Butane, 2,2-dimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-185.6 ± 0.96kJ/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
gas358.65 ± 0.84J/mol*KN/AKilpatrick J.E., 1946The entropy values S(296.05 K)=357.19 and S(322.85 K)=369.87 J/mol*K were calculated by [ Scott D.W., 1974] from the experimental data [ Douslin D.R., 1946].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
101.46200.Scott D.W., 1974, 2Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, Scott D.W., 1974, 2]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1946] (see also [ Waddington G., 1949]).; GT
131.08273.15
141.5 ± 0.3298.15
142.26300.
183.13400.
220.33500.
253.13600.
281.58700.
306.69800.
328.44900.
348.111000.
365.261100.
380.331200.
393.301300.
405.851400.
418.401500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
159.41 ± 0.32341.55Waddington G., 1947GT
164.22 ± 0.33353.20
173.64 ± 0.35376.05
188.07 ± 0.38412.40
202.21 ± 0.40449.40

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-213.4 ± 0.96kJ/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
Δcliquid-4148.5 ± 0.88kJ/molCcbProsen and Rossini, 1945Corresponding Δfliquid = -213.3 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid272.00J/mol*KN/ADouslin and Huffman, 1946DH
liquid272.5J/mol*KN/AKilpatrick and Pitzer, 1946DH
liquid269.4J/mol*KN/AStull, 1937Extrapolation below 90 K, 17.76 cal/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
189.67298.15Ohnishi, Fujihara, et al., 1989DH
191.88298.15Costas, Huu, et al., 1988DH
191.88298.15Perez-Casas, Aicart, et al., 1988DH
189.44298.15Benson and D'Arcy, 1986DH
189.14298.15Aicart, Kumaran, et al., 1983DH
189.14298.15Benson, D'Arcy, et al., 1983DH
191.5300.Auerbach, Sage, et al., 1950T = 300 to 366 K. Cp given as 0.5312 Btu/lb*R at 80°F.; DH
188.74298.15Douslin and Huffman, 1946T = 13 to 300 K.; DH
186.9290.Kilpatrick and Pitzer, 1946T = 20 to 290 K.; DH
183.18298.1Stull, 1937T = 90 to 320 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil322.9 ± 0.1KAVGN/AAverage of 46 out of 54 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus173. ± 2.KAVGN/AAverage of 24 out of 28 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple174. ± 2.KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tc489.0 ± 0.5KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Pc31.0 ± 0.2barN/ADaubert, 1996 
Pc31.0236barN/AGenco, Teja, et al., 1980Uncertainty assigned by TRC = 0.05 bar; TRC
Pc31.02barN/AKay and Young, 1975Uncertainty assigned by TRC = 0.03 bar; TRC
Pc31.0764barN/AKay, 1946Uncertainty assigned by TRC = 0.1013 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.358l/molN/ADaubert, 1996 
Vc0.358l/molN/AGenco, Teja, et al., 1980Uncertainty assigned by TRC = 0.001 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc2.80 ± 0.02mol/lN/ADaubert, 1996 
ρc2.79mol/lN/AKay, 1946Uncertainty assigned by TRC = 0.02 mol/l; by extrapolation of rectilinear diameter to Tc; TRC
Quantity Value Units Method Reference Comment
Δvap27.93kJ/molN/AMajer and Svoboda, 1985 
Δvap27.7kJ/molN/AReid, 1972AC
Δvap27.68kJ/molCOsborne and Ginnings, 1947ALS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
26.31322.9N/AMajer and Svoboda, 1985 
28.7288.N/ANicolini and Laffitte, 1949Based on data from 273. - 318. K. See also Boublik, Fried, et al., 1984.; AC
27.8 ± 0.1296.CWaddington and Douslin, 1947AC
26.3 ± 0.1323.CWaddington and Douslin, 1947AC
29.2274.N/AKilpatrick and Pitzer, 1946Based on data from 211. - 289. K.; AC
28.3303.MMWillingham, Taylor, et al., 1945Based on data from 288. - 323. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
296. - 323.41.920.2675488.7Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
210.99 - 289.383.73821022.204-49.529Kilpatrick and Pitzer, 1946Coefficents calculated by NIST from author's data.
288.53 - 323.683.879731081.176-43.807Williamham, Taylor, et al., 1945 

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
0.58174.3Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
42.57126.8Domalski and Hearing, 1996CAL
2.02140.8
3.31174.3

