Methylamine
- Formula: CH5N
- Molecular weight: 31.0571
- IUPAC Standard InChIKey: BAVYZALUXZFZLV-UHFFFAOYSA-N
- CAS Registry Number: 74-89-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Methanamine; Aminomethane; Carbinamine; Monomethylamine; CH3NH2; Mercurialin; Methylaminen; Metilamine; Metyloamina; UN 1061; MMA
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -11.3 ± 0.11 | kcal/mol | N/A | Cox and Pilcher, 1970 | Review; Unpublished work J. Jaffe; ALS |
ΔfH°liquid | -11.3 ± 0.11 | kcal/mol | Ccb | Aston, Siller, et al., 1937 | Unpublished work J. Jaffe; ALS |
ΔfH°liquid | -8.7 | kcal/mol | Ccb | Lemoult, 1907 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -253.54 ± 0.09 | kcal/mol | N/A | Cox and Pilcher, 1970 | Review; Unpublished work J. Jaffe; ALS |
ΔcH°liquid | -253.54 ± 0.09 | kcal/mol | Ccb | Aston, Siller, et al., 1937 | Unpublished work J. Jaffe; ALS |
ΔcH°liquid | -261.4 | kcal/mol | Ccb | Muller, 1910 | At 288 K; ALS |
ΔcH°liquid | -256.9 | kcal/mol | Ccb | Lemoult, 1907 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 35.90 | cal/mol*K | N/A | Aston, Siller, et al., 1937, 2 | For superheated liquid, using extrapolated heat capacities.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
24.331 | 259.28 | Aston, Siller, et al., 1937, 2 | T = 14 to 259 K. Value is unsmoothed experimental datum.; DH |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
B - John E. Bartmess
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Li+ + CH5N = (Li+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.1 | kcal/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | N/A | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 33.3 | kcal/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
By formula: C3H9Sn+ + CH5N = (C3H9Sn+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.1 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.7 | cal/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
26.0 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: K+ + CH5N = (K+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.1 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.8 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 12.7 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M |
By formula: Na+ + CH5N = (Na+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.3 ± 0.2 | kcal/mol | HPMS | Hoyau, Norrman, et al., 1999 | RCD |
ΔrH° | 32.1 | kcal/mol | HPMS | Guo and Castleman, 1990 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22600. | cal/mol*K | HPMS | Hoyau, Norrman, et al., 1999 | RCD |
ΔrS° | 30.3 | cal/mol*K | HPMS | Guo and Castleman, 1990 | gas phase; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.5 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: (CH6N+ • 2CH5N) + CH5N = (CH6N+ • 3CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.4 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 17.0 | kcal/mol | HPMS | Holland and Castleman, 1982 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.1 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 41.6 | cal/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; Entropy change is questionable; M |
By formula: (CH6N+ • CH5N) + CH5N = (CH6N+ • 2CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 19.2 | kcal/mol | HPMS | Holland and Castleman, 1982 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.9 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 39.9 | cal/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; Entropy change is questionable; M |
CH4N- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 402.0 ± 2.6 | kcal/mol | D-EA | Radisic, Xu, et al., 2002 | gas phase; B |
ΔrH° | 403.21 ± 0.82 | kcal/mol | G+TS | MacKay, Hemsworth, et al., 1976 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 394.5 ± 2.7 | kcal/mol | H-TS | Radisic, Xu, et al., 2002 | gas phase; B |
ΔrG° | 395.70 ± 0.70 | kcal/mol | IMRE | MacKay, Hemsworth, et al., 1976 | gas phase; B |
By formula: C3H9Si+ + CH5N = (C3H9Si+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.4 | kcal/mol | PHPMS | Li and Stone, 1990 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H5COOC2H5; Wojtyniak and Stone, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 38.1 | cal/mol*K | PHPMS | Li and Stone, 1990 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H5COOC2H5; Wojtyniak and Stone, 1986; M |
By formula: CH6N+ + CH5N = (CH6N+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.4 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 21.7 | kcal/mol | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.3 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 23.6 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
By formula: C6H12NO3+ + CH5N = (C6H12NO3+ • CH5N)
Bond type: Hydrogen bonds with polydentate bonding in positive ions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.6 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.9 | cal/mol*K | PHPMS | Meot-Ner, 1984 | gas phase; M |
