Deuterium

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar34.646cal/mol*KReviewChase, 1998Data last reviewed in March, 1982

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1000.1000. to 2500.2500. to 6000.
A 7.8117914.80951611.182420
B -3.5471563.590786-1.326966
C 5.034622-1.1417230.346815
D -1.7219490.141779-0.025358
E -0.0159030.160352-4.665747
F -2.265914-1.063541-9.678914
G 44.85923740.27626142.563937
H 0.00.00.0
ReferenceChase, 1998Chase, 1998Chase, 1998
Comment Data last reviewed in March, 1977; New parameter fit October 2001 Data last reviewed in March, 1977; New parameter fit October 2001 Data last reviewed in March, 1977; New parameter fit October 2001

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Deuterium anion + Deuterium cation = Deuterium

By formula: D- + D+ = D2

Quantity Value Units Method Reference Comment
Δr402.30kcal/molN/AShiell, Hu, et al., 2000gas phase; exact: 402.258±0.003 kcal/mol at 298K. Acid: D2; B
Δr401.210 ± 0.010kcal/molD-EALykke, Murray, et al., 1991gas phase; Reported: 6086.2±0.6 cm-1. Acid taken as HD -> H+ + D-; B
Δr402.30kcal/molD-EALykke, Murray, et al., 1991gas phase; Acid: D2 -> D- + D+. BDE: 105.98 Gurvich, Veyts, et al.. ΔSacid 22.9; B
Quantity Value Units Method Reference Comment
Δr394.95 ± 0.11kcal/molH-TSLykke, Murray, et al., 1991gas phase; Reported: 6086.2±0.6 cm-1. Acid taken as HD -> H+ + D-; B
Δr395.50 ± 0.10kcal/molH-TSLykke, Murray, et al., 1991gas phase; Acid: D2 -> D- + D+. BDE: 105.98 Gurvich, Veyts, et al.. ΔSacid 22.9; B

(D3+ • 9Deuterium) + Deuterium = (D3+ • 10Deuterium)

By formula: (D3+ • 9D2) + D2 = (D3+ • 10D2)

Quantity Value Units Method Reference Comment
Δr0.6kcal/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

(D3+ • 2Deuterium) + Deuterium = (D3+ • 3Deuterium)

By formula: (D3+ • 2D2) + D2 = (D3+ • 3D2)

Quantity Value Units Method Reference Comment
Δr3.4 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr20.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 3Deuterium) + Deuterium = (D3+ • 4Deuterium)

By formula: (D3+ • 3D2) + D2 = (D3+ • 4D2)

Quantity Value Units Method Reference Comment
Δr1.8 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr18.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 4Deuterium) + Deuterium = (D3+ • 5Deuterium)

By formula: (D3+ • 4D2) + D2 = (D3+ • 5D2)

Quantity Value Units Method Reference Comment
Δr1.8 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 5Deuterium) + Deuterium = (D3+ • 6Deuterium)

By formula: (D3+ • 5D2) + D2 = (D3+ • 6D2)

Quantity Value Units Method Reference Comment
Δr1.7 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr21.8cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 6Deuterium) + Deuterium = (D3+ • 7Deuterium)

By formula: (D3+ • 6D2) + D2 = (D3+ • 7D2)

Quantity Value Units Method Reference Comment
Δr0.9 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr12.8cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 7Deuterium) + Deuterium = (D3+ • 8Deuterium)

By formula: (D3+ • 7D2) + D2 = (D3+ • 8D2)

Quantity Value Units Method Reference Comment
Δr0.8 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr15.3cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 8Deuterium) + Deuterium = (D3+ • 9Deuterium)

By formula: (D3+ • 8D2) + D2 = (D3+ • 9D2)

Quantity Value Units Method Reference Comment
Δr0.7 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr19.4cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • Deuterium) + Deuterium = (D3+ • 2Deuterium)

By formula: (D3+ • D2) + D2 = (D3+ • 2D2)

Quantity Value Units Method Reference Comment
Δr3.5 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr17.9cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

D3+ + Deuterium = (D3+ • Deuterium)

By formula: D3+ + D2 = (D3+ • D2)

Quantity Value Units Method Reference Comment
Δr7.1 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr18.8cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

Cobalt ion (1+) + Deuterium = (Cobalt ion (1+) • Deuterium)

By formula: Co+ + D2 = (Co+ • D2)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
17.1 (+1.6,-0.) CIDHaynes and Armentrout, 1996gas phase; guided ion beam CID; M

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to D2+ (ion structure unspecified)

Ionization energy determinations

IE (eV) Method Reference Comment
15.46658EVALShiner, Gilligan, et al., 1993LL
15.4666 ± 0.0001EVALHuber and Herzberg, 1979LLK
15.4667 ± 0.0001STakezawa and Tanaka, 1975LLK
15.43 ± 0.01EILossing and Semeluk, 1969RDSH
15.468 ± 0.022TEVillarejo, 1968RDSH
15.47PESpohr and Puttkamer, 1967RDSH
15.46 ± 0.01PIDibeler, Reese, et al., 1965RDSH
15.5EIBriglia and Rapp, 1965RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
D+25.3 ± 0.2DEIOlmsted, Street, et al., 1964RDSH

