Butane, 2,2-dimethyl-
- Formula: C6H14
- Molecular weight: 86.1754
- IUPAC Standard InChIKey: HNRMPXKDFBEGFZ-UHFFFAOYSA-N
- CAS Registry Number: 75-83-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Neohexane; 2,2-Dimethylbutane; (CH3)3CCH2CH3; UN 1208
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -185.6 ± 0.96 | kJ/mol | Ccb | Prosen and Rossini, 1945 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 358.65 ± 0.84 | J/mol*K | N/A | Kilpatrick J.E., 1946 | The entropy values S(296.05 K)=357.19 and S(322.85 K)=369.87 J/mol*K were calculated by [ Scott D.W., 1974] from the experimental data [ Douslin D.R., 1946].; GT |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
101.46 | 200. | Scott D.W., 1974, 2 | Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, Scott D.W., 1974, 2]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1946] (see also [ Waddington G., 1949]).; GT |
131.08 | 273.15 | ||
141.5 ± 0.3 | 298.15 | ||
142.26 | 300. | ||
183.13 | 400. | ||
220.33 | 500. | ||
253.13 | 600. | ||
281.58 | 700. | ||
306.69 | 800. | ||
328.44 | 900. | ||
348.11 | 1000. | ||
365.26 | 1100. | ||
380.33 | 1200. | ||
393.30 | 1300. | ||
405.85 | 1400. | ||
418.40 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
159.41 ± 0.32 | 341.55 | Waddington G., 1947 | GT |
164.22 ± 0.33 | 353.20 | ||
173.64 ± 0.35 | 376.05 | ||
188.07 ± 0.38 | 412.40 | ||
202.21 ± 0.40 | 449.40 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -213.4 ± 0.96 | kJ/mol | Ccb | Prosen and Rossini, 1945 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -4148.5 ± 0.88 | kJ/mol | Ccb | Prosen and Rossini, 1945 | Corresponding ΔfHºliquid = -213.3 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 272.00 | J/mol*K | N/A | Douslin and Huffman, 1946 | DH |
S°liquid | 272.5 | J/mol*K | N/A | Kilpatrick and Pitzer, 1946 | DH |
S°liquid | 269.4 | J/mol*K | N/A | Stull, 1937 | Extrapolation below 90 K, 17.76 cal/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
189.67 | 298.15 | Ohnishi, Fujihara, et al., 1989 | DH |
191.88 | 298.15 | Costas, Huu, et al., 1988 | DH |
191.88 | 298.15 | Perez-Casas, Aicart, et al., 1988 | DH |
189.44 | 298.15 | Benson and D'Arcy, 1986 | DH |
189.14 | 298.15 | Aicart, Kumaran, et al., 1983 | DH |
189.14 | 298.15 | Benson, D'Arcy, et al., 1983 | DH |
191.5 | 300. | Auerbach, Sage, et al., 1950 | T = 300 to 366 K. Cp given as 0.5312 Btu/lb*R at 80°F.; DH |
188.74 | 298.15 | Douslin and Huffman, 1946 | T = 13 to 300 K.; DH |
186.9 | 290. | Kilpatrick and Pitzer, 1946 | T = 20 to 290 K.; DH |
183.18 | 298.1 | Stull, 1937 | T = 90 to 320 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 322.9 ± 0.1 | K | AVG | N/A | Average of 46 out of 54 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 173. ± 2. | K | AVG | N/A | Average of 24 out of 28 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 174. ± 2. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 489.0 ± 0.5 | K | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 31.0 ± 0.2 | bar | N/A | Daubert, 1996 | |
Pc | 31.0236 | bar | N/A | Genco, Teja, et al., 1980 | Uncertainty assigned by TRC = 0.05 bar; TRC |
Pc | 31.02 | bar | N/A | Kay and Young, 1975 | Uncertainty assigned by TRC = 0.03 bar; TRC |
Pc | 31.0764 | bar | N/A | Kay, 1946 | Uncertainty assigned by TRC = 0.1013 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.358 | l/mol | N/A | Daubert, 1996 | |
Vc | 0.358 | l/mol | N/A | Genco, Teja, et al., 1980 | Uncertainty assigned by TRC = 0.001 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 2.80 ± 0.02 | mol/l | N/A | Daubert, 1996 | |
ρc | 2.79 | mol/l | N/A | Kay, 1946 | Uncertainty assigned by TRC = 0.02 mol/l; by extrapolation of rectilinear diameter to Tc; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 27.93 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 27.7 | kJ/mol | N/A | Reid, 1972 | AC |
ΔvapH° | 27.68 | kJ/mol | C | Osborne and Ginnings, 1947 | ALS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
26.31 | 322.9 | N/A | Majer and Svoboda, 1985 | |
28.7 | 288. | N/A | Nicolini and Laffitte, 1949 | Based on data from 273. to 318. K. See also Boublik, Fried, et al., 1984.; AC |
27.8 ± 0.1 | 296. | C | Waddington and Douslin, 1947 | AC |
26.3 ± 0.1 | 323. | C | Waddington and Douslin, 1947 | AC |
