Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Ethane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Deltafgas-20. ± 0.1kcal/molReviewManion, 2002adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Deltafgas-20.04 ± 0.07kcal/molCcbPittam and Pilcher, 1972ALS
Deltafgas-20.24 ± 0.12kcal/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; ALS
Quantity Value Units Method Reference Comment
Deltacgas-373.01 ± 0.06kcal/molCcbPittam and Pilcher, 1972Corresponding «DELTA»fgas = -20.04 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacgas-372.82 ± 0.11kcal/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; Corresponding «DELTA»fgas = -20.23 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacgas-372.81 ± 0.11kcal/molCcbRossini, 1934Corresponding «DELTA»fgas = -20.24 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.533100.Gurvich, Veyts, et al., 1989p=1 bar. Recommended entropies and heat capacities are in good agreement with those obtained from other statistical thermodynamic calculations [ Pitzer K.S., 1944, Chao J., 1973, Pamidimukkala K.M., 1982].; GT
10.11200.
12.55298.15
12.60300.
15.65400.
18.63500.
21.32600.
23.70700.
25.798800.
27.655900.
29.2901000.
30.7241100.
31.9791200.
33.0761300.
34.0341400.
34.8711500.
35.6071600.
36.2501700.
36.8161800.
37.3181900.
37.7632000.
38.1572100.
38.5092200.
38.8222300.
39.1042400.
39.3572500.
39.5872600.
39.7922700.
39.9812800.
40.1532900.
40.3083000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
9.957 ± 0.074189.20Halford J.O., 1957Please also see Eucken A., 1933, Kistiakowsky G.B., 1939, Dailey B.P., 1943.; GT
10.34 ± 0.076209.30
10.77 ± 0.081229.65
11.30 ± 0.084249.90
11.27 ± 0.084250.15
11.87 ± 0.088272.00
11.83 ± 0.01272.07
12.11 ± 0.10279.00
12.46 ± 0.093292.00
12.73 ± 0.02302.70
13.72 ± 0.01335.82
14.08347.65
14.43359.75
14.59 ± 0.024364.78
14.84 ± 0.11373.60
15.27387.55
17.31451.95
19.14520.55
20.62561.65
21.62603.25

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid30.28cal/mol*KN/AWitt and Kemp, 1937Entropy from 0 to 15 K calculated using a Debye function.

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
16.41100.Atake and Chihara, 1976T = 50 to 100 K. Data given graphically. Cp = 0.69933 (T/K) - 2.385 J/mol*K (50 to 70 K, for solid).
16.494.Roder, 1976From data 90.3 to 94 K. Average value over range.
16.36100.32Roder, 1976, 2T = 93 to 301 K (saturation line), 91 to 330 K, pressures from 0 to 33 MPa.
17.26180.Witt and Kemp, 1937T = 15 to 185 K.
17.80200.Wiebe, Hubbard, et al., 1930T = 67 to 305.2 K. Heat capacity of saturated liquid given to 295 K is 136.1 J/mol*K.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]

Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Rossini, 1934
Rossini, F.D., Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane, J. Res. NBS, 1934, 12, 735-750. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Pitzer K.S., 1944
Pitzer K.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Chao J., 1973
Chao J., Ideal gas thermodynamic properties of ethane and propane, J. Phys. Chem. Ref. Data, 1973, 2, 427-438. [all data]

Pamidimukkala K.M., 1982
Pamidimukkala K.M., Ideal gas thermodynamic properties of CH3, CD3, CD4, C2D2, C2D4, C2D6, C2H6, CH3N2CH3, and CD3N2CD3, J. Phys. Chem. Ref. Data, 1982, 11, 83-99. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

Eucken A., 1933
Eucken A., Molar heats and normal frequencies of ethane and ethylene, Z. Phys. Chem., 1933, B20, 184-194. [all data]

Kistiakowsky G.B., 1939
Kistiakowsky G.B., Gaseous heat capacities. I. The method and the heat capacities of C2H6 and C2D6, J. Chem. Phys., 1939, 7, 281-288. [all data]

Dailey B.P., 1943
Dailey B.P., The heat capacities at higher temperatures of ethane and propane, J. Am. Chem. Soc., 1943, 65, 42-44. [all data]

Witt and Kemp, 1937
Witt, R.K.; Kemp, J.D., The heat capacity of ethane from 15°K to the boiling point. The heat of fusion and the heat of vaporization, J. Am. Chem. Soc., 1937, 59, 273-276. [all data]

Atake and Chihara, 1976
Atake, T.; Chihara, H., Calorimetric study of the phase changes in solid ethane, Chem. Lett., 1976, (7), 683-688. [all data]

Roder, 1976
Roder, H.M., The heats of transition of solid ethane, J. Chem. Phys., 1976, 65, 1371-1373. [all data]

Roder, 1976, 2
Roder, H.M., Measurements of the specific heats, Ca, and Cv, of dense gaseous and liquid ethane, J. Res., 1976, NBS 80A, 739-759. [all data]

Wiebe, Hubbard, et al., 1930
Wiebe, R.; Hubbard, K.H.; Brevoort, M.J., The heat capacity of saturated liquid ethane from the boiling point to the critical temperature and heat fusion of the solid, J. Am. Chem. Soc., 1930, 52, 611-622. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References