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through November, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for D2
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
u 3Πu 6pπ 122365.6 1649.03 35.13 1 0.627 15.036 0.587 2 0.008 0.0053  1.0551 u → a 26286.75
Cunningham and Dieke, 1950
w (3Πg) 5dπ 3           w → c 
Cunningham and Dieke, 1950
q (3Σg+) 5dσ 3           q → c 
Cunningham and Dieke, 1950
n 3Πu 5pπ 120976.9 1652.73 34.25 4 0.627 15.040 5 0.560 6 0.035 0.0053  1.0550 n → a 24900.14
Cunningham and Dieke, 1950
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
r 3Πg 4dπ [(119380)]    7 8      r → c R (22650) 7
Cunningham and Dieke, 1950
p 3Σg+ 4dδ [119242]          p → c R 22509.9 7
Cunningham and Dieke, 1950
k 3Πu 4pπ 118396.7 1658.85 33.88 9 0.508 15.075 10 0.566 11 0.008 0.0046  1.0538 k → a 22323.06
Cunningham and Dieke, 1950
f 3Σu+ 4pσ 116640 1618 32.8  14.66 0.62    1.069 f → a R 20546.0
Cunningham and Dieke, 1950
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
j 3Δg 3dδ [114194.1]    7      j → c V 17462.3 7
Cunningham and Dieke, 1950
i 3Πg 3dπ (113093) [1541.9]   7 12      i → e R 5320.0 13
missing citation
           i → c R 17131.9 13
Cunningham and Dieke, 1950
g 3Σg+ 3dσ (112856) [1511.3]   7      g → e R 5067.8
missing citation
           g → c R 16879.8
Cunningham and Dieke, 1950
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
d 3Πu 3pπ 112729.8 14 1678.22 15 32.94 16 0.24 15.200 15 0.5520  [0.0049]  1.0494 d → a R 16666.0
Dieke, 1935
e 3Σu+ 3pσ 107774.0 1556.64 34.51 17 0.287 13.856 0.451  [0.004]  1.0991 e → a R 11649.1
Dieke, 1935, 2
a 3Σg+ 2sσ 95958.08 18 1885.84 35.96 18 0.34 17.109 0.606  [0.0055]  0.9891 a → b 19 
           (a-X) 95348.18 20
Dieke, 1935
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
c 3Πu 2pπ [96731.8]    [15.305] 21   [0.00514] 21  [1.0458] c-X 22 95185.3 23
Cunningham and Dieke, 1950
b 3Σu+ 2pσLower state of continuous spectrum of D2 (a → b).
RydbergIonization continua joining on to Rydberg series. 24
v'=0 Rydberg series of rotational levels observed in low temperature absorption from X 1Σg+ (v=0) and converging to:
Rydberg 25           R(0) lines (ortho-D2) 
Takezawa and Tanaka, 1975
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Rydberg 26           Q(1) lines (para-D2) 
Takezawa and Tanaka, 1975
Rydberg 27           R(0) lines (ortho-D2) 
Takezawa and Tanaka, 1975
B bar 1Σu+see 1H2
Dabrowski and Herzberg, 1974; Chupka, Dehmer, et al., 1975; Kolos, 1976
D" 1Πu 5pπ 121227.5 28 1648.68 28 33.638 28 29 0.3034 15.133 30 31 0.6521 30 0.01329 [0.00704] 30 0.01329 1.0517 D" ← X R 120497.0 28
Monfils, 1965; Monfils, 1968; Takezawa and Tanaka, 1975
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
D' 1Πu 4pπ 118887.9 28 1653.15 28 33.35 28 32 0.226 15.041 33 31 0.5508 33 0.00503 [0.00323] 33  1.0550 D' ← X R 118159.7 28
Monfils, 1965; Monfils, 1968; Takezawa and Tanaka, 1975
B" 1Σu+ 4pσ 117970.7 1563.02 35.416 34 0.0843 13.685 31 0.3842 35  0.00024  1.1060 B" ← X R 117196.9
Monfils, 1965; Monfils, 1968; Takezawa and Tanaka, 1975
M 1Σg+ [114504.5] 36    [4.0]     [2.06] M → B R 22324.2
Dieke and Lewis, 1937
D 1Πu 3pπ 113914.0 1667.60 33.343 37  15.11 38 31 0.54 39  0.005 39 -0.002 1.053 D ← X R 113193.0 40
Monfils, 1965; Monfils, 1968
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
I 1Πg 3dπ 113081.5 1600.14 39.42  14.739 41 42 0.526 41  [0.0025] 41  1.0657 I → B V 21691.4 43
Dieke and Lewis, 1937
G 1Σg+ 3dσ (112893) [1440.8]   44 45      G → B R 21433.2
Dieke and Lewis, 1937
K (1Σg+) (112610) [1660]   [6.6]     [1.59] K → B (21260) 46
Dieke and Lewis, 1937
B' 1Σu+ 3pσ 111642.2 47 1451.98 45.679 48 2.096 13.605 31 0.920 49  [0.00415] 50  1.1092 B' ← X R 110815.65
Monfils, 1965; Monfils, 1968; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
F 1Σg+ 2pσ2 (100931.2) 51 [859.1] 52   53     53 F → B R 
Dieke and Cunningham, 1965
E 1Σg+ 2sσ 100128.1 1784.42 48.105  16.3696 0.6764  [0.0054]  1.01124 E → N V 8827.99
Dieke and Cunningham, 1965
C 1Πu 2pπ 100097.2 54 1729.92 34.917 55 0.2612 15.6731 56 0.5679 57  0.00532 58  1.03346 CX ↔ 59 R 99409.18 60
missing citation; missing citation
B 1Σu+ 2pσ 91697.2 54 963.08 11.038 61  10.0680 56 0.4198 62  0.00403 63  1.28944 B ↔ X 64 65 R 90633.79
missing citation; missing citation; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
X 1Σg+ 1sσ2 0 3115.50 61.82 66 0.562 30.4436 67 1.0786 68  0.01141 69  0.74152  
Brannon, Church, et al., 1968
Field- and pressure-induced sp. 70
Watanabe and Welsh, 1965; Reddy and Kuo, 1971; Russell, Reddy, et al., 1974
Raman sp.
Stoicheff, 1957
Rf magn. Reson. sp. 71
Kolsky, Phipps, et al., 1952; Ramsey, 1956; English and MacAdam, 1970; Code and Ramsey, 1971

