Methane, iodo-
- Formula: CH3I
- Molecular weight: 141.9390
- IUPAC Standard InChIKey: INQOMBQAUSQDDS-UHFFFAOYSA-N
- CAS Registry Number: 74-88-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Iodomethane; Methyl iodide; CH3I; Halon 10001; Iodometano; Iodure de methyle; Jod-methan; Joodmethaan; Methyljodid; Methyljodide; Metylu jodek; Monoioduro di metile; Rcra waste number U138; UN 2644; Methyl iodine; Monoiodomethane; NSC 9366
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 14.3 ± 1.4 | kJ/mol | Eqk | Golden, Walsh, et al., 1965 | Reanalyzed by Cox and Pilcher, 1970, Original value = 13.7 ± 0.67 kJ/mol |
ΔfH°gas | 14.6 ± 1.0 | kJ/mol | Eqk | Goy and Pritchard, 1965 | Reanalyzed by Cox and Pilcher, 1970, Original value = 14.2 ± 1.0 kJ/mol |
ΔfH°gas | 16. ± 1. | kJ/mol | Chyd | Carson, Carter, et al., 1961 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 315.7 ± 0.2 | K | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 206.7 | K | N/A | Timmermans, 1952 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 208.1 | K | N/A | Timmermans, 1911 | Uncertainty assigned by TRC = 0.4 K; TRC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
30.4 | 243. | A | Stephenson and Malanowski, 1987 | Based on data from 228. to 337. K.; AC |
26.5 | 330. | A | Stephenson and Malanowski, 1987 | Based on data from 315. to 502. K.; AC |
31.1 | 217. | N/A | Wren and Vikis, 1982 | Based on data from 208. to 227. K.; AC |
29.2 | 274. | EB | Boublík and Aim, 1972 | Based on data from 259. to 314. K. See also Kudchadker, Kudchadker, et al., 1979.; AC |
30.4 | 233. | N/A | Stull, 1947 | Based on data from 218. to 315. K.; AC |
28.2 | 288. | N/A | Ewert, 1936 | Based on data from 273. to 307. K.; AC |
28.41 | 315.8 | V | Thompson and Linnett, 1936 | ALS |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
218. to 315.6 | 4.1554 | 1177.78 | -32.058 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
315.6 to 521. | 4.14897 | 1223.831 | -20.179 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
273.3 to 307.6 | 5.14281 | 1755.986 | 26.111 | Thompson and Linnett, 1936 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
40.2 ± 0.4 | 191. | VG | Wren and Vikis, 1982 | Based on data from 176. to 227. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.12 | 206.8 | Wren and Vikis, 1982 | AC |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: I- + CH3I = (I- • CH3I)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35.7 ± 0.84 | kJ/mol | N/A | Van Duzor, Wei, et al., 2010 | gas phase; B |
ΔrH° | 32.6 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujita, et al., 1905 | gas phase; B |
ΔrH° | 35.1 ± 2.1 | kJ/mol | N/A | Arnold, Neumark, et al., 1995 | gas phase; ZEKE data, shift relative to bare I-; B |
ΔrH° | 34.7 ± 2.1 | kJ/mol | PDis | Cyr, Bishea, et al., 1992 | gas phase; B |
ΔrH° | 38. ± 8.4 | kJ/mol | TDAs | Dougherty and Roberts, 1974 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 68.6 | J/mol*K | HPMS | Dougherty and Roberts, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 11.4 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujita, et al., 1905 | gas phase; B |
ΔrG° | 17.2 ± 1.3 | kJ/mol | TDAs | Dougherty and Roberts, 1974 | gas phase; B |
By formula: C6H7N+ + CH3I = (C6H7N+ • CH3I)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. | kJ/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 75. | J/mol*K | N/A | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
