O2, 17O18O, and 16O18O, J. Chem. Soc., 1964, 4, 3729. [all data]

Halmann and Laulicht, 1965
Halmann, M.; Laulicht, I., Isotope effects on vibrational transition probabilities. The Schumann-Runge absorption bands of 16O2 and 18O2, J. Chem. Phys., 1965, 42, 137. [all data]

Bass and Broida, 1964
Bass, A.M.; Broida, H.P., Vacuum ultraviolet absorption spectra of oxygen in liquid and crystalline argon and nitrogen, J. Mol. Spectrosc., 1964, 12, 221. [all data]

Schnepp and Dressler, 1965
Schnepp, O.; Dressler, K., Schumann-Runge bands of O2 in solid phases: spectroscopic measurement of intermolecular potentials, J. Chem. Phys., 1965, 42, 2482. [all data]

Boursey, Roncin, et al., 1970
Boursey, E.; Roncin, J.-Y.; Damany, N., Schumann-Runge bands of O2 trapped in solid matrices, Chem. Phys. Lett., 1970, 5, 584. [all data]

Fugol, Gimpelevich, et al., 1976
Fugol, I.Ya.; Gimpelevich, L.G.; Timchenko, L.I., Electronic-vibrational states of oxygen in inert-gas crystals for the Schumann-Runge system, Opt. Spectrosc. Engl. Transl., 1976, 40, 159. [all data]

Feast, 1950
Feast, M.W., The Schumann-Runge O2 emission bands in the region 3100A.-2500A., Proc. Phys. Soc. London Sect. A, 1950, 63, 549. [all data]

Herman, Herman, et al., 1961
Herman, L.; Herman, R.; Rakotoarijimy, D., Etude d'une decharge a frequence radio dans l'oxygene, J. Phys. Radium, 1961, 22, 1. [all data]

Bethke, 1959
Bethke, G.W., Oscillator strengths in the far ultraviolet. II. Oxygen Schumann-Runge bands, J. Chem. Phys., 1959, 31, 669. [all data]

Blake, Carver, et al., 1966
Blake, A.J.; Carver, J.H.; Haddad, G.N., Photo-absorption cross sections of molecular oxygen between 1250 Å and 2350 Å, J. Quant. Spectrosc. Radiat. Transfer, 1966, 6, 451. [all data]

Farmer, Fabian, et al., 1968
Farmer, A.J.D.; Fabian, W.; Lewis, B.R.; Lokan, K.H.; Haddad, G.N., Experimental oscillator strengths for the Schumann-Runge band system in oxygen, J. Quant. Spectrosc. Radiat. Transfer, 1968, 8, 1739. [all data]

Ackerman, Biaume, et al., 1970
Ackerman, M.; Biaume, F.; Kockarts, G., Absorption cross sections of the Schumann-Runge bands of molecular oxygen, Planet. Space Sci., 1970, 18, 1639. [all data]

Hasson, Hebert, et al., 1970
Hasson, V.; Hebert, G.R.; Nicholls, R.W., Measured transition probabilities for bands of the Schumann-Runge (B3Σu--X3Σg-) band system of molecular oxygen, J. Phys. B:, 1970, 3, 1188. [all data]

Goldstein and Mastrup, 1966
Goldstein, R.; Mastrup, F.N., Absorption coefficients of the O2 Schumann-Runge continuum from 1270 Å ←= 1745 Å using a new continuum source, J. Opt. Soc. Am., 1966, 56, 765. [all data]

Cartwright, Fiamengo, et al., 1976
Cartwright, D.C.; Fiamengo, N.A.; Williams, W.; Trajmar, S., Decomposition of the photoabsorption Schumann-Runge continuum in O2, J. Phys. B:, 1976, 9, 419. [all data]

Julienne, Neumann, et al., 1976
Julienne, P.S.; Neumann, D.; Krauss, M., Transition moments for the B3Σu- - X3Σg- and 3Πu - X3Σg- transitions in O2, J. Chem. Phys., 1976, 64, 2990. [all data]

Treanor and Wurster, 1960
Treanor, C.E.; Wurster, W.H., Measured transition probabilities for the Schumann-Runge system of oxygen, J. Chem. Phys., 1960, 32, 758. [all data]