29.2 | 274. | N/A | Kilpatrick and Pitzer, 1946 | Based on data from 211. to 289. K.; AC |
28.3 | 303. | MM | Willingham, Taylor, et al., 1945 | Based on data from 288. to 323. K.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kJ/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
296. to 323. | 41.92 | 0.2675 | 488.7 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
210.99 to 289.38 | 3.7382 | 1022.204 | -49.529 | Kilpatrick and Pitzer, 1946 | Coefficents calculated by NIST from author's data. |
288.53 to 323.68 | 3.87973 | 1081.176 | -43.807 | Williamham, Taylor, et al., 1945 |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
0.58 | 174.3 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
42.57 | 126.8 | Domalski and Hearing, 1996 | CAL |
2.02 | 140.8 | ||
3.31 | 174.3 |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
5.410 | 126.81 | crystaline, III | crystaline, II | Douslin and Huffman, 1946 | DH |
0.2853 | 140.79 | crystaline, II | crystaline, I | Douslin and Huffman, 1946 | DH |
0.5791 | 174.28 | crystaline, I | liquid | Douslin and Huffman, 1946 | DH |
5.394 | 126.81 | crystaline, III | crystaline, II | Kilpatrick and Pitzer, 1946 | DH |
0.283 | 140.88 | crystaline, II | crystaline, I | Kilpatrick and Pitzer, 1946 | DH |
0.579 | 174.66 | crystaline, I | liquid | Kilpatrick and Pitzer, 1946 | DH |
4.581 | 127.11 | crystaline, II | crystaline, I | Stull, 1937 | DH |
0.464 | 172.13 | crystaline, I | liquid | Stull, 1937 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
42.66 | 126.81 | crystaline, III | crystaline, II | Douslin and Huffman, 1946 | DH |
2.03 | 140.79 | crystaline, II | crystaline, I | Douslin and Huffman, 1946 | DH |
3.32 | 174.28 | crystaline, I | liquid | Douslin and Huffman, 1946 | DH |
42.5 | 126.81 | crystaline, III | crystaline, II | Kilpatrick and Pitzer, 1946 | DH |
2.01 | 140.88 | crystaline, II | crystaline, I | Kilpatrick and Pitzer, 1946 | DH |
3.33 | 174.66 | crystaline, I | liquid | Kilpatrick and Pitzer, 1946 | DH |
36.04 | 127.11 | crystaline, II | crystaline, I | Stull, 1937 | DH |
2.70 | 172.13 | crystaline, I | liquid | Stull, 1937 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H2 + C6H12 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -125.8 ± 0.53 | kJ/mol | Chyd | Rogers, Crooks, et al., 1987 | liquid phase |
ΔrH° | -125.9 ± 0.63 | kJ/mol | Chyd | Dolliver, Gresham, et al., 1937 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -126.95 ± 0.63 kJ/mol; AT 355 °K |
By formula: C6H14 = C6H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -14.6 ± 0.75 | kJ/mol | Ciso | Prosen and Rossini, 1941 | liquid phase; Calculated from ΔHc |
By formula: C6H14 = H2 + C6H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 125.9 ± 0.8 | kJ/mol | Cm | Kennedy, Shomate, et al., 1938 | liquid phase |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center |
State | gas |
Instrument | HP-GC/MS/IRD |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Kilpatrick J.E., 1946
Kilpatrick J.E.,
The thermodynamics of 2,2-dimethylbutane, including the heat capacity, heats of transition, fusion and vaporization and the entropy,
J. Am. Chem. Soc., 1946, 68, 1066-1072. [all data]
Scott D.W., 1974
Scott D.W.,
Correlation of the chemical thermodynamic properties of alkane hydrocarbons,
J. Chem. Phys., 1974, 60, 3144-3165. [all data]
Douslin D.R., 1946
Douslin D.R.,
Low-temperature thermal data on the five isomeric hexanes,
J. Am. Chem. Soc., 1946, 68, 1704-1708. [all data]
Scott D.W., 1974, 2
Scott D.W.,
Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]
Pitzer K.S., 1946
Pitzer K.S.,
The entropies and related properties of branched paraffin hydrocarbons,
Chem. Rev., 1946, 39, 435-447. [all data]
Waddington G., 1949
Waddington G.,
Experimental vapor heat capacities and heats of vaporization of 2-methylpentane, 3-methylpentane, and 2,3-dimethylbutane,
J. Am. Chem. Soc., 1949, 71, 3902-3906. [all data]
Waddington G., 1947
Waddington G.,
Experimental vapor heat capacities and heats of vaporization of n-hexane and 2,2-dimethylbutane,
J. Am. Chem. Soc., 1947, 69, 2275-2279. [all data]
Douslin and Huffman, 1946
Douslin, D.R.; Huffman, H.M.,
Low-temperature thermal data on the five isometric hexanes,
J. Am. Chem. Soc., 1946, 68, 1704-1708. [all data]