Notes

1Uncertain.
2Uncertain.
3Fragment
4Uncertain.
5Λ-type doubling constant q(v=0) = 0.25 cm-1 Cunningham and Dieke, 1950.
6missing note
7Strongly affected by l-uncoupling, no constants given by Cunningham and Dieke, 1950; ν00 roughly evaluated from their wave number data. See also H2 4 and H2 10.
8Anti-crossings of r 3Πg(v=0,N=2) with G 1Σg+(v=4,N=2) yielding orbital g factors and hyperfine structure Miller, Freund, et al., 1976).
9ωeze = +0.0345.
10Λ-type doubling constant q(v=0) = 0.29 cm-1 Cunningham and Dieke, 1950.
11Uncertain.
12Anti-crossings between i 3Πg(v=1,N=1) and I 1Πg(v=1,N=1) observed by Jost, Lombardi, et al., 1976.
13Refers to Π-(v=0,N=1); Π+(v=0, N=1) is at 5348.9 cm-1 above e 3Σu+(v=0,N=0). The rotational levels are very irregular.
14Microwave optical magnetic resonance induced by electrons Freund and Miller, 1973 gives the following triplet splittings for v=0, N=1 of para-D2: Δ ν10 = 0.04301, Δ ν02 = 0.00656, and of ortho-D2: Δ ν02 = 0.08286, Δ ν21 = 0.00402 cm-1; similar splittings for v=1...5. Freund and Miller, 1973, 2 derive Ae = -0.02809 cm-1.
15Refers to the 3Π- component; 3Π+ is strongly perturbed. The Λ-type doubling is large and irregular missing citation; for v=0, N=1 it is 0.13 cm-1 Freund and Miller, 1973, 2. Breaking-off of P and R branches for v'> 4 on account of predissociation Dieke, 1935; see also Freund and Miller, 1973.
16missing note
17ωeze = -0.04.
18Te takes account of Y00 in both upper (Y'00 = 2.67) and lower state.
19Lifetime τ(v=0,1) = 12.5 ns Smith and Chevalier, 1972.
20From singlet-triplet anti-crossings Jost, Lombardi, et al., 1976, Miller, Freund, et al., 1976.
21From the assignments of Cunningham and Dieke, 1950 in the g-c, i-c, j-c,...bands by evaluating combination differences.
22Lifetime τ(v=0) = 1.02 ms Johnson, 1972, refers to the non-predissociating component c 3Πu- and corresponds to radiative (magnetic dipole) transitions to b 3Σu+; See H2 49.
23From T0 of a 3Σg+ and the ν00 values for the transitions e-a, g-e, and g-c.
24Cross sections for photoionization into the various vibrational levels of D2+ and the adjoining continuum (dissociative photoionization) observed by Villarejo, 1968, Berkowitz and Spohr, 1973 and calculated by Dunn, 1966, Villarejo, 1968, 2, Itikawa, 1973, Ford, Docken, et al., 1975.
25N=2 of D2+: J=1 levels of npπ 1Πu+ (n=6...9, joining on to C, D, D', D")74; ν = 124833 - RD2/(n+0.082)2.
26N=1 of D2+: J=1 levels of npπ 1Πu- (n=6...24, joining on to C, D, D', D")75; ν = 124775.0 - RD2/(n+0.082)2. Similar series with v'=1,2.
27N=0 of D2+: J=1 levels of npσ 1Σu+ (n=5...25,36..45, joining on to B, B', B")74; ν = 124745.55 - RD2/(n-0.203)2. Similar series with v'=1,2.
28Average of Π+ and Π-.
29v=0-5.
30Constants refer to Π-. For Π+ Takezawa and Tanaka, 1975 give Be= 16.198 , αe= 0.6188 ; D0= 0.00785.
31RKR potential functions Monfils, 1968, 2.
32A very small quartic term differs in sign for Π+ and Π- Takezawa and Tanaka, 1975; v=0-7.
33Constants refer to Π-. Π+ is perturbed by B" 1Σu+, particularly for v=3 and 7. After deperturbation, and excluding v = 2,4,8, Takezawa and Tanaka, 1975 obtain Bv+,v=0-10) = 15.336 - 0.4966(v+1/2) - 0.00489(v+1/2)2 Takezawa and Tanaka, 1975; D0+) = 0.00756 Takezawa and Tanaka, 1975.
34ωeye= +0.0843. ωeze = -0.01364; Monfils, 1968 gives slightly different constants. There are strong perturbations which make vibrational constants somewhat ambiguous.
35Strong rotational perturbations in v=4, weaker ones in v=3, 5, and 9 caused by D' 1Πu+ Takezawa and Tanaka, 1975.
36v=0(?) only, fragmentary.