Krindach, Sobolev, et al., 1963
Krindach, N.I.; Sobolev, N.N.; Tunitskii, L.N., Determination of the electronic transition moments for the Schumann-Runge bands of the oxygen molecule. III, Opt. Spectrosc. Engl. Transl., 1963, 15, 326, In original 601. [all data]

Buttrey, 1969
Buttrey, D.E., Transition probabilities for the O2 Schumann-Runge bands from shock-tube emission studies, J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 1527. [all data]

Marr, 1964
Marr, G.V., The electronic transition moment for the Schumann-Runge band system of O2, Can. J. Phys., 1964, 42, 382. [all data]

Halmann and Laulicht, 1967
Halmann, M.; Laulicht, I., Isotope effects on Franck-Condon factors. VII. Vibrational intensity distribution in the H2 Lyman, H2 Werner, O2 Schumann-Runge, N2 first positive, N2 Vegard-Kaplan, and LiH (A-X) systems based on PKR potentials, J. Chem. Phys., 1967, 46, 2684. [all data]

Allison, Dalgarno, et al., 1971
Allison, A.C.; Dalgarno, A.; Pasachoff, N.W., Absorption by vibrationally excited molecular oxygen in the Schumann-Runge continuum, Planet. Space Sci., 1971, 19, 1463. [all data]

Jarmain, 1963
Jarmain, W.R., Franck-Condon factors from Klein-Dunham potentials for the v" = 0 progression of the Schumann-Runge system of O2, Can. J. Phys., 1963, 41, 1926. [all data]

Harris, Blackledge, et al., 1969
Harris, R.; Blackledge, M.; Generosa, J., Rydberg-Klein-Rees (RKR) Franck-Condon factors for the O2 Schumann-Runge system including high vibrational quantum numbers, J. Mol. Spectrosc., 1969, 30, 506. [all data]

Ben-Aryeh, 1968
Ben-Aryeh, Y., Spectral emissivity of the Schumann-Runge bands of oxygen, J. Opt. Soc. Am., 1968, 58, 679. [all data]

Jarmain and Nicholls, 1964
Jarmain, W.R.; Nicholls, R.W., A theoretical study of the O2X3Σg- - B3Σu- photodissociation continuum, Proc. Phys. Soc. London, 1964, 84, 417. [all data]

Herzberg, 1952
Herzberg, G., Forbidden transitions in diatomic molecules. II. The 3Σu+3Σg- absorption bands of the oxygen molecule, Can. J. Phys., 1952, 30, 185. [all data]

Jarmain and Nicholls, 1967
Jarmain, W.R.; Nicholls, R.W., A theoretical study of the v"=0, 1, 2 progressions of bands and adjoining photodissociation continua of the O2 Herzberg I system, Proc. Phys. Soc. London, 1967, 90, 545. [all data]

Broida and Gaydon, 1954
Broida, H.P.; Gaydon, A.G., The Herzberg bands of O2 in an oxygen afterglow and in the night-sky spectrum, Proc. R. Soc. London A, 1954, 222, 181. [all data]

Degen, Innanen, et al., 1968
Degen, V.; Innanen, S.H.; Hebert, G.R.; Nicholls, R.W., Identification atlas of molecular spectra. 6. The O2A3Σu+ - X3Σg- Herzberg I system, York University, Centre fro REsearch in Experimental Space Science and Department of Physics, Toronto, Ontario, 1968, 1. [all data]

Jarmain, 1972
Jarmain, W.R., Realistic Franck-Condon factors and related integrals for diatomic molecules. II. The O2 Herzberg I system, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 603. [all data]

Barth and Kaplan, 1957
Barth, C.A.; Kaplan, J., Herzberg oxygen bands in "air" afterglows and the night airglow, J. Chem. Phys., 1957, 26, 506. [all data]

Wraight, 1976
Wraight, P.C., Nightglow and a new band system in molecular oxygen, Nature (London), 1976, 263, 310. [all data]

Chamberlain, 1958
Chamberlain, J.W., The blue airglow spectrum, Astrophys. J., 1958, 128, 713. [all data]

Herzberg, 1932
Herzberg, G., Ein neuartiges, "verbotenes" absorptions-bandensystem des O2-molekuls, Die Naturwissenschaften, 1932, 20, 577. [all data]

Chamberlain, 1955
Chamberlain, J.W., The ultraviolet airglow spectrum, Astrophys. J., 1955, 121, 277. [all data]

