Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

NOTICE: Due to scheduled maintenance at our Gaithersburg campus, this site will not be available from 5:00 pm EDT (21:00 UTC) on Friday October 25 until 5:00 pm (21:00 UTC) on Sunday October 27. We apologize for any inconvenience this outage may cause.

1-Butanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Deltafgas-66. ± 1.kcal/molAVGN/AAverage of 13 values; Individual data points
Quantity Value Units Method Reference Comment
gas86.515cal/mol*KN/AChao J., 1986Other values of S(298.15 K) based on low-temperature thermal measurements are (in J/mol*K): 363.17 [65COU/HAL], 362.33 [ Chermin H.A.G., 1961], and 361.9 [ Buckley E., 1967].; GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
10.1750.Thermodynamics Research Center, 1997p=1 bar. Recommended S(T) and Cp(T) values agree with those calculated by [ Chermin H.A.G., 1961] within 1.5 J/mol*K. S(T) values calculated by [ Dyatkina M.E., 1954] are different from values given here by 12-30 J/mol*K. Please also see Chao J., 1986.; GT
13.94100.
16.75150.
19.43200.
24.063273.15
25.820 ± 0.060298.15
25.951300.
33.021400.
39.297500.
44.546600.
48.956700.
52.715800.
55.963900.
58.7791000.
61.2281100.
63.3601200.
65.2151300.
66.8331400.
68.2461500.
71.061750.
73.092000.
74.622250.
75.742500.
76.602750.
77.253000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
33.68 ± 0.19395.25Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 0.79 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%.; GT
32.954398.15
34.18 ± 0.19404.15
34.46 ± 0.19409.15
33.953413.15
35.03 ± 0.19419.55
35.67 ± 0.19431.05
35.234433.15
36.23 ± 0.19441.15
36.487453.15
37.26 ± 0.19459.55
38.85 ± 0.19488.25
40.62 ± 0.19520.05
42.06 ± 0.19545.95
43.31 ± 0.19568.45
45.25 ± 0.19603.35

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Deltafliquid-79. ± 1.kcal/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Deltacliquid-638. ± 5.kcal/molAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
liquid53.951cal/mol*KN/ACounsell, Hales, et al., 1965DH
liquid54.49cal/mol*KN/AParks, Kelley, et al., 1929Extrapolation below 90 K, 46.02 J/mol*K. Revision of previous data.; DH
liquid60.21cal/mol*KN/AParks, 1925Extrapolation below 90 K, 73.81 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
42.271298.15Andreoli-Ball, Patterson, et al., 1988DH
42.225298.15Gates, Wood, et al., 1986T = 298.15 to 368.15 K.; DH
42.47298.Korolev, Kukharenko, et al., 1986DH
45.94321.05Naziev, Bashirov, et al., 1986T = 321.05, 349.20, 373.35 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.5934 kJ/kg*K.; DH
42.347298.15Ogawa and Murakami, 1986DH
42.058298.15Roux-Dexgranges, Grolier, et al., 1986DH
42.230298.15Tanaka, Toyama, et al., 1986DH
42.323298.15Zegers and Somsen, 1984DH
41.66293.15Arutyunyan, Bagdasaryan, et al., 1981T = 293 to 373 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.351 kJ/kg*K. Cp given from 293.15 to 533.15 for pressure range 10 to 60 MPa.; DH
43.40303.5Griigo'ev, Yanin, et al., 1979T = 303 to 462 K. p = 0.98 bar.; DH
42.90301.2Paz Andrade, Paz, et al., 1970T = 28, 40°C.; DH
42.311298.15Counsell, Hales, et al., 1965T = 11 to 323 K.; DH
45.20323.Swietoslawski and Zielenkiewicz, 1960Mean value 21 to 78°C.; DH
51.51302.6Phillip, 1939DH
43.81298.Trew and Watkins, 1933DH
41.90294.0Parks, 1925T = 90 to 294 K. Value is unsmoothed experimental datum.; DH
43.09303.Willams and Daniels, 1924T = 303 to 343 K. Equation only.; DH
41.71298.von Reis, 1881T = 290 to 390 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny, director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil390.6 ± 0.8KAVGN/AAverage of 138 out of 147 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus188. ± 9.KAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple184.54KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple184.51KN/ACounsell, Hales, et al., 1965, 2Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple183.9KN/AParks, 1925, 2Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc562. ± 2.KAVGN/AAverage of 21 values; Individual data points
Quantity Value Units Method Reference Comment
Pc45. ± 4.atmAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.274l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
rhoc3.65 ± 0.06mol/lAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Deltavap12.4 ± 0.6kcal/molAVGN/AAverage of 15 out of 16 values; Individual data points