37ωexe= +0.1698(v+1/2)3 + 0.00296(v+1/2)4 - 0.000307(v+1/2)5: the vibrational constants refer to the average of Π+ and Π- Monfils, 1968.
38Strong predissociation for v≥4, not yet studied in detail but Comes and Schumpe, 1971 observe line widths of 3.5 cm-1 for J-2, v=4...7 of Π+. Comes and Wenning, 1970 observe Lyα of D in fluorescence as a consequence of predissociation and find a noticeable increase of predissociation when an electric field is applied (field-induced predissociation). Theoretical discussion Fiquet-Fayard and Gallais, 1972.
39Dv irregular; the rotational constants refer to Π-.
40Average of Π+ and Π- extrapolated to J=0. The Λ-type doubling is ΛD= 2.14 cm-1; v=0, J=1 with Π+ above Π-.
41Effective constants for Π-, strongly affected by l-uncoupling. See also I 1Πg of H2.
42Anti-crossings between i 3Πg(v=1,N=1) and I 1Πg(v=1,N=1) observed by Jost, Lombardi, et al., 1976.
43Refers to the J=1 level of 1Π-; the J=1 level of 1Π+ lies 18.7 cm-1 higher.
44Zeeman effect in 0-0 band Dieke, 1954.
45Anti-crossings of r 3Πg(v=0,N=2) with G 1Σg+(v=4,N=2) yielding orbital g factors and hyperfine structure Miller, Freund, et al., 1976.
46Refers to J'=1.
47Takes account of Y00 in both upper and lower state. The Y'00 values for B, C, B' are Y'00(B)= 4.2 cm-1,Y'00(C)= 2.2 cm-1,(Y'00(B')= 5.1 cm-1), respectively, but Y00(B') is uncertain; see comments regarding H2.
48ωeze = -0.294 Dabrowski and Herzberg, 1974, seven-level fit Dabrowski and Herzberg, 1974. Monfils, 1968 gives rather different constants based on a nine-level fit; his ninth level (v=8) disagrees strongly with that of Dabrowski and Herzberg, 1974.
49+0.102(v+1/2)2 - 0.0134(v+1/2)3, seven-level fit Dabrowski and Herzberg, 1974.
50D1 = 0.00371, higher Dv values are irregular.
51From the observed ν60 and the energy of v=6 above the (outer) minimum as calculated by Kolos and Wolniewicz, 1969; see H2.
52Calculated ΔG(1/2) value of the outer minimum of the double-minimum state Kolos and Wolniewicz, 1969; see H2. According to Kolos and Wolniewicz, 1969 the lowest level of the outer minimum is 9190.1 cm-1 above B 1Σu+(v=0), but the v=0...5 levels have not yet been observed. The v=6 level lies just below the potential maximum.
53B6 = 3.5. r6 =2.2. Vibrational numbering of Kolos and Wolniewicz, 1969. The D6 value is large and negative. Higher vibrational levels lie above the potential maximum and have larger Bv values (e.g. B12 = 5.688) corresponding to the fact that for these levels the vibrational motion covers both minima of the E,F state. A few rotational levels of v=4 have been observed.
54Takes account of Y00 in both upper and lower state.The Y'00 values for B, C, B' are Y'00(B)= 4.2 cm-1,Y'00(C)= 2.2 cm-1,(Y'00(B')= 5.1 cm- 1), but Y00(B') is uncertain; see comments regarding H2. Te of C 1Πu and ν00(C-X) both exclude -BΛ2.
55ωeze = -0.00946; the zero-point energy (Y00 = 2.2 included) is 858.46 cm-1. The eight-level fit refers to Π Dabrowski and Herzberg, 1974. All vibrational levels up to v=19 have been observed. The last level lies 50 cm-1 above the dissociation limit confirming the theoretical prediction Kolos and Wolniewicz, 1965 of a maximum in the potential function.
56RKR potential functions Monfils, 1968, 2.
57αv= +0.00419(v+1/2)2 - 0.000101(v+1/2)3 Dabrowski and Herzberg, 1974, eight-level fit referring to 1Πu- Dabrowski and Herzberg, 1974. Several of the 1Πu+ levels are strongly perturbed by B 1Σu+.
58-0.000216(v+1/2) + 0.000011(v+1/2)2.
59Franck-Condon factors from electron energy loss spectra Geiger and Schmoranzer, 1969. Theoretical band oscillator strengths, transition probabilities and photodissociation cross sections Allison and Dalgarno, 1969.