Barth and Patapoff, 1962
Barth, C.A.; Patapoff, M., Laboratory spectra of the ultraviolet oxygen airglow, Astrophys. J., 1962, 136, 1144. [all data]

Degen and Nicholls, 1968
Degen, V.; Nicholls, R.W., The oxygen-argon afterglow as a source of the O2(A3Σu+-X3Σg-) Herzberg I band system, J. Phys. B:, 1968, 1, 983. [all data]

Broida and Peyron, 1960
Broida, H.P.; Peyron, M., Emission spectra of N2, O2, and NO molecules trapped in solid matrices, J. Chem. Phys., 1960, 32, 1068. [all data]

Ditchburn and Young, 1962
Ditchburn, R.W.; Young, P.A., The absorption of molecular oxygen between 1850 and 2500 Å, J. Atmos. Terr. Phys., 1962, 24, 127. [all data]

Degen and Nicholls, 1969
Degen, V.; Nicholls, R.W., Intensity measurements on the A3Σu+-X3Σg- Herzberg I band system of O2, J. Phys. B:, 1969, 2, 1240. [all data]

Ogawa, 1971
Ogawa, M., Absorption cross sections of O2 and CO2 continua in the Schumann and far-UV regions, J. Chem. Phys., 1971, 54, 2550. [all data]

Hasson and Nicholls, 1971
Hasson, V.; Nicholls, R.W., Absolute spectral absorption measurements on molecular oxygen from 2640-1920 Å: I. Herzberg I (A3Σu+-X3Σg-) bands (2640-2430 Å), J. Phys. B:, 1971, 4, 1778. [all data]

Herzberg, 1953
Herzberg, G., Forbidden transitions in diatomic molecules. III. New 1Σu-3Σg- and 3Δu3Σg- absorption bands of the oxygen molecule, Can. J. Phys., 1953, 31, 657. [all data]

Wulf, 1928
Wulf, O.R., A progression relation in the molecular spectrum of oxygen occurring in the liquid and in the gas at high pressure, Proc. Natl. Acad. Sci. USA, 1928, 14, 609. [all data]

Finkelnburg and Steiner, 1932
Finkelnburg, W.; Steiner, W., Uber die absorptionsspektren des hochkomprimierten sauerstoffs und die existenz von O4-molekulen. I. Die ultravioletten banden zwischen 2900 und 2300 Å, Z. Phys., 1932, 79, 69. [all data]

Herman, 1939
Herman, L., Spectre d'absorption de l'oxygene, Ann. Phys. (Paris), 1939, 11, 548. [all data]

Degen and Nicholls, 1966
Degen, V.; Nicholls, R.W., Intensity measurement in the laboratory on the 02 Herzberg I(A3Σu+- X3Σg-), J. Geophys. Res., 1966, 71, 3781. [all data]

Lawrence, Barth, et al., 1977
Lawrence, G.M.; Barth, C.A.; Argabright, V., Excitation of the Venus night airglow, Science, 1977, 195, 573. [all data]

Albritton, Harrop, et al., 1973
Albritton, D.L.; Harrop, W.J.; Schmeltekopf, A.L.; Zare, R.N., Resolution of the discrepancies concerning the optical and microwave values for BO and DO of the X3Σg- state of O2, J. Mol. Spectrosc., 1973, 46, 103. [all data]

Babcock and Herzberg, 1948
Babcock, H.D.; Herzberg, L., Fine structure of the red system of atmospheric oxygen bands, Astrophys. J., 1948, 108, 167. [all data]

Albritton, Harrop, et al., 1973, 2
Albritton, D.L.; Harrop, W.J.; Schmeltekopf, A.L.; Zare, R.N., Calculation of centrifugal distortion constants for diatomic molecules from RKR potentials, J. Mol. Spectrosc., 1973, 46, 25. [all data]

Meinel, 1950
Meinel, A.B., O2 emission bands in the infrared spectrum of the night sky, Astrophys. J., 1950, 112, 464. [all data]

Kaplan, 1947
Kaplan, J., Active oxygen, Nature (London), 1947, 159, 673. [all data]

Kvifte, 1951
Kvifte, G., Atmospheric oxygen bands in emission from neon-oxygen mixtures, and in night sky and auroral luminescences, Nature (London), 1951, 168, 741. [all data]

Miller, Boese, et al., 1969
Miller, J.H.; Boese, R.W.; Giver, L.P., Intensity measurements and rotational intensity distribution for the oxygen A-band, J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 1507. [all data]