Enthalpy of vaporization

DeltavapH (kcal/mol) Temperature (K) Method Reference Comment
10.35390.9N/AMajer and Svoboda, 1985 
11.0372.EBMuñoz and Krähenbühl, 2001Based on data from 357. - 389. K.; AC
9.13423.N/AWormald and Fennell, 2000AC
7.07473.N/AWormald and Fennell, 2000AC
4.97523.N/AWormald and Fennell, 2000AC
11.9330.N/ADejoz, Cruz Burguet, et al., 1995Based on data from 315. - 390. K.; AC
10.8379.N/ASusial and Ortega, 1993Based on data from 364. - 403. K.; AC
10.8387.AStephenson and Malanowski, 1987Based on data from 376. - 399. K.; AC
12.0338.AStephenson and Malanowski, 1987Based on data from 323. - 413. K.; AC
10.0428.AStephenson and Malanowski, 1987Based on data from 413. - 550. K.; AC
12.3236.AStephenson and Malanowski, 1987Based on data from 209. - 251. K.; AC
10.9386.AStephenson and Malanowski, 1987Based on data from 376. - 397. K.; AC
10.5406.AStephenson and Malanowski, 1987Based on data from 391. - 429. K.; AC
10.0430.AStephenson and Malanowski, 1987Based on data from 415. - 501. K.; AC
8.94512.AStephenson and Malanowski, 1987Based on data from 497. - 563. K.; AC
11.3366.EBStephenson and Malanowski, 1987Based on data from 351. - 397. K. See also Ambrose, Counsell, et al., 1970.; AC
11.7344.N/ASachek, Peshchenko, et al., 1982Based on data from 329. - 391. K.; AC
11.8 ± 0.02333.CSvoboda, Veselý, et al., 1973AC
11.6 ± 0.02343.CSvoboda, Veselý, et al., 1973AC
11.4 ± 0.02353.CSvoboda, Veselý, et al., 1973AC
11.1 ± 0.02363.CSvoboda, Veselý, et al., 1973AC
13.1303.N/AWilhoit and Zwolinski, 1973Based on data from 288. - 404. K.; AC
12.7310.DTAKemme and Kreps, 1969Based on data from 295. - 391. K.; AC
11.3 ± 0.02356.CCounsell, Hales, et al., 1965, 2AC
10.9 ± 0.02381.CCounsell, Hales, et al., 1965, 2AC
10.3 ± 0.02391.CCounsell, Hales, et al., 1965, 2AC
10.1434.N/AAmbrose and Townsend, 1963Based on data from 419. - 563. K.; AC
11.1377.EBBiddiscombe, Collerson, et al., 1963Based on data from 362. - 398. K.; AC
11.5352.N/ABrown and Smith, 1959Based on data from 337. - 390. K. See also Boublik, Fried, et al., 1984.; AC
11.5352.N/AKahlbaum, 1898Based on data from 314. - 390. K. See also Boublik, Fried, et al., 1984.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. - 410.
A (kcal/mol) 14.95
alpha -0.6584
beta 0.696
Tc (K) 562.9
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
295.8 - 391.04.540361351.555-93.34Kemme and Kreps, 1969 
391. - 479.4.384601254.502-105.246Hessel and Geiseler, 1965Coefficents calculated by NIST from author's data.
419.34 - 562.984.423501305.001-94.676Ambrose and Townsend, 1963, 2Coefficents calculated by NIST from author's data.
362.36 - 398.844.498221313.878-98.789Biddiscombe, Collerson, et al., 1963, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