60missing note
61ωexe= +0.4109(v+1/2)3 - 0.0370(v+1/2)4 + 0.00154(v+1/2)5, the zero- point energy (Y00 = 4.2 included) is 483.03 cm-1; eight-level fit Dabrowski and Herzberg, 1974. All vibrational levels up to v=51 have been observed.
62+0.0296(v+1/2)2 - 0.0015(v+1/2)3 Dabrowski and Herzberg, 1974; eight-level fit Dabrowski and Herzberg, 1974.
63-0.000320(v+1/2) + 0.000013(v+1/2)2.
64Selective enhancements of v' = 7 and 9 in Ar-D2 mixtures studied by Takezawa, Innes, et al., 1967. Experimental Franck-Condon factors Geiger and Schmoranzer, 1969, calculated Halmann and Laulicht, 1966. Theoretical band oscillator strengths, transition probabilities, and photodissociation cross sections Allison and Dalgarno, 1969.
65Continuous component of B-X (corresponding to the continuum of X 1Σg+) observed by Dalgarno, Herzberg, et al., 1970.
66ωeze = -0.02286; the zero-point energy (Y00 = 4.13 included) is 1546.49 cm-1. Data from the Raman measurements of Stoicheff, 1957 and the field-induced spectrum of Brannon, Church, et al., 1968 have been combined with the somewhat less accurate VUV results in the least-squares solution (10-level fit) for the vibrational and rotational constants Bredohl and Herzberg, 1973. All vibrational levels have been observed, the last one, v=21, being only 2.1 cm-1 below the dissociation limit Bredohl and Herzberg, 1973. Theoretical values for all bound and quasi-bound levels are given by LeRoy, 1971; see also Kolos and Wolniewicz, 1975. For a discussion of the small differences observed-calculated, see Bunker, 1972, Bredohl and Herzberg, 1973, Dabrowski and Herzberg, 1976.
67According to Ramsey, 1952 the hyperfine levels F=1 and 2 for v=0,J=1 (para-D2) are 0.6609E-5 and 0.4669E-5 cm-1 below the F=0 component.
68+0.01265(v+1/2)2 - 0.00069(v+1/2)3; see 66. As for H2 the Bv curve has a slightly negative curvature at low v.
69-0.000224(v+1/2) - +..., from the data of Stoicheff, 1957, Brannon, Church, et al., 1968, Bredohl and Herzberg, 1973.
701-0 and 2-0 bands.
71Nuclear spectrum Kolsky, Phipps, et al., 1952; the rotational spectrum gives the rotational magnetic moment for J=1: 0.44288 μN Ramsey, 1956. Code and Ramsey, 1971 determine spin-rotation and quadrupole interaction constants for J=1,2 and derive the quadrupole moment of D. Polarizability anisotropy α parallel - α perp = 0.2897 Å3 English and MacAdam, 1970.
7236748.9 cm-1, from the dissociation limit (beginning of continuum) in the B'-X system Herzberg, 1970. The same value has been derived by LeRoy and Barwell, 1975 from the last observed levels in the ground state by relations involving the long-range behavior of the potential function. 36748.2 cm-1 from ab initio calculations Kolos and Wolniewicz, 1975.
73From the Rydberg limits of Takezawa and Tanaka, 1975 after correction for pressure shift Herzberg, 1972.
74See the remarks in H2 52 concerning the corresponding series of H2. Note, however, that an accurate representation using Fano's quantum defect theory has not yet been attempted for D2.
75This series of levels is obtained Takezawa and Tanaka, 1975 from a Rydberg series of Q(1) lines whose limit is at 124715.2 cm-1. A similar series of Q(2) lines with a limit at 124654 cm-1 converges to the N=2 level of D2+; also observed for v=1 and 2. These series, unlike J=1 of npσ, 1Σu+ and npπ, 1Πu+, are essentially unperturbed.
76Franck-Condon factors from electron energy loss spectra Geiger and Schmoranzer, 1969.
77Excludes -BΛ2.

