Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Krypton

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Cesium ion (1+) + Krypton = (Cesium ion (1+) bullet Krypton)

By formula: Cs+ + Kr = (Cs+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar11.7kJ/molIMobGatland, 1984gas phase; M
Deltar9.75kJ/molSCATTERINGGislason, 1984gas phase; M
Deltar11.4kJ/molIMobViehland, 1984gas phase; M
Deltar13.kJ/molIMobTakebe, 1983gas phase; M
Deltar12.8kJ/molIMobTakebe, 1983gas phase; values form this reference are too high; M

Methyl cation + Krypton = (Methyl cation bullet Krypton)

By formula: CH3+ + Kr = (CH3+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar184.kJ/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M
Deltar200. ± 10.kJ/molICRHovey and McMahon, 1987gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated; M

Sodium ion (1+) + Krypton = (Sodium ion (1+) bullet Krypton)

By formula: Na+ + Kr = (Na+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar20.3kJ/molSCATTERINGGislason, 1984gas phase; M
Deltar21.3kJ/molIMobViehland, 1984gas phase; M
Deltar24.kJ/molDTMcKnight and Sawina, 1973gas phase; M
Deltar27.5kJ/molIMobTakebe, 1983gas phase; M
Quantity Value Units Method Reference Comment
Deltar77.4J/mol*KDTMcKnight and Sawina, 1973gas phase; M

Chlorine anion + Krypton = (Chlorine anion bullet Krypton)

By formula: Cl- + Kr = (Cl- bullet Kr)

Quantity Value Units Method Reference Comment
Deltar9.20 ± 0.42kJ/molLPESYourshaw, Lenzer, et al., 1998gas phase; Given: 0.0957(0.001) eV; B
Deltar11.7 ± 1.7kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Quantity Value Units Method Reference Comment
Deltar-12.0 ± 1.7kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B

Bromine anion + Krypton = (Bromine anion bullet Krypton)

By formula: Br- + Kr = (Br- bullet Kr)

Quantity Value Units Method Reference Comment
Deltar4.60 ± 0.42kJ/molLPESYourshaw, Lenzer, et al., 1998gas phase; given: 0.0795(.001) eV; B
Deltar<11.3kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Deltar8.37kJ/molMoblGatland, 1984, 2gas phase; B,M

Kr+ + Krypton = (Kr+ bullet Krypton)

By formula: Kr+ + Kr = (Kr+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar111.kJ/molPIDehmer and Pratt, 1982gas phase; M
Deltar110.kJ/molPDissAbouaf, Huber, et al., 1978gas phase; M
Deltar111.kJ/molPINg, Trevor, et al., 1977gas phase; M
Deltar117.kJ/molSCATTERINGMittman and Weise, 1974gas phase; M

Potassium ion (1+) + Krypton = (Potassium ion (1+) bullet Krypton)

By formula: K+ + Kr = (K+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar13.4kJ/molIMobGatland, 1984gas phase; M
Deltar12.1kJ/molSCATTERINGGislason, 1984gas phase; M
Deltar12.3kJ/molIMobViehland, 1984gas phase; M
Deltar15.5kJ/molIMobTakebe, 1983gas phase; M

Copper ion (1+) + Krypton = (Copper ion (1+) bullet Krypton)

By formula: Cu+ + Kr = (Cu+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar24.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M
Quantity Value Units Method Reference Comment
Deltar78.7J/mol*KHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M

Lithium ion (1+) + Krypton = (Lithium ion (1+) bullet Krypton)

By formula: Li+ + Kr = (Li+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar44.4kJ/molSCATTERINGGislason, 1984gas phase; M
Deltar38.kJ/molIMobViehland, 1984gas phase; M
Deltar68.6kJ/molIMobTakebe, 1983gas phase; M

Rubidium ion (1+) + Krypton = (Rubidium ion (1+) bullet Krypton)

By formula: Rb+ + Kr = (Rb+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar11.0kJ/molIMobGatland, 1984gas phase; M
Deltar11.2kJ/molIMobViehland, 1984gas phase; M
Deltar14.0kJ/molIMobTakebe, 1983gas phase; M

(Kr+ bullet 2Krypton) + Krypton = (Kr+ bullet 3Krypton)

By formula: (Kr+ bullet 2Kr) + Kr = (Kr+ bullet 3Kr)