DeltafusH (kcal/mol) Temperature (K) Reference Comment
2.240184.5Counsell, Hales, et al., 1965DH
2.22183.9Acree, 1991AC
2.218183.9Parks, 1925DH

Entropy of fusion

DeltafusS (cal/mol*K) Temperature (K) Reference Comment
12.14184.5Counsell, Hales, et al., 1965DH
12.06183.9Parks, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H9O- + Hydrogen cation = 1-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Deltar375.3 ± 2.0kcal/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Deltar375.4 ± 2.1kcal/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Deltar375.0 ± 2.9kcal/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Deltar368.7 ± 2.1kcal/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Deltar368.8 ± 2.0kcal/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Deltar368.4 ± 2.8kcal/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

C4H11O+ + 1-Butanol = (C4H11O+ bullet 1-Butanol)

By formula: C4H11O+ + C4H10O = (C4H11O+ bullet C4H10O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar31.5kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Deltar30.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Deltar22.3kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C3H9Si+ + 1-Butanol = (C3H9Si+ bullet 1-Butanol)

By formula: C3H9Si+ + C4H10O = (C3H9Si+ bullet C4H10O)

Quantity Value Units Method Reference Comment
Deltar44.2kcal/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar31.1cal/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

DeltarG° (kcal/mol) T (K) Method Reference Comment
29.7468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

C3H9Sn+ + 1-Butanol = (C3H9Sn+ bullet 1-Butanol)

By formula: C3H9Sn+ + C4H10O = (C3H9Sn+ bullet C4H10O)

Quantity Value Units Method Reference Comment
Deltar36.5kcal/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar32.4cal/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

DeltarG° (kcal/mol) T (K) Method Reference Comment
19.5525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

CH6N+ + 1-Butanol = (CH6N+ bullet 1-Butanol)

By formula: CH6N+ + C4H10O = (CH6N+ bullet C4H10O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Deltar23.5kcal/molPHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar26.cal/mol*KN/AMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

DeltarG° (kcal/mol) T (K) Method Reference Comment
10.6495.PHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Fluorine anion + 1-Butanol = (Fluorine anion bullet 1-Butanol)

By formula: F- + C4H10O = (F- bullet C4H10O)

Quantity Value Units Method Reference Comment
Deltar32.2 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar25.9cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Deltar24.5 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; B,M

Chlorine anion + 1-Butanol = (Chlorine anion bullet 1-Butanol)

By formula: Cl- + C4H10O = (Cl- bullet C4H10O)

Quantity Value Units Method Reference Comment
Deltar17.6 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar23.2cal/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)CH3OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Deltar10.7 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M

Sodium ion (1+) + 1-Butanol = (Sodium ion (1+) bullet 1-Butanol)

By formula: Na+ + C4H10O = (Na+ bullet C4H10O)

Quantity Value Units Method Reference Comment
Deltar26.1 ± 1.2kcal/molCIDTRodgers and Armentrout, 1999RCD

Free energy of reaction

DeltarG° (kcal/mol) T (K) Method Reference Comment
19.7298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

Butanal + Hydrogen = 1-Butanol

By formula: C4H8O + H2 = C4H10O

Quantity Value Units Method Reference Comment
Deltar-19.57 ± 0.18kcal/molCmWiberg, Crocker, et al., 1991liquid phase; ALS
Deltar-16.85 ± 0.30kcal/molChydBuckley and Cox, 1967gas phase; ALS

thiophenoxide anion + 1-Butanol = (thiophenoxide anion bullet 1-Butanol)

By formula: C6H5S- + C4H10O = (C6H5S- bullet C4H10O)

Quantity Value Units Method Reference Comment
Deltar14.6kcal/molPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar25.0cal/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M