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Shiell, Hu, et al., 2000
Shiell, R.C.; Hu, X.K.; Hu, Q.C.J.; Hepburn, J.W., Threshold Ion-pair Production spectroscopy (TIPPS) of H2 and D2, Faraday Disc. Chem. Soc., 2000, 115, 331, https://doi.org/10.1039/a909428h . [all data]

Lykke, Murray, et al., 1991
Lykke, K.R.; Murray, K.K.; Lineberger, W.C., Threshold Photodetachment of H-, Phys. Rev. A, 1991, 43, 11, 6104, https://doi.org/10.1103/PhysRevA.43.6104 . [all data]

Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Thermochemical Stabilities of D3+(D2)n with n = 1 - 10, Chem. Phys. Lett., 1989, 157, 5, 467, https://doi.org/10.1016/0009-2614(89)87282-3 . [all data]

Haynes and Armentrout, 1996
Haynes, C.L.; Armentrout, P.B., Guided Ion Beam Determination of the Co+ - H2 Bond Dissociation energy, Chem Phys. Let., 1996, 249, 1-2, 64, https://doi.org/10.1016/0009-2614(95)01337-7 . [all data]

Shiner, Gilligan, et al., 1993
Shiner, D.; Gilligan, J.M.; Cook, B.M.; Lichten, W., H2, D2, and HD ionization potentials by accurate calibration of several iodine lines, Phys. Rev. A, 1993, 47, 4042. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules,, Van Nostrand Reinhold Co., 1979, ,1. [all data]

Takezawa and Tanaka, 1975
Takezawa, S.; Tanaka, Y., The absorption spectrum of D2 in the vacuum-uv region, Rydberg bands, noσ1Σu+←X1Σg+ and npπ1π←X1Σg+ with n=4-6, and the ionization energy, J. Mol. Spectrosc., 1975, 54, 379. [all data]

Lossing and Semeluk, 1969
Lossing, F.P.; Semeluk, G.P., Threshold ionization efficiency curves for monoenergetic electron impact on H2, D2, CH4 and CD4, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 408. [all data]

Villarejo, 1968
Villarejo, D., Measurement of threshold electrons in the photoionization of H2 and D2, J. Chem. Phys., 1968, 48, 4014. [all data]

Spohr and Puttkamer, 1967
Spohr, R.; Puttkamer, E.v., Energiemessung von Photoelektronen und Franck-Condon-Faktoren der Schwingungsubergange einiger Molekulionen, Z. Naturforsch., 1967, 22a, 705. [all data]

Dibeler, Reese, et al., 1965
Dibeler, V.H.; Reese, R.M.; Krauss, M., Massspectrometric study of photoionization. II. H2, HD, and D2, J. Chem. Phys., 1965, 42, 2045. [all data]

Briglia and Rapp, 1965
Briglia, D.D.; Rapp, D., Ionization of the hydrogen molecule by electron impact near threshold, Phys. Rev. Letters, 1965, 14, 245. [all data]

Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S., Excess-kinetic-energy ions in organic mass spectra, J. Chem. Phys., 1964, 40, 2114. [all data]

Cunningham and Dieke, 1950
Cunningham; Dieke, Johns Hopkins University, Department of Physics, Rpt. NYO-692, 1950, 1. [all data]

Dieke, 1935
Dieke, G.H., The triplet 3p complex of the hydrogen molecule, Phys. Rev., 1935, 48, 610. [all data]

Dieke, 1935, 2
Dieke, G.H., The 3p3Σ→2s3Σ bands of HD and D2, Phys. Rev., 1935, 48, 606. [all data]

Dabrowski and Herzberg, 1974
Dabrowski, I.; Herzberg, G., The absorption spectrum of D2 from 1100 to 840 Å, Can. J. Phys., 1974, 52, 1110. [all data]

Chupka, Dehmer, et al., 1975
Chupka, W.A.; Dehmer, P.M.; Jivery, W.T., High resolution photoionization study of ion-pair formation in H2, HD, and D2, J. Chem. Phys., 1975, 63, 3929. [all data]

Kolos, 1976
Kolos, W., Ab initio potential energy curves and vibrational levels for the B", B«macron», and B'1Σu+ states of the hydrogen molecule, J. Mol. Spectrosc., 1976, 62, 429. [all data]

Monfils, 1965
Monfils, A., The absorption spectra of the molecules H2, HD, and D2. Part VI. Rotational analysis of the B', B", D, D', and D" states, J. Mol. Spectrosc., 1965, 15, 265. [all data]

Monfils, 1968
Monfils, A., Absorption spectra of molecules H2, HD, and D2. VII. Vibrational constants of the B, B', B", C, D, D', and D" states, J. Mol. Spectrosc., 1968, 25, 513. [all data]