By formula: (Pb+ • CH5N) + CH5N = (Pb+ • 2CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.1 ± 0.2 | kcal/mol | HPMS | Guo and Castleman, 1990 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.5 | cal/mol*K | HPMS | Guo and Castleman, 1990 | gas phase; M |
By formula: Pb+ + CH5N = (Pb+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35.4 ± 0.3 | kcal/mol | HPMS | Guo and Castleman, 1990 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.0 | cal/mol*K | HPMS | Guo and Castleman, 1990 | gas phase; M |
By formula: (CH6N+ • 3CH5N) + CH5N = (CH6N+ • 4CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.8 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.5 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: C2H8N+ + CH5N = (C2H8N+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.4 | kcal/mol | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.2 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
C5H11BrMg (solution) + (solution) = CH4BrMgN (solution) + (solution)
By formula: C5H11BrMg (solution) + CH5N (solution) = CH4BrMgN (solution) + C5H12 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -31.19 ± 0.60 | kcal/mol | RSC | Holm, 1983 | solvent: Diethyl ether; MS |
By formula: 2CH5N = C2H7N + H3N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -4.70 | kcal/mol | Eqk | Issoire and Long, 1960 | gas phase; ALS |
By formula: 2C2H7N = CH5N + C3H9N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -3.15 | kcal/mol | Eqk | Issoire and Long, 1960 | gas phase; ALS |
Ion clustering data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: CH6N+ + CH5N = (CH6N+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.4 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 21.7 | kcal/mol | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.3 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 23.6 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
By formula: (CH6N+ • CH5N) + CH5N = (CH6N+ • 2CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 19.2 | kcal/mol | HPMS | Holland and Castleman, 1982 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.9 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 39.9 | cal/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; Entropy change is questionable; M |
By formula: (CH6N+ • 2CH5N) + CH5N = (CH6N+ • 3CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.4 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 17.0 | kcal/mol | HPMS | Holland and Castleman, 1982 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.1 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 41.6 | cal/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; Entropy change is questionable; M |
By formula: (CH6N+ • 3CH5N) + CH5N = (CH6N+ • 4CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.8 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.5 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: C2H8N+ + CH5N = (C2H8N+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.4 | kcal/mol | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.2 | cal/mol*K | PHPMS | Yamdagni and Kebarle, 1973 | gas phase; M |
By formula: C3H9Si+ + CH5N = (C3H9Si+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.4 | kcal/mol | PHPMS | Li and Stone, 1990 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H5COOC2H5; Wojtyniak and Stone, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 38.1 | cal/mol*K | PHPMS | Li and Stone, 1990 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H5COOC2H5; Wojtyniak and Stone, 1986; M |
By formula: C3H9Sn+ + CH5N = (C3H9Sn+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.1 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.7 | cal/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
26.0 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: C6H12NO3+ + CH5N = (C6H12NO3+ • CH5N)
Bond type: Hydrogen bonds with polydentate bonding in positive ions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.6 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.9 | cal/mol*K | PHPMS | Meot-Ner, 1984 | gas phase; M |
By formula: K+ + CH5N = (K+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.1 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.8 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 12.7 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; switching reaction(K+)H2O; Davidson and Kebarle, 1976, 2; M |
By formula: Li+ + CH5N = (Li+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.1 | kcal/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | N/A | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 33.3 | kcal/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M |
By formula: Na+ + CH5N = (Na+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26.3 ± 0.2 | kcal/mol | HPMS | Hoyau, Norrman, et al., 1999 | RCD |
ΔrH° | 32.1 | kcal/mol | HPMS | Guo and Castleman, 1990 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22600. | cal/mol*K | HPMS | Hoyau, Norrman, et al., 1999 | RCD |