Quantity Value Units Method Reference Comment
Deltar23.3 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Deltar74.5J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ bullet 3Krypton) + Krypton = (Kr+ bullet 4Krypton)

By formula: (Kr+ bullet 3Kr) + Kr = (Kr+ bullet 4Kr)

Quantity Value Units Method Reference Comment
Deltar9.04 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Deltar62.3J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ bullet 4Krypton) + Krypton = (Kr+ bullet 5Krypton)

By formula: (Kr+ bullet 4Kr) + Kr = (Kr+ bullet 5Kr)

Quantity Value Units Method Reference Comment
Deltar8.58 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Deltar65.7J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ bullet 5Krypton) + Krypton = (Kr+ bullet 6Krypton)

By formula: (Kr+ bullet 5Kr) + Kr = (Kr+ bullet 6Kr)

Quantity Value Units Method Reference Comment
Deltar8.54 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Deltar65.7J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

Nitric oxide anion + Krypton = (Nitric oxide anion bullet Krypton)

By formula: NO- + Kr = (NO- bullet Kr)

Quantity Value Units Method Reference Comment
Deltar9.6 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Deltar10.5 ± 1.7kJ/molN/ABowen and Eaton, 1988gas phase; B

Xe+ + Krypton = (Xe+ bullet Krypton)

By formula: Xe+ + Kr = (Xe+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar37.kJ/molPIDehmer and Pratt, 1982gas phase; M
Deltar36.kJ/molPINg, Tiedemann, et al., 1977gas phase; M

H2O+ + Krypton = (H2O+ bullet Krypton)

By formula: H2O+ + Kr = (H2O+ bullet Kr)

Enthalpy of reaction

DeltarH° (kJ/mol) T (K) Method Reference Comment
32. (+9.6,-0.) PD/KERDKim, Kuo, et al., 1990gas phase; M

O2S+ + Krypton = (O2S+ bullet Krypton)

By formula: O2S+ + Kr = (O2S+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar30.kJ/molPDissKim, Jarrold, et al., 1986gas phase; «DELTA»rH<; M

Iodide + Krypton = (Iodide bullet Krypton)

By formula: I- + Kr = (I- bullet Kr)

Quantity Value Units Method Reference Comment
Deltar4.18kJ/molTherZhao, Yourshaw, et al., 1994gas phase; B

Oxygen cation + Krypton = (Oxygen cation bullet Krypton)

By formula: O2+ + Kr = (O2+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar32.kJ/molPDissJarrold, Misev, et al., 1984gas phase; M

CO2+ + Krypton = (CO2+ bullet Krypton)

By formula: CO2+ + Kr = (CO2+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar71.5kJ/molPIJarrold, Illies, et al., 1985gas phase; M

Iron ion (1+) + Krypton = (Iron ion (1+) bullet Krypton)

By formula: Fe+ + Kr = (Fe+ bullet Kr)

Quantity Value Units Method Reference Comment
Deltar30. ± 7.1kJ/molCIDTRodgers and Armentrout, 2000RCD

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Gatland, 1984
Gatland, I.R., Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Gislason, 1984
Gislason, E.A., Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Viehland, 1984
Viehland, L.A., Interaction Potentials for Li+ - Rare - Gas Systems, Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3 . [all data]

Takebe, 1983
Takebe, M., The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves, J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763 . [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Hovey and McMahon, 1987
Hovey, J.K.; McMahon, T.B., Bond Strength in the Methylkryptonium Ion Determined from Ion Cyclotron Resonance Methyl Cation Exchange Equilibria, J. Phys. Chem., 1987, 91, 17, 4560, https://doi.org/10.1021/j100301a028 . [all data]

McKnight and Sawina, 1973
McKnight, L.G.; Sawina, J.M., Equilibrium Constants and Binding Energies of Alkali Metal Ions with Inert Gases, Bull. Am. Phys. Soc., 1973, 18, 804. [all data]

Yourshaw, Lenzer, et al., 1998
Yourshaw, I.; Lenzer, T.; Reiser, G.; Neumark, D.M., Zero electron kinetic energy spectroscopy of the KrBr-, XeBr-, and KrCl- anions, J. Chem. Phys., 1998, 109, 13, 5247-5256, https://doi.org/10.1063/1.477141 . [all data]