Dieke and Lewis, 1937
Dieke, G.H.; Lewis, M.N., Bands of HD and D2 ending on the 2p1Σ state, Phys. Rev., 1937, 52, 100. [all data]

Dieke and Cunningham, 1965
Dieke, G.H.; Cunningham, S.P., Bands of D2 and T2 originating from the lowest excited 1Σg states (1sσ)(2sσ)1Σg and (2pσ)21Σg, J. Mol. Spectrosc., 1965, 18, 288. [all data]

Brannon, Church, et al., 1968
Brannon, P.J.; Church, C.H.; Peters, C.W., Electric field induced spectra of molecular hydrogen, deuterium and deuterium hydride, J. Mol. Spectrosc., 1968, 27, 44. [all data]

Watanabe and Welsh, 1965
Watanabe, A.; Welsh, H.L., Pressure-induced infrared absorption of gaseous hydrogen and deuterium at low temperatures, Can. J. Phys., 1965, 43, 818. [all data]

Reddy and Kuo, 1971
Reddy, S.P.; Kuo, C.Z., Collision-induced 1st overtone infrared absorption band of deuterium, J. Mol. Spectrosc., 1971, 37, 327. [all data]

Russell, Reddy, et al., 1974
Russell, W.E.; Reddy, S.P.; Cho, C.W., Collision-induced fundamental band of D2 in D2-He and D2-Ne mixtures at different temperatures, J. Mol. Spectrosc., 1974, 52, 72. [all data]

Stoicheff, 1957
Stoicheff, B.P., High resolution Raman spectroscopy of gases. IX. Spectra of H2, HD, and D2, Can. J. Phys., 1957, 35, 730. [all data]

Kolsky, Phipps, et al., 1952
Kolsky, H.G.; Phipps, T.E., Jr.; Ramsey, N.F.; Silsbee, H.B., Nuclear radiofrequency spectra of H2 and D2 in high and low magnetic fields, Phys. Rev., 1952, 87, 395. [all data]

Ramsey, 1956
Ramsey, Molecular Beams, Clarendon Press, Oxford, 1956, 238. [all data]

English and MacAdam, 1970
English, T.C.; MacAdam, K.B., Molecular-beam resonance measurement of deuterium polarizability anisotropy, Phys. Rev. Lett., 1970, 24, 555-557. [all data]

Code and Ramsey, 1971
Code, R.F.; Ramsey, N.F., Molecular-beam magnetic resonance studies of HD and D2, Phys. Rev. A: Gen. Phys., 1971, 4, 1945. [all data]

Miller, Freund, et al., 1976
Miller, T.A.; Freund, R.S.; Zegarski, B.R., A forbidden singlet-triplet anticrossing in D2, J. Chem. Phys., 1976, 64, 1842. [all data]

Jost, Lombardi, et al., 1976
Jost, R.; Lombardi, M.; Derouard, J.; Freund, R.S.; Miller, T.A.; Zegarski, B.R., Singlet-triplet anticrossings and the electronic isotope shift in D2, Chem. Phys. Lett., 1976, 37, 507. [all data]

Freund and Miller, 1973
Freund, R.S.; Miller, T.A., Fine structure of ortho- and para-D2 d(3p) 3Πu via microwave optical magnetic resonance induced by electrons, J. Chem. Phys., 1973, 59, 4073. [all data]

Freund and Miller, 1973, 2
Freund, R.S.; Miller, T.A., Fine structure of para-H2 d(3p) 3Πu (ν=0-3) via microwave optical magnetic resonance induced by electrons, J. Chem. Phys., 1973, 58, 3565. [all data]

Smith and Chevalier, 1972
Smith, W.H.; Chevalier, R., Radiative-lifetime studies of the emission continua of the hydrogen and deuterium molecules, Astrophys. J., 1972, 177, 835. [all data]

Johnson, 1972
Johnson, C.E., Lifetime of the c3Πu metastable state of H2, D2, and HD, Phys. Rev. A: Gen. Phys., 1972, 5, 1026. [all data]

Berkowitz and Spohr, 1973
Berkowitz, J.; Spohr, R., Comparison of photoelectron intensities and Franck-Condon factors in the photoionization of H2, HD and D2, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 143. [all data]

Dunn, 1966
Dunn, G.H., Franck-Condon factors for the ionization of H2 and D2, J. Chem. Phys., 1966, 44, 2592. [all data]

Villarejo, 1968, 2
Villarejo, D., Vibration-rotation interaction effects in calculated Franck-Condon factors. I. The ionization of H2 and D2, J. Chem. Phys., 1968, 49, 2523. [all data]

Itikawa, 1973
Itikawa, Y., Calculation of the cross sections for the photoionization of H2 and D2 into different vibrational states of the ion, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 125. [all data]