Benzene, isocyanato- + 1-Butanol = Carbamic acid, phenyl-, butyl ester

By formula: C7H5NO + C4H10O = C11H15NO2

Quantity Value Units Method Reference Comment
Deltar-20.1 ± 1.1kcal/molCmPannone and Macosko, 1987liquid phase; ALS
Deltar-25.1 ± 0.3kcal/molCmLovering and Laidler, 1962solid phase; ALS

Fluorine anion + 1-Butanol = C4H9D10FO-

By formula: F- + C4H10O = C4H9D10FO-

Quantity Value Units Method Reference Comment
Deltar24.1 ± 2.0kcal/molIMREWilkinson, Szulejko, et al., 1992gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B

Magnesium ion (1+) + 1-Butanol = (Magnesium ion (1+) bullet 1-Butanol)

By formula: Mg+ + C4H10O = (Mg+ bullet C4H10O)

Quantity Value Units Method Reference Comment
Deltar65. ± 5.kcal/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

1-Butanol + Chloridosulfuric acid = Butyl sulfuric acid + Hydrogen chloride

By formula: C4H10O + ClHO3S = C4H10O4S + HCl

Quantity Value Units Method Reference Comment
Deltar14. ± 0.2kcal/molCmMarkitanova, Barsukov, et al., 1981liquid phase; solvent: Dichloromethane; Sulfation; ALS

1-Butanol + 2-Propenoic acid = 2-Propenoic acid, butyl ester + Water

By formula: C4H10O + C3H4O2 = C7H12O2 + H2O

Quantity Value Units Method Reference Comment
Deltar3.9kcal/molEqkSelyakova, Vytnov, et al., 1976liquid phase; Heat of esterification 60-180 C; ALS

Acetic acid, butyl ester + Water = Acetic acid + 1-Butanol

By formula: C6H12O2 + H2O = C2H4O2 + C4H10O

Quantity Value Units Method Reference Comment
Deltar0.80 ± 0.05kcal/molCmWadso, 1958liquid phase; Heat of hydrolysis; ALS

Maleic anhydride + 1-Butanol = 2-Butenedioic acid (Z)-, monobutyl ester

By formula: C4H2O3 + C4H10O = C8H12O4

Quantity Value Units Method Reference Comment
Deltar-9.3kcal/molKinMerca, Poraicu, et al., 1978solid phase; solvent: n-Butanol; DTA; ALS

1-Propene, 2-methyl- + 1-Butanol = 1-Tert-butoxybutane

By formula: C4H8 + C4H10O = C8H18O

Quantity Value Units Method Reference Comment
Deltar-8.32 ± 0.65kcal/molEqkSharonov, Mishentseva, et al., 1991liquid phase; ALS

Ketene + 1-Butanol = Acetic acid, butyl ester

By formula: C2H2O + C4H10O = C6H12O2

Quantity Value Units Method Reference Comment
Deltar-35.11kcal/molCmRice and Greenberg, 1934liquid phase; ALS

Lithium ion (1+) + 1-Butanol = (Lithium ion (1+) bullet 1-Butanol)

By formula: Li+ + C4H10O = (Li+ bullet C4H10O)

Quantity Value Units Method Reference Comment
Deltar42.5 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1994
NIST MS number 133176

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Chermin H.A.G., 1961
Chermin H.A.G., Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol, Petrol. Refiner, 1961, 40 (4), 127-130. [all data]

Buckley E., 1967
Buckley E., Chemical equilibria. Part 2. Dehydrogenation of propanol and butanol, Trans. Faraday Soc., 1967, 63, 895-901. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Dyatkina M.E., 1954
Dyatkina M.E., Thermodynamic functions of normal alcohols (propanol, butanol, ethylene glycol), Zh. Fiz. Khim., 1954, 28, 377. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Counsell, Hales, et al., 1965
Counsell, J.F.; Hales, J.L.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part 16. Butyl alcohol, Trans. Faraday Soc., 1965, 61, 1869-1875. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Parks, 1925
Parks, G.S., Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols, J. Am. Chem. Soc., 1925, 47, 338-345. [all data]

Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]

Gates, Wood, et al., 1986
Gates, J.A.; Wood, R.H.; Cobos, J.C.; Casanova, C.; Roux, A.H.; Roux-Desgranges, G.; Grolier, J.-P.E., Densities and heat capacities of 1-butanol + n-decane from 298 K to 400 K, Fluid Phase Equilib., 1986, 27, 137-151. [all data]

Korolev, Kukharenko, et al., 1986
Korolev, V.P.; Kukharenko, V.A.; Krestov, G.A., Specific heat of binary mixtures of aliphatic alcohols with N,N-dimethylformamide and dimethylsulphoxide, Zhur. Fiz. Khim., 1986, 60, 1854-1857. [all data]

Naziev, Bashirov, et al., 1986
Naziev, Ya.M.; Bashirov, M.M.; Badalov, Yu.A., Experimental device for measurement of isobaric specific heat of electrolytes at elevated pressures, Inzh-Fiz. Zhur., 1986, 51(5), 789-795. [all data]

Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S., Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K, Thermochim. Acta, 1986, 109, 145-154. [all data]

Roux-Dexgranges, Grolier, et al., 1986
Roux-Dexgranges, G.; Grolier, J.-P.E.; Villamanan, M.A.; Casanova, C., Role of alcohol in microemulsions. III. Volumes and heat capacities in the continuious phase water-n-butanol-toluene of reverse micelles, Fluid Phase Equilibria, 1986, 25, 209-230. [all data]

Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]

Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]

Arutyunyan, Bagdasaryan, et al., 1981
Arutyunyan, G.S.; Bagdasaryan, S.S.; Kerimov, A.M., Experimental investigation of the isobaric heat capacity of n-propyl, n-butyl and n-amyl alcohols at different temperatures and pressures, Izv. Akad. Nauk Azerb. SSr, 1981, (6), 94-97. [all data]

Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP, 54, 1979, 57-64. [all data]

Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]

Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Trew and Watkins, 1933
Trew, V.C.G.; Watkins, G.M.C., Some physical properties of mixtures of certain organic liquids, Trans. Faraday Soc., 1933, 29, 1310-1318. [all data]

Willams and Daniels, 1924
Willams, J.W.; Daniels, F., The specific heats of certain organic liquids at elevated temperatures, J. Am. Chem. Soc., 1924, 46, 903-917. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Counsell, Hales, et al., 1965, 2
Counsell, J.F.; Hales, J.L.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part 16.?Butyl alcohol, Trans. Faraday Soc., 1965, 61, 1869, https://doi.org/10.1039/tf9656101869 . [all data]

Parks, 1925, 2
Parks, G.S., Thermal data on organic compounds: I the heat capacities and free energies of methyl, ethyl and n-butyl alcohol, J. Am. Chem. Soc., 1925, 47, 338-45. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Muñoz and Krähenbühl, 2001
Muñoz, Laura A.L.; Krähenbühl, M. Alvina, Isobaric Vapor Liquid Equilibrium (VLE) Data of the Systems n -Butanol + Butyric Acid and n -Butanol + Acetic Acid, J. Chem. Eng. Data, 2001, 46, 1, 120-124, https://doi.org/10.1021/je000033u . [all data]

Wormald and Fennell, 2000
Wormald, C.J.; Fennell, D.P., Organometallics, 2000, 21, 3, 767-779, https://doi.org/10.1023/A:1006648903706 . [all data]

Dejoz, Cruz Burguet, et al., 1995
Dejoz, Ana; Cruz Burguet, M.; Munoz, Rosa; Sanchotello, Margarita, Isobaric Vapor-Liquid Equilibria of Tetrachloroethylene with 1-Butanol and 2-Butanol at 6 and 20 kPa, J. Chem. Eng. Data, 1995, 40, 1, 290-292, https://doi.org/10.1021/je00017a064 . [all data]