Galkin, Zhukova, et al., 1972
Galkin, V.D.; Zhukova, L.N.; Mitrofanova, L.A., Line intensities and halfwidths in the A and B bands of the red atmospheric band system of O2, Opt. Spectrosc. Engl. Transl., 1972, 33, 462, In original 837. [all data]

Dianov-Klokov, 1964
Dianov-Klokov, V.I., Absorption spectrum of oxygen at pressures from 2 to 35 atm in the region from 12,600 to 3600 Å, Opt. Spectrosc. Engl. Transl., 1964, 16, 224, In original 409. [all data]

Burch and Gryvnak, 1969
Burch, D.E.; Gryvnak, D.A., Strengths, widths, and shapes of the oxygen lines near 13,100 cm-1 (7620 Å), Appl. Opt., 1969, 8, 1493. [all data]

Findlay, 1970
Findlay, F.D., Visible emission bands of molecular oxygen, Can. J. Phys., 1970, 48, 2107. [all data]

Falick, Mahan, et al., 1965
Falick, A.M.; Mahan, B.H.; Myers, R.J., Paramagnetic resonance spectrum of the 1Δg oxygen molecule, J. Chem. Phys., 1965, 42, 1837. [all data]

Miller, 1971
Miller, T.A., Rotational moment, rotational g factor, electronic orbital g factor, and anisotropy of the magnetic susceptibility of 1Δ O2, J. Chem. Phys., 1971, 54, 330. [all data]

Arrington, Falick, et al., 1971
Arrington, C.A., Jr.; Falick, A.M.; Myers, R.J., Electron paramagnetic resonance spectrum of O2(1Δg)--its 17O hyperfine coupling and electronic and rotational g values, J. Chem. Phys., 1971, 55, 909. [all data]

Herzberg and Herzberg, 1947
Herzberg, L.; Herzberg, G., Fine structure of the infrared atmospheric oxygen bands, Astrophys. J., 1947, 105, 353. [all data]

Jones and Harrison, 1958
Jones, A.V.; Harrison, A.W., 1Δg-3Σg-O2 infrared emission band in the twilight airglow spectrum, J. Atmos. Terr. Phys., 1958, 13, 45. [all data]

Noxon and Jones, 1962
Noxon, J.F.; Jones, A.V., Observation of the (O,O) band of the (1Δg-3Σg-) system of oxygen in the day and twilight airglow, Nature (London), 1962, 196, 157. [all data]

Gattinger, 1968
Gattinger, R.L., Observation and interpretation of the O2(1Δg-3Σg-) airglow emissions, Can. J. Phys., 1968, 46, 1613. [all data]

Badger, Wright, et al., 1965
Badger, R.M.; Wright, A.C.; Whitlock, R.F., Absolute intensities of the discrete and continuous absorption bands of oxygen gas at 1.26 and 1.065 μ and the radiative lifetime of the 1Δg state of oxygen, J. Chem. Phys., 1965, 43, 4345. [all data]

Jones and Gattinger, 1963
Jones, A.V.; Gattinger, R.L., The seasonal variation and excitation mechanism of the 1·58 μ 1Δg-3Σg- twilight airglow band, Planet. Space Sci., 1963, 11, 961. [all data]

Nicholls, Fraser, et al., 1960
Nicholls, R.W.; Fraser, P.A.; Jarmain, W.R.; McEachran, R.P., Vibrational transition probabilities of diatomic molecules: collected results. IV. BeO, BO, CH+, CO, NO, SH, O2, O2+, Astrophys. J., 1960, 131, 399. [all data]

Haslett and Fehsenfeld, 1969
Haslett, J.C.; Fehsenfeld, F.C., Ratio of the 02(1Δg-3Σg-) (0,0),(0,1) transitions, J. Geophys. Res., 1969, 74, 1878. [all data]

Curry and Herzberg, 1934
Curry, J.; Herzberg, G., Uber die ultravioletten absorptionsbanden des sauerstoffs (Schumann-Runge-Banden), Ann. Phys. (Neue Folge), 1934, 19, 800. [all data]

Vanderslice, Mason, et al., 1960, 2
Vanderslice, J.T.; Mason, E.A.; Maisch, W.G., Interactions between ground state oxygen atoms and molecules: O-O and O2-O2, J. Chem. Phys., 1960, 32, 515. [all data]