Wada, Kikkawa, et al., 2007
Wada, A.; Kikkawa, A.; Sugiyama, T.; Hiraoka, K., Thermochemical Stabilities of the Gas-phase Cluster Ions of Halide Ions with Rare Gas Atoms, Int. J. Mass Spectrom.., 2007, 267, 1-3, 284-287, https://doi.org/10.1016/j.ijms.2007.02.053 . [all data]

Gatland, 1984, 2
Gatland, I.R., Determination of Ion-Atom Potentials from Mobility Experiments. in Swarms of Ions and Electrons In Gases, W. Lindinger, Ed., Springer-Verlag, NY,, 1984, 44. [all data]

Dehmer and Pratt, 1982
Dehmer, P.M.; Pratt, S.T., Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions, J. Chem. Phys., 1982, 77, 4804. [all data]

Abouaf, Huber, et al., 1978
Abouaf, R.; Huber, B.A.; Cosby, P.C.; Saxon, R.P.; Moseley, J.T., Photofragment Spectroscopy and Potential Curves of Kr2+, J. Chem. Phys., 1978, 68, 5, 2406, https://doi.org/10.1063/1.436011 . [all data]

Ng, Trevor, et al., 1977
Ng, C.Y.; Trevor, D.J.; Mahan, B.H.; Lee, Y.T., Photoionization Studies of the Kr2 and Ar2 van der Vaals Molecules, J. Chem. Phys., 1977, 66, 2, 446, https://doi.org/10.1063/1.433989 . [all data]

Mittman and Weise, 1974
Mittman, H.U.; Weise, H.P., Scattering of Ions V. Elastic Scattering of the Symmetric Rare Gas Ion - Rare Gas Atom Systems, Z. Naturforsch., 1974, A29, 400. [all data]

El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M., Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry, J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002 . [all data]

Hiraoka and Mori, 1990
Hiraoka, K.; Mori, T., Stability of Rare - Gas Cluster Ions, J. Chem. Phys., 1990, 92, 7, 4408, https://doi.org/10.1063/1.457751 . [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G., Photodetachment Spectroscopy of Negative Cluster Ions, in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]

Ng, Tiedemann, et al., 1977
Ng, C.Y.; Tiedemann, P.W.; Mahan, B.H.; Lee, Y.T., Photoionization Studies of the Diatomic Internuclear Rare Gas Molecules XeKr, XeAr, and KrAr, J. Chem. Phys., 1977, 66, 12, 5737, https://doi.org/10.1063/1.433848 . [all data]

Kim, Kuo, et al., 1990
Kim, H.S.; Kuo, C.H.; Bowers, M.T., Photodissociation Dynamics of Water Containing Clusters. I. Kr.H2O+, J. Chem. Phys., 1990, 93, 8, 5594, https://doi.org/10.1063/1.459630 . [all data]

Kim, Jarrold, et al., 1986
Kim, H.S.; Jarrold, M.F.; Bowers, M.T., Photodissociation of Weakly Bound Ion-Molecule Clusters: Kr.SO2+, J. Chem. Phys., 1986, 90, 16, 3584, https://doi.org/10.1021/j100407a024 . [all data]

Zhao, Yourshaw, et al., 1994
Zhao, Y.X.; Yourshaw, I.; Reiser, G.; Arnold, C.C.; Neumark, D.M., Study of the ArBr(-), ArI(-), and KrI(-) anions and the corresponding neutral van der Waals complexes by anion zero electron kinetic energy, J. Chem. Phys., 1994, 101, 8, 6538, https://doi.org/10.1063/1.468500 . [all data]

Jarrold, Misev, et al., 1984
Jarrold, M.F.; Misev, L.; Bowers, M.T., Charge Transfer Half - Collisions: Photodissociation of the Kr.O2+ cluster Ion with Resolution of the Product Vibrational States, J. Chem. Phys., 1984, 81, 10, 4369, https://doi.org/10.1063/1.447448 . [all data]

Jarrold, Illies, et al., 1985
Jarrold, M.F.; Illies, A.J.; Wagner-Redeker, W.; Bowers, M.T., Photodissociation of Weakly Bound Ion - Molecule Clusters: The Kr.CO2+ Cluster, J. Phys. Chem., 1985, 89, 15, 3269, https://doi.org/10.1021/j100261a020 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]


Notes

Go To: Top, Reaction thermochemistry data, References