Ford, Docken, et al., 1975
Ford, A.L.; Docken, K.K.; Dalgarno, A., Cross sections for photoionization of vibrationally excited molecular hydrogen, Astrophys. J., 1975, 200, 788. [all data]

Monfils, 1968, 2
Monfils, A., Calcul des fonctions potentielles de divers etats signulets excites des molecules H2, HD et D2, Bull. Cl. Sci. Acad. R. Belg., 1968, 54, 44. [all data]

Comes and Schumpe, 1971
Comes, F.J.; Schumpe, G., Einfluss der Rotation auf die Lebensdauer pradissoziierender Molekule, Z. Naturforsch. A, 1971, 26, 538. [all data]

Comes and Wenning, 1970
Comes, F.J.; Wenning, U., Pradissoziation im elektrischen Feld - ein neues Phanomen in der Molekulspektroskopie, Z. Naturforsch. A, 1970, 25, 406. [all data]

Fiquet-Fayard and Gallais, 1972
Fiquet-Fayard, F.; Gallais, O., Predissociation of H2 and D2 (D1Πu): comparison of calculated and experimental line-widths, Chem. Phys. Lett., 1972, 16, 18. [all data]

Dieke, 1954
Dieke, G.H., Nouveaux resultats pour le spectre des molecules de l'hydrogene et de ses isotopes, J. Phys. Radium, 1954, 15, 393. [all data]

Kolos and Wolniewicz, 1969
Kolos, W.; Wolniewicz, L., Theoretical investigation of the lowest double-minimum state E, F1Σg+ of the hydrogen molecule, J. Chem. Phys., 1969, 50, 3228. [all data]

Kolos and Wolniewicz, 1965
Kolos, W.; Wolniewicz, L., Potential-energy curves for the X1Σg+, b3Σu+, and C1Πu states of the hydrogen molecule, J. Chem. Phys., 1965, 43, 2429. [all data]

Geiger and Schmoranzer, 1969
Geiger, J.; Schmoranzer, H., Electronic and vibrational transition probabilities of isotopic hydrogen molecules H2, HD, and D2 based on electron energy loss spectra, J. Mol. Spectrosc., 1969, 32, 39. [all data]

Allison and Dalgarno, 1969
Allison, A.C.; Dalgarno, A., Photodissociation of vibrationally excited H2, HD, and D2 by absorption into the continua of the Lyman and Werner systems, At. Data, 1969, 1, 91. [all data]

Takezawa, Innes, et al., 1967
Takezawa, S.; Innes, F.R.; Tanaka, Y., Selective enhancement in hydrogenlike molecules with the rare gases. II. HD and D2 with Ar and Kr, J. Chem. Phys., 1967, 46, 4555. [all data]

Halmann and Laulicht, 1966
Halmann, M.; Laulicht, I., Isotope effects on Franck-Condon factors. V. Electronic transitions of isotopic O2, N2, C2, and H2 molecules, J. Chem. Phys., 1966, 44, 2398. [all data]

Dalgarno, Herzberg, et al., 1970
Dalgarno, A.; Herzberg, G.; Stephens, T.L., A new continuous emission spectrum of the hydrogen molecule, Astrophys. J., 1970, 162, 49. [all data]

Bredohl and Herzberg, 1973
Bredohl, H.; Herzberg, G., The Lyman and Werner bands of deuterium, Can. J. Phys., 1973, 51, 867. [all data]

LeRoy, 1971
LeRoy, R.J., Eigenvalues and certain expectation values for all bound and quasibound levels of ground-state (X1Σg+)H2, HD, and D2, J. Chem. Phys., 1971, 54, 5433. [all data]

Kolos and Wolniewicz, 1975
Kolos, W.; Wolniewicz, L., Improved potential energy curve and vibrational energies for the electronic ground state of the hydrogen molecule, J. Mol. Spectrosc., 1975, 54, 303. [all data]

Bunker, 1972
Bunker, P.R., On the breakdown of the Born-Oppenheimer approximation for a diatomic molecule, J. Mol. Spectrosc., 1972, 5, 478. [all data]

Dabrowski and Herzberg, 1976
Dabrowski, I.; Herzberg, G., The absorption and emission spectra of HD in the vacuum ultraviolet, Can. J. Phys., 1976, 54, 525. [all data]

Ramsey, 1952
Ramsey, N.F., Theory of molecular hydrogen and deuterium in magnetic fields, Phys. Rev., 1952, 85, 60. [all data]

Herzberg, 1970
Herzberg, G., The dissociation energy of the hydrogen molecule, J.Mol. Spectry., 1970, 33, 147. [all data]

LeRoy and Barwell, 1975
LeRoy, R.J.; Barwell, M.G., Ground state D2 dissociation energy from the near-dissociation behavior of rotational level spacings, Can. J. Phys., 1975, 53, 1983. [all data]

Herzberg, 1972
Herzberg, G., Spectroscopic studies of molecular structure, Science, 1972, 177, 123. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References