18. | 299. | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; Entropy change calculated or estimated; M |
By formula: Cl- + CH3I = (Cl- • CH3I)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.0 ± 0.84 | kJ/mol | TDAs | Dougherty and Roberts, 1974 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31. | J/mol*K | HPMS | Dougherty and Roberts, 1974 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 29. ± 5.4 | kJ/mol | TDAs | Dougherty and Roberts, 1974 | gas phase; B |
By formula: HI + CH3I = CH4 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -52.55 ± 0.54 | kJ/mol | Eqk | Golden, Walsh, et al., 1965 | gas phase; ALS |
ΔrH° | -53.0 ± 0.2 | kJ/mol | Eqk | Goy and Pritchard, 1965 | gas phase; ALS |
ΔrH° | -46.2 ± 5.6 | kJ/mol | Cm | Nichol and Ubbelohde, 1952 | gas phase; ALS |
C12H16Nb (cr) + 2 (cr) = C10H10I2Nb (cr) + 2 (l)
By formula: C12H16Nb (cr) + 2I2 (cr) = C10H10I2Nb (cr) + 2CH3I (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -242.3 ± 2.4 | kJ/mol | RSC | Diogo, Simoni, et al., 1993 | The difference between the enthalpies of formation of Nb(Cp)2(I)2 and Nb(Cp)2(Me)2 is calculated as -215.1 ± 2.6 kJ/mol; MS |
C14H22CoN5O4 (solution) + (solution) = C13H19CoIN5O4 (solution) + (solution)
By formula: C14H22CoN5O4 (solution) + I2 (solution) = C13H19CoIN5O4 (solution) + CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -92.9 ± 2.5 | kJ/mol | RSC | Toscano, Seligson, et al., 1989 | solvent: Bromoform; The enthalpy of solution of Co(py)(dmg)2(Me)(cr) was measured as 10.9 kJ/mol Toscano, Seligson, et al., 1989; MS |
By formula: CH3I2- + 2CH3I = C2H6I3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.3 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujita, et al., 1905 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 4.35 ± 0.84 | kJ/mol | TDAs | Hiraoka, Fujita, et al., 1905 | gas phase; B |
(cr) + (solution) = CH3IMg (solution)
By formula: Mg (cr) + CH3I (solution) = CH3IMg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -273.6 ± 0.8 | kJ/mol | RSC | Carson and Skinner, 1950 | solvent: Diethyl ether; It was assumed that MeI(l) has a negligible solution enthalpy in ether; MS |
CH2I- + =
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1616. ± 21. | kJ/mol | G+TS | Ingemann and Nibbering, 1985 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1587. ± 20. | kJ/mol | IMRB | Ingemann and Nibbering, 1985 | gas phase; B |
By formula: C2H6Hg (l) + 2I2 (cr) = 2CH3I (l) + HgI2 (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -184.5 ± 0.8 | kJ/mol | RSC | Hartley, Pritchard, et al., 1950 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
(l) + 3 (cr) = GaI3 (cr) + 3 (l)
By formula: C3H9Ga (l) + 3I2 (cr) = GaI3 (cr) + 3CH3I (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -200.0 ± 8.4 | kJ/mol | RSC | Fowell and Mortimer, 1958 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
(l) + 2 (cr) = CH3GaI2 (cr) + 2 (l)
By formula: C3H9Ga (l) + 2I2 (cr) = CH3GaI2 (cr) + 2CH3I (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -158.6 ± 4.2 | kJ/mol | RSC | Fowell and Mortimer, 1958 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
C16H34P2Ru (solution) + (solution) = C16H33IP2Ru (solution) + (solution)
By formula: C16H34P2Ru (solution) + CH3I (solution) = C16H33IP2Ru (solution) + CH4 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -188.3 ± 2.9 | kJ/mol | RSC | Luo, Li, et al., 1995 | solvent: Tetrahydrofuran; MS |