Susial and Ortega, 1993
Susial, Pedro; Ortega, Juan, Isobaric vapor-liquid equilibria in the system methyl propanoate + n-butyl alcohol, J. Chem. Eng. Data, 1993, 38, 4, 647-649, https://doi.org/10.1021/je00012a044 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Sachek, Peshchenko, et al., 1982
Sachek, A.I.; Peshchenko, A.D.; Markovnik, V.S.; Ral'ko, O.V.; Andreevskii, D.N.; Leont'eva, A.A., Termodin. Org. Soedin., 1982, 94. [all data]

Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature, Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Kemme and Kreps, 1969
Kemme, Herbert R.; Kreps, Saul I., Vapor pressure of primary n-alkyl chlorides and alcohols, J. Chem. Eng. Data, 1969, 14, 1, 98-102, https://doi.org/10.1021/je60040a011 . [all data]

Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R., 681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols, J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., 364. Thermodynamic properties of organic oxygen compounds. Part VIII. Purification and vapour pressures of the propyl and butyl alcohols, J. Chem. Soc., 1963, 1954, https://doi.org/10.1039/jr9630001954 . [all data]

Brown and Smith, 1959
Brown, I.; Smith, F., Liquid-Vapour Equilibria. IX. The Systems n-Propanol + Benzene and n-Butanol + Benzene at 45°C, Aust. J. Chem., 1959, 12, 3, 407-621, https://doi.org/10.1071/CH9590407 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Kahlbaum, 1898
Kahlbaum, G.W.A., Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1898, 26, 577. [all data]

Hessel and Geiseler, 1965
Hessel, D.; Geiseler, G., Uber die Druckabhangigkeit des heteroazeotropen Systems n-Butanol/Wasser, Z. Phys. Chem. (Leipzig), 1965, 229, 199-209. [all data]

Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963, 2
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols, J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954 . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B., Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Buckley and Cox, 1967
Buckley, E.; Cox, J.D., Chemical equilibria. Part 2.-Dehydrogenation of propanol and butanol, Trans. Faraday Soc., 1967, 63, 895-901. [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Pannone and Macosko, 1987
Pannone, M.C.; Macosko, C.W., Kinetics of isocyanate amine reactions, J. Appl. Polym. Sci., 1987, 34, 2409-2432. [all data]

Lovering and Laidler, 1962
Lovering, E.G.; Laidler, K.J., Thermochemical studies of some alcohol-isocyanate reactions, Can. J. Chem., 1962, 40, 26-30. [all data]

Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B., Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions, Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M . [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Markitanova, Barsukov, et al., 1981
Markitanova, L.I.; Barsukov, I.I.; Passet, B.V., Determination of heat of sulfation by calorimetric titration, J. Gen. Chem. USSR, 1981, 51, 1286-1289. [all data]

Selyakova, Vytnov, et al., 1976
Selyakova, V.A.; Vytnov, G.F.; Sineokov, A.P., Study of the esterification of acrylic acid by butyl alcohol, Russ. J. Phys. Chem. (Engl. Transl.), 1976, 50, 1692-1694. [all data]

Wadso, 1958
Wadso, I., The heats of hydrolysis of some alkyl acetates, Acta Chem. Scand., 1958, 12, 630-633. [all data]

Merca, Poraicu, et al., 1978
Merca, E.; Poraicu, M.; Tribunescu, P., Kinetics of maleic monoester formation with n-butanol, Bull. Stiint. Teh. Inst. Politeh. "Traian Vuia" Timisoara, Ser. Chim., 1978, 23, 160-163. [all data]

Sharonov, Mishentseva, et al., 1991
Sharonov, K.G.; Mishentseva, Y.B.; Rozhnov, A.M.; Miroshnichenko, E.A.; Korchatova, L.I., Molar enthalpies of formation and vaporizqation of t-butoxybutanes and thermodynamics of their synthesis from a butanol and 2-methylpropene I. Equilibria of synthesis reactions of t-butoxybutanes in the liquid phase, J. Chem. Thermodyn., 1991, 23, 141-145. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References