Kilpatrick and Pitzer, 1946
Kilpatrick, J.E.; Pitzer, K.S.,
The thermodynamics of 2,2-dimethylbutane, including the heat capacity, heats of transitions, fusion and vaporization and the entropy,
J. Am. Chem. Soc., 1946, 68, 1066-1072. [all data]
Stull, 1937
Stull, D.R.,
A semi-micro calorimeter for measuring heat capacities at low temperatures,
J. Am. Chem. Soc., 1937, 59, 2726-2733. [all data]
Ohnishi, Fujihara, et al., 1989
Ohnishi, K.; Fujihara, I.; Murakami, S.,
Thermodynamic properties of decalins mixed with hexane isomers at 298.15K. 1. Excess enthalpies and excess isobaric heat capacities,
Fluid Phase Equilib., 1989, 46, 59-72. [all data]
Costas, Huu, et al., 1988
Costas, M.; Huu, V.T.; Patterson, D.; Caceres-Alonso, M.; Tardajos, G.; Aicart, E.,
Liquid structure and second-order mixing functions for l-chloronaphthalene with linear and branched alkanes, J. Chem. Soc.,
Faraday Trans., 1988, 1 84(5), 1603-1616. [all data]
Perez-Casas, Aicart, et al., 1988
Perez-Casas, S.; Aicart, E.; Trojo, L.M.; Costas, M.,
Excess heat capacity. Chlorobenzene-2,2,4,4,6,8,8-heptamethylnonane, Int. Data Ser.,
Sel. Data Mixtures, 1988, (2)A, 123. [all data]
Benson and D'Arcy, 1986
Benson, G.C.; D'Arcy, P.J.,
Heat capacities of binary mixtures of n-octane with each of the hexane isomers at 298.15 K,
Can. J. Chem., 1986, 64, 2139-2141. [all data]
Aicart, Kumaran, et al., 1983
Aicart, E.; Kumaran, M.K.; Halpin, C.J.; Benson, G.C.,
Ultrasonic speeds and isentropic compressibilities of 2-methylpentan-1-ol with hexane isomers at 298.15 K,
J. Chem. Thermodynam., 1983, 15, 1189-1197. [all data]
Benson, D'Arcy, et al., 1983
Benson, G.C.; D'Arcy, P.J.; Sugamori, M.E.,
Heat capacities of binary mixtures of 1-hexanol with hexane isomers at 298.15 K,
Thermochim. Acta, 1983, 71, 161-166. [all data]
Auerbach, Sage, et al., 1950
Auerbach, C.E.; Sage, B.H.; Lacey, W.N.,
Isobaric heat capacities at bubble point,
Ind. Eng. Chem., 1950, 42, 110-113. [all data]
Daubert, 1996
Daubert, T.E.,
Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes,
J. Chem. Eng. Data, 1996, 41, 365-372. [all data]
Genco, Teja, et al., 1980
Genco, J.M.; Teja, A.S.; Kay, W.B.,
Study of the critical and azeotropic behavior of binary mixtures I critical states of perfluoromethylcyclohexane + isomeric hexane systems,
J. Chem. Eng. Data, 1980, 25, 350. [all data]
Kay and Young, 1975
Kay, W.B.; Young, C.L.,
Gas-liquid critical properties. Tetradecafluoromethylcyclohexane( perfluoromethylcyclohexane)-2,2-dimethylbutane,
Int. DATA Ser., Sel. Data Mixtures, Ser. A, 1975, No. 1, 58. [all data]
Kay, 1946
Kay, W.B.,
The Vapor Pressures and Saturated Liquid and Vapor Densities of the Isomeric Hexanes,
J. Am. Chem. Soc., 1946, 68, 1336. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Osborne and Ginnings, 1947
Osborne, N.S.; Ginnings, D.C.,
Measurements of heat of vaporization and heat capacity of a number of hydrocarbons,
J. Res. NBS, 1947, 39, 453-477. [all data]
Nicolini and Laffitte, 1949
Nicolini, E.; Laffitte, P.,
Compt. Rend., 1949, 229, 757. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Waddington and Douslin, 1947
Waddington, Guy; Douslin, Donald R.,
Experimental Vapor Heat Capacities and Heats of Vaporization of n-Hexane and 2,2-Dimethylbutane 1,
J. Am. Chem. Soc., 1947, 69, 10, 2275-2279, https://doi.org/10.1021/ja01202a011
. [all data]
Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons,
J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009
. [all data]
Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons,
J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K.,
Enthalpies of hydrogenation of the hexenes,
J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]
Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E.,
Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons,
J. Am. Chem. Soc., 1937, 59, 831-841. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Prosen and Rossini, 1941
Prosen, E.J.R.; Rossini, F.D.,
Heats of isomerization of the five hexanes,
J. Res. NBS, 1941, 27, 289-310. [all data]
Kennedy, Shomate, et al., 1938
Kennedy, Wm.D.; Shomate, C.H.; Parks, G.P.,
Thermal data on organic compounds. XVIII. The heat capacity of and entropy of t-butylethylene,
J. Am. Chem. Soc., 1938, 60, 1507-1509. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.