C22H36Zr (solution) + 2 (solution) = C20H30I2Zr (solution) + 2 (solution)
By formula: C22H36Zr (solution) + 2I2 (solution) = C20H30I2Zr (solution) + 2CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -292.9 ± 2.5 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C8H5MoNaO3 (solution) + (l) = C9H8MoO3 (solution) + (cr)
By formula: C8H5MoNaO3 (solution) + CH3I (l) = C9H8MoO3 (solution) + INa (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -32.2 ± 1.3 | kJ/mol | RSC | Nolan, López de la Vega, et al., 1986 | solvent: Tetrahydrofuran; MS |
C12H16Zr (solution) + 2 (solution) = C10H10I2Zr (solution) + 2 (solution)
By formula: C12H16Zr (solution) + 2I2 (solution) = C10H10I2Zr (solution) + 2CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -291.2 ± 2.5 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C22H36Hf (solution) + 2 (solution) = C20H30HfI2 (solution) + 2 (solution)
By formula: C22H36Hf (solution) + 2I2 (solution) = C20H30HfI2 (solution) + 2CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -265.3 ± 3.3 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
By formula: H2 + 2CH3I = 2CH4 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -126. ± 3. | kJ/mol | Chyd | Carson, Carter, et al., 1961 | liquid phase; solvent: Ether; ALS |
By formula: CH4 + CH2I2 = 2CH3I
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -20. ± 4.2 | kJ/mol | Eqk | Furuyama, Golden, et al., 1968 | gas phase; ALS |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1990. |
NIST MS number | 118703 |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W.,
The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical,
J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O.,
Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide,
J. Phys. Chem., 1965, 69, 3040-3041. [all data]
Carson, Carter, et al., 1961
Carson, A.S.; Carter, W.; Pedley, J.B.,
The thermochemistry of reductions caused by lithium aluminium hydride I. The C-I bond dissociation energy in CH3I,
Proc. Roy. Soc. London A, 1961, 260, 550-557. [all data]
Timmermans, 1952
Timmermans, J.,
Freezing points of organic compounds. VVI New determinations.,
Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]
Timmermans, 1911
Timmermans, J.,
Researches on the freezing point of organic liquid compounds,
Bull. Soc. Chim. Belg., 1911, 25, 300. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Wren and Vikis, 1982
Wren, D.J.; Vikis, A.C.,
Vapour pressure of CH3I in the temperature range 176 to 227 K,
The Journal of Chemical Thermodynamics, 1982, 14, 5, 435-437, https://doi.org/10.1016/0021-9614(82)90135-5
. [all data]
Boublík and Aim, 1972
Boublík, T.; Aim, K.,
Heats of vaporization of simple non-spherical molecule compounds,
Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513
. [all data]
Kudchadker, Kudchadker, et al., 1979
Kudchadker, A.P.; Kudchadker, S.A.; Shukla, R.P.; Patnaik, P.R.,
Vapor pressures and boiling points of selected halomethanes,
J. Phys. Chem. Ref. Data, 1979, 8, 2, 499, https://doi.org/10.1063/1.555600
. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Ewert, 1936
Ewert, M.,
Bull. Soc. Chim. Belg., 1936, 45, 493. [all data]
Thompson and Linnett, 1936
Thompson, H.W.; Linnett, J.W.,
The vapour pressures and association of some metallic and non-metallic alkyls,