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
5.410126.81crystaline, IIIcrystaline, IIDouslin and Huffman, 1946DH
0.2853140.79crystaline, IIcrystaline, IDouslin and Huffman, 1946DH
0.5791174.28crystaline, IliquidDouslin and Huffman, 1946DH
5.394126.81crystaline, IIIcrystaline, IIKilpatrick and Pitzer, 1946DH
0.283140.88crystaline, IIcrystaline, IKilpatrick and Pitzer, 1946DH
0.579174.66crystaline, IliquidKilpatrick and Pitzer, 1946DH
4.581127.11crystaline, IIcrystaline, IStull, 1937DH
0.464172.13crystaline, IliquidStull, 1937DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
42.66126.81crystaline, IIIcrystaline, IIDouslin and Huffman, 1946DH
2.03140.79crystaline, IIcrystaline, IDouslin and Huffman, 1946DH
3.32174.28crystaline, IliquidDouslin and Huffman, 1946DH
42.5126.81crystaline, IIIcrystaline, IIKilpatrick and Pitzer, 1946DH
2.01140.88crystaline, IIcrystaline, IKilpatrick and Pitzer, 1946DH
3.33174.66crystaline, IliquidKilpatrick and Pitzer, 1946DH
36.04127.11crystaline, IIcrystaline, IStull, 1937DH
2.70172.13crystaline, IliquidStull, 1937DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + 1-Butene, 3,3-dimethyl- = Butane, 2,2-dimethyl-

By formula: H2 + C6H12 = C6H14

Quantity Value Units Method Reference Comment
Δr-125.8 ± 0.53kJ/molChydRogers, Crooks, et al., 1987liquid phase
Δr-125.9 ± 0.63kJ/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -126.95 ± 0.63 kJ/mol; AT 355 °K

n-Hexane = Butane, 2,2-dimethyl-

By formula: C6H14 = C6H14

Quantity Value Units Method Reference Comment
Δr-14.6 ± 0.75kJ/molCisoProsen and Rossini, 1941liquid phase; Calculated from ΔHc

Butane, 2,2-dimethyl- = Hydrogen + 1-Butene, 3,3-dimethyl-

By formula: C6H14 = H2 + C6H12

Quantity Value Units Method Reference Comment
Δr125.9 ± 0.8kJ/molCmKennedy, Shomate, et al., 1938liquid phase

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.00065 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.00059 LN/A 
0.00051 VN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Ionization energy determinations

IE (eV) Method Reference Comment
10.07ESTLuo and Pacey, 1992LL
9.79EQLias, Ausloos, et al., 1976LLK
10.06PIWatanabe, Nakayama, et al., 1962RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C4H8+10.23 ± 0.015C2H6PISteiner, Giese, et al., 1961RDSH
C4H9+10.60 ± 0.025C2H5PISteiner, Giese, et al., 1961RDSH
C5H10+10.28 ± 0.02CH4PISteiner, Giese, et al., 1961RDSH
C5H11+10.555 ± 0.045CH3PISteiner, Giese, et al., 1961RDSH

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center
State gas
Instrument HP-GC/MS/IRD

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1294
NIST MS number 227826

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Kilpatrick J.E., 1946
Kilpatrick J.E., The thermodynamics of 2,2-dimethylbutane, including the heat capacity, heats of transition, fusion and vaporization and the entropy, J. Am. Chem. Soc., 1946, 68, 1066-1072. [all data]

Scott D.W., 1974
Scott D.W., Correlation of the chemical thermodynamic properties of alkane hydrocarbons, J. Chem. Phys., 1974, 60, 3144-3165. [all data]

Douslin D.R., 1946
Douslin D.R., Low-temperature thermal data on the five isomeric hexanes, J. Am. Chem. Soc., 1946, 68, 1704-1708. [all data]

Scott D.W., 1974, 2
Scott D.W., Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]

Pitzer K.S., 1946
Pitzer K.S., The entropies and related properties of branched paraffin hydrocarbons, Chem. Rev., 1946, 39, 435-447. [all data]

Waddington G., 1949
Waddington G., Experimental vapor heat capacities and heats of vaporization of 2-methylpentane, 3-methylpentane, and 2,3-dimethylbutane, J. Am. Chem. Soc., 1949, 71, 3902-3906. [all data]

Waddington G., 1947
Waddington G., Experimental vapor heat capacities and heats of vaporization of n-hexane and 2,2-dimethylbutane, J. Am. Chem. Soc., 1947, 69, 2275-2279. [all data]

Douslin and Huffman, 1946
Douslin, D.R.; Huffman, H.M., Low-temperature thermal data on the five isometric hexanes, J. Am. Chem. Soc., 1946, 68, 1704-1708. [all data]

Kilpatrick and Pitzer, 1946
Kilpatrick, J.E.; Pitzer, K.S., The thermodynamics of 2,2-dimethylbutane, including the heat capacity, heats of transitions, fusion and vaporization and the entropy, J. Am. Chem. Soc., 1946, 68, 1066-1072. [all data]