ΔrS° | 30.3 | cal/mol*K | HPMS | Guo and Castleman, 1990 | gas phase; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
19.5 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: Pb+ + CH5N = (Pb+ • CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35.4 ± 0.3 | kcal/mol | HPMS | Guo and Castleman, 1990 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.0 | cal/mol*K | HPMS | Guo and Castleman, 1990 | gas phase; M |
By formula: (Pb+ • CH5N) + CH5N = (Pb+ • 2CH5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.1 ± 0.2 | kcal/mol | HPMS | Guo and Castleman, 1990 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.5 | cal/mol*K | HPMS | Guo and Castleman, 1990 | gas phase; M |
Mass spectrum (electron ionization)
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 377 |
NIST MS number | 228024 |
References
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Aston, Siller, et al., 1937
Aston, J.G.; Siller, C.W.; Messerly, G.H.,
Heat capacities and entropies of organic compounds. III. Methylamine from 11.5°K. to the boiling point. Heat of vaporization and vapor pressure. The entropy from molecular data,
J. Am. Chem. Soc., 1937, 59, 1743-17. [all data]
Lemoult, 1907
Lemoult, M.P.,
Recherches theoriques et experimentales sur les chaleurs de combustion et de formation des composes organiques,
Ann. Chim. Phys., 1907, 12, 395-432. [all data]
Muller, 1910
Muller, J.-A.,
Sur les chaleurs de combustion et les poids specifiques des methylamines,
Ann. Chim. Phys., 1910, 20, 116-130. [all data]
Aston, Siller, et al., 1937, 2
Aston, J.G.; Siller, C.W.; Messerly, G.H.,
Heat capacities and entropies of organic compounds. III. Methylamine from 12K to the boiling point. Heat of vaporization and vapor pressure. The entropy from molecular data,
J. Am. Chem. Soc., 1937, 59, 1743-1751. [all data]
Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L.,
Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids,
J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P.,
Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M,
J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011
. [all data]
Davidson and Kebarle, 1976, 2
Davidson, W.R.; Kebarle, P.,
Ionic Solvation by Aprotic Solvents. Gas Phase Solvation of the Alkali Ions by Acetonitrile,
J. Am. Chem. Soc., 1976, 98, 20, 6125, https://doi.org/10.1021/ja00436a010
. [all data]
Hoyau, Norrman, et al., 1999
Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G.,
A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase,
J. Am. Chem. Soc., 1999, 121, 38, 8864, https://doi.org/10.1021/ja9841198
. [all data]
Guo and Castleman, 1990
Guo, B.C.; Castleman, A.W.,
The Association Reactions of Pb+ Ion with CH3OH and CH3NH2 in the Gas Phase,
Int. J. Mass Spectrom. Ion Proc., 1990, 100, 665, https://doi.org/10.1016/0168-1176(90)85101-7
. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M.,
Intermolecular Forces in Organic Clusters,
J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024
. [all data]
Holland and Castleman, 1982
Holland, P.M.; Castleman, A.W.,
The Thermochemical Properties of Gas - Phase Transition Metal Ion Complexes,
J. Chem. Phys., 1982, 76, 8, 4195, https://doi.org/10.1063/1.443497
. [all data]
Radisic, Xu, et al., 2002
Radisic, D.; Xu, S.J.; Bowen, K.H.,
Photoelectron spectroscopy of the anions, CH3NH- and (CH3)(2)N- and the anion complexes, H-(CH3NH2) and (CH3)(2)N-[(CH3)(2)NH),
Chem. Phys. Lett., 2002, 354, 1-2, 9-13, https://doi.org/10.1016/S0009-2614(01)01470-1
. [all data]
MacKay, Hemsworth, et al., 1976
MacKay, G.J.; Hemsworth, R.S.; Bohme, D.K.,
Absolute gas-phase acidities of CH3NH2, C2H5NH2, (CH3)2NH, and (CH3)3N,
Can. J. Chem., 1976, 54, 1624. [all data]
Li and Stone, 1990
Li, X.; Stone, A.J.,
Gas-Phase (CH3)3Si+ Affinities of Alkylamines and Proton Affinities of Trimethylsilyl Alkylamines,
Int. J. Mass Spectrom. Ion Proc., 1990, 101, 2-3, 149, https://doi.org/10.1016/0168-1176(90)87008-5
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Yamdagni and Kebarle, 1973
Yamdagni, R.; Kebarle, P.,
Gas - Phase Basicites of Amines. Hydrogen Bonding in Proton - Bound Amine Dimers and Proton - Induced Cyclization of alpha, omega - Diamines,
J. Am. Chem. Soc., 1973, 95, 11, 3504, https://doi.org/10.1021/ja00792a010
. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner),
The Ionic Hydrogen Bond. 4. Intramolecular and Multiple Bonds. Proton Affinities, Hydration and Complexes of Amides and Amino Acid Derivatives,
J. Am. Chem. Soc., 1984, 106, 2, 278, https://doi.org/10.1021/ja00314a003
. [all data]
Holm, 1983
Holm, T.,
Acta Chem. Scand. B, 1983, 37, 797. [all data]
Issoire and Long, 1960
Issoire, J.; Long, C.,
Etude de la thermodynamique chimique de la reaction de formation des methylamines,
Bull. Soc. Chim. France, 1960, 2004-2012. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions T Temperature ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.