Johns and Lepard, 1975
Johns, J.W.C.; Lepard, D.W., Calculation of rotation-electronic energies and relative transition intensities in diatomic molecules, J. Mol. Spectrosc., 1975, 55, 374. [all data]

Welch and Mizushima, 1972
Welch, W.M.; Mizushima, M., Molecular parameters of the O2 molecule, Phys. Rev. A: Gen. Phys., 1972, 5, 2692. [all data]

Steinbach and Gordy, 1975
Steinbach, W.; Gordy, W., Microwave spectrum and molecular constants of 16O18O, Phys. Rev. A: Gen. Phys., 1975, 11, 729. [all data]

Tomuta, Mizushima, et al., 1975
Tomuta, L.; Mizushima, M.; Howard, C.J.; Evenson, K.M., Rotational structure and magnetic g factors of O2(X3Σg-, v = O) from laser-magnetic-resonance spectra, Phys. Rev. A: Gen. Phys., 1975, 12, 974. [all data]

Veseth and Lofthus, 1974
Veseth, L.; Lofthus, A., Fine structure and centrifugal distortion in the electronic and microwave spectra of O2 and SO, Mol. Phys., 1974, 27, 511. [all data]

Steinbach and Gordy, 1973
Steinbach, W.; Gordy, W., Millimeter and submillimeter wave spectrum of 18O2, Phys. Rev. A: Gen. Phys., 1973, 8, 1753. [all data]

Mizushima, Wells, et al., 1972
Mizushima, M.; Wells, J.S.; Evenson, K.M.; Welch, W.M., Laser magnetic resonance of the O2 molecule using the 337-μm HCN laser, Phys. Rev. Lett., 1972, 29, 831. [all data]

Evenson and Mizushima, 1972
Evenson, K.M.; Mizushima, M., Laser magnetic resonance of the O2 molecule using 119- and 78-μm H2O laser lines, Phys. Rev. A: Gen. Phys., 1972, 6, 2197. [all data]

Gustafson and Gordy, 1974
Gustafson, S.; Gordy, W., The microwave Stark effect in oxygen, Phys. Lett. A, 1974, 49, 161. [all data]

Edwards, Good, et al., 1976
Edwards, H.G.M.; Good, E.A.M.; Long, D.A., Pure rotational Raman spectra of 16O2, 16O18O and 18O2, J. Chem. Soc. Faraday Trans. 2, 1976, 72, 865. [all data]

Harney and Milanovich, 1976
Harney, R.C.; Milanovich, F.P., Raman spectrum and molecular parameters of 18O2, Can. J. Spectrosc., 1976, 21, 162. [all data]

Altmann, Klockner, et al., 1977
Altmann, K.; Klockner, W.; Strey, G., Determination of the anharmonicity constant of oxygen by Raman measurements, Chem. Phys. Lett., 1977, 46, 461. [all data]

Rich and Lepard, 1971
Rich, N.H.; Lepard, D.W., Spin structure in the Raman spectrum of oxygen, J. Mol. Spectrosc., 1971, 38, 549. [all data]

Al-Joboury, May, et al., 1965
Al-Joboury, M.I.; May, D.P.; Turner, D.W., Molecular photoelectron spectroscopy. Part III. The ionization potentials of oxygen, carbon monoxide, nitric oxide, and acetylene, J. Chem. Soc., 1965, 616. [all data]

Turner and May, 1966
Turner, D.W.; May, D.P., Franck-Condon factors in ionization: experimental measurement using molecular photoelectron spectroscopy, J. Chem. Phys., 1966, 45, 471. [all data]

Turner, 1968
Turner, D.W., High resolution molecular photoelectron spectroscopy. I. Fine structure in the spectra of hydrogen and oxygen, Proc. Roy. Soc. (London), 1968, A307, 15. [all data]

McNeal and Cook, 1966
McNeal, R.J.; Cook, G.R., Photoionization of O2 in the metastable a1g state, J. Chem. Phys., 1966, 45, 3469. [all data]

Siegbahn, Nordling, et al., 1969
Siegbahn, K.; Nordling, C.; Johansson, G.; Hedman, J.; Heden, P.F.; Hamrin, k.; Gelius, U.; Bergmark, T.; Werme, L.O.; Manne, R.; Baer, ESCA Applied to Free Molecules, North-Holland Publishing Company, Amsterdam, 1969, 0. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, 1979, 716. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References