Trans. Faraday Soc., 1936, 32, 681-685. [all data]
Van Duzor, Wei, et al., 2010
Van Duzor, M.; Wei, J.; Mbaiwa, F.; Mabbs, R.,
I-center dot CH3X (X=Cl, Br, I) photodetachment: The effect of electron-molecule interactions in cluster anion photodetachment spectra and angular distributions,
J. Chem. Phys., 2010, 133, 14, 144303, https://doi.org/10.1063/1.3487739
. [all data]
Hiraoka, Fujita, et al., 1905
Hiraoka, K.; Fujita, K.; Ishida, M.; Ichikawa, T.; Okada, H.; Hiizumi, K.; Wada, A.; Takao, K.; Yamabe, S.; Tsuchida, N.,
Gas-phase Ion/Molecule Reactions in C5F8,
J. Phys. Chem. A (2005), 1905, 109, 6, 1049-1056., https://doi.org/10.1021/jp040251k
. [all data]
Arnold, Neumark, et al., 1995
Arnold, C.C.; Neumark, D.M.; Cyr, D.M.; Johnson, M.A.,
Negative ion zero electron kinetic energy spectroscopy of I-center dot CH3I,
J. Phys. Chem., 1995, 99, 6, 1633, https://doi.org/10.1021/j100006a002
. [all data]
Cyr, Bishea, et al., 1992
Cyr, D.M.; Bishea, G.A.; Scarton, M.G.; Johnson, M.A.,
Observation of Charge-Transfer Excited States in the I-.CH3I, I-.CH3Br, and I-.CH2Br2 S(N)2 Reaction Intermediates Using Photofragmentation,
J. Chem. Phys., 1992, 97, 8, 5911, https://doi.org/10.1063/1.463752
. [all data]
Dougherty and Roberts, 1974
Dougherty, R.C.; Roberts, J.D.,
SN2 reactions in the gas phase. Nucleophilicity effects,
Org. Mass Spectrom., 1974, 8, 81. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Nichol and Ubbelohde, 1952
Nichol, R.J.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. part II. Bond strengths based on the reaction CH3I + HI = CH4 + I2,
J. Am. Chem. Soc., 1952, 415-421. [all data]
Diogo, Simoni, et al., 1993
Diogo, H.P.; Simoni, J.A.; Minas da Piedade, M.E.; Dias, A.R.; Martinho Simões, J.A.,
J. Am. Chem. Soc., 1993, 115, 2764. [all data]
Toscano, Seligson, et al., 1989
Toscano, P.J.; Seligson, A.L.; Curran, M.T.; Skrobutt, A.T.; Sonnenberger, D.C.,
Inorg. Chem., 1989, 28, 166; ibid. 1989. [all data]
Carson and Skinner, 1950
Carson, A.S.; Skinner, H.A.,
Nature, 1950, 165, 484. [all data]
Ingemann and Nibbering, 1985
Ingemann, S.; Nibbering, N.M.M.,
Gas-phase acidity of CH3X [X = P(CH3)2, SCH3, F, Cl, Br, I] compounds,
J. Chem. Soc. Perkin Trans. 2, 1985, 837. [all data]
Hartley, Pritchard, et al., 1950
Hartley, K.; Pritchard, H.O.; Skinner, H.A.,
Thermochemistry of metallic alkyls. III.?mercury dimethyl and mercury methyl halides,
Trans. Faraday Soc., 1950, 46, 1019, https://doi.org/10.1039/tf9504601019
. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds
in Academic Press, New York, 1970. [all data]
Fowell and Mortimer, 1958
Fowell, P.A.; Mortimer, C.T.,
J. Chem. Soc., 1958, 3734.. [all data]
Luo, Li, et al., 1995
Luo, L.; Li, C.; Cucullu, M.E.; Nolan, S.P.,
Organometallics, 1995, 14, 1333. [all data]
Schock and Marks, 1988
Schock, L.E.; Marks, T.J.,
J. Am. Chem. Soc., 1988, 110, 7701. [all data]
Nolan, López de la Vega, et al., 1986
Nolan, S.P.; López de la Vega, R.; Hoff, C.D.,
J. Organometal. Chem., 1986, 315, 187. [all data]
Furuyama, Golden, et al., 1968
Furuyama, S.; Golden, D.M.; Benson, S.W.,
The thermochemistry of the gas-phase equilibrium 2CH3I = CH4 + CH2i2. The heat of formation of CH2I2,
J. Phys. Chem., 1968, 72, 4713-4715. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References
- Symbols used in this document:
T Temperature Tboil Boiling point Tfus Fusion (melting) point ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.