Stull, 1937
Stull, D.R., A semi-micro calorimeter for measuring heat capacities at low temperatures, J. Am. Chem. Soc., 1937, 59, 2726-2733. [all data]

Ohnishi, Fujihara, et al., 1989
Ohnishi, K.; Fujihara, I.; Murakami, S., Thermodynamic properties of decalins mixed with hexane isomers at 298.15K. 1. Excess enthalpies and excess isobaric heat capacities, Fluid Phase Equilib., 1989, 46, 59-72. [all data]

Costas, Huu, et al., 1988
Costas, M.; Huu, V.T.; Patterson, D.; Caceres-Alonso, M.; Tardajos, G.; Aicart, E., Liquid structure and second-order mixing functions for l-chloronaphthalene with linear and branched alkanes, J. Chem. Soc., Faraday Trans., 1988, 1 84(5), 1603-1616. [all data]

Perez-Casas, Aicart, et al., 1988
Perez-Casas, S.; Aicart, E.; Trojo, L.M.; Costas, M., Excess heat capacity. Chlorobenzene-2,2,4,4,6,8,8-heptamethylnonane, Int. Data Ser., Sel. Data Mixtures, 1988, (2)A, 123. [all data]

Benson and D'Arcy, 1986
Benson, G.C.; D'Arcy, P.J., Heat capacities of binary mixtures of n-octane with each of the hexane isomers at 298.15 K, Can. J. Chem., 1986, 64, 2139-2141. [all data]

Aicart, Kumaran, et al., 1983
Aicart, E.; Kumaran, M.K.; Halpin, C.J.; Benson, G.C., Ultrasonic speeds and isentropic compressibilities of 2-methylpentan-1-ol with hexane isomers at 298.15 K, J. Chem. Thermodynam., 1983, 15, 1189-1197. [all data]

Benson, D'Arcy, et al., 1983
Benson, G.C.; D'Arcy, P.J.; Sugamori, M.E., Heat capacities of binary mixtures of 1-hexanol with hexane isomers at 298.15 K, Thermochim. Acta, 1983, 71, 161-166. [all data]

Auerbach, Sage, et al., 1950
Auerbach, C.E.; Sage, B.H.; Lacey, W.N., Isobaric heat capacities at bubble point, Ind. Eng. Chem., 1950, 42, 110-113. [all data]

Daubert, 1996
Daubert, T.E., Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes, J. Chem. Eng. Data, 1996, 41, 365-372. [all data]

Genco, Teja, et al., 1980
Genco, J.M.; Teja, A.S.; Kay, W.B., Study of the critical and azeotropic behavior of binary mixtures I critical states of perfluoromethylcyclohexane + isomeric hexane systems, J. Chem. Eng. Data, 1980, 25, 350. [all data]

Kay and Young, 1975
Kay, W.B.; Young, C.L., Gas-liquid critical properties. Tetradecafluoromethylcyclohexane( perfluoromethylcyclohexane)-2,2-dimethylbutane, Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1975, No. 1, 58. [all data]

Kay, 1946
Kay, W.B., The Vapor Pressures and Saturated Liquid and Vapor Densities of the Isomeric Hexanes, J. Am. Chem. Soc., 1946, 68, 1336. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Osborne and Ginnings, 1947
Osborne, N.S.; Ginnings, D.C., Measurements of heat of vaporization and heat capacity of a number of hydrocarbons, J. Res. NBS, 1947, 39, 453-477. [all data]

Nicolini and Laffitte, 1949
Nicolini, E.; Laffitte, P., Compt. Rend., 1949, 229, 757. [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Waddington and Douslin, 1947
Waddington, Guy; Douslin, Donald R., Experimental Vapor Heat Capacities and Heats of Vaporization of n-Hexane and 2,2-Dimethylbutane 1, J. Am. Chem. Soc., 1947, 69, 10, 2275-2279, https://doi.org/10.1021/ja01202a011 . [all data]

Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009 . [all data]

Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K., Enthalpies of hydrogenation of the hexenes, J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Prosen and Rossini, 1941
Prosen, E.J.R.; Rossini, F.D., Heats of isomerization of the five hexanes, J. Res. NBS, 1941, 27, 289-310. [all data]

Kennedy, Shomate, et al., 1938
Kennedy, Wm.D.; Shomate, C.H.; Parks, G.P., Thermal data on organic compounds. XVIII. The heat capacity of and entropy of t-butylethylene, J. Am. Chem. Soc., 1938, 60, 1507-1509. [all data]

Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D., Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes, Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]

Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z., Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials, Int. J. Chem. Kinet., 1976, 8, 725. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G., Photoionization of alkanes. Dissociation of excited molecular ions, J. Chem. Phys., 1961, 34, 189. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References