1-Propanol
- Formula: C3H8O
- Molecular weight: 60.0950
- IUPAC Standard InChI:
- InChI=1S/C3H8O/c1-2-3-4/h4H,2-3H2,1H3
- Download the identifier in a file.
- IUPAC Standard InChIKey: BDERNNFJNOPAEC-UHFFFAOYSA-N
- CAS Registry Number: 71-23-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Propyl alcohol; n-Propan-1-ol; n-Propanol; n-Propyl alcohol; Ethylcarbinol; Optal; Osmosol extra; Propanol; Propylic alcohol; 1-Propyl alcohol; n-C3H7OH; 1-Hydroxypropane; Propanol-1; Propan-1-ol; n-Propyl alkohol; Alcool propilico; Alcool propylique; Propanole; Propanolen; Propanoli; Propylowy alkohol; UN 1274; Propylan-propyl alcohol; NSC 30300; Alcohol, propyl
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Ion clustering data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: CH6N+ + C3H8O = (CH6N+ C3H8O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 22.0 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 25.6 | cal/mol*K | PHPMS | Meot-Ner, 1984 | gas phase; M |
By formula: C2H7O+ + C3H8O = (C2H7O+ C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 30.3 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 28.4 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 21.8 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C3H5O+ + C3H8O = (C3H5O+ C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 21.7 | kcal/mol | ICR | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 13.0 | kcal/mol | ICR | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
By formula: C3H5O- + C3H8O = (C3H5O- C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 21.6 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 12.9 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
By formula: C3H7O- + C3H8O = (C3H7O- C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 28.5 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 19.4 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
By formula: C3H9O+ + C3H8O = (C3H9O+ C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 30.4 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; switching reaction(CH3CNH+)CH3CN; Lias, Liebman, et al., 1984, Deakyne, Meot-Ner (Mautner), et al., 1986; M |
![]() | 31.6 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 26.7 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; switching reaction(CH3CNH+)CH3CN; Lias, Liebman, et al., 1984, Deakyne, Meot-Ner (Mautner), et al., 1986; M |
![]() | 30.2 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 22.6 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: (C3H9O+ C3H8O) + C3H8O = (C3H9O+
2C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 21.6 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
![]() | 18.9 | kcal/mol | PHPMS | Hiraoka, Morise, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 31.4 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
![]() | 23.0 | cal/mol*K | PHPMS | Hiraoka, Morise, et al., 1986 | gas phase; M |
By formula: (C3H9O+ 2C3H8O) + C3H8O = (C3H9O+
3C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 14.4 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
![]() | 14.2 | kcal/mol | PHPMS | Hiraoka, Morise, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 25.5 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
![]() | 23.8 | cal/mol*K | PHPMS | Hiraoka, Morise, et al., 1986 | gas phase; M |
By formula: (C3H9O+ 3C3H8O) + C3H8O = (C3H9O+
4C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 11.9 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
![]() | 11.7 | kcal/mol | PHPMS | Hiraoka, Morise, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 24.8 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
![]() | 23.0 | cal/mol*K | PHPMS | Hiraoka, Morise, et al., 1986 | gas phase; M |
By formula: (C3H9O+ 4C3H8O) + C3H8O = (C3H9O+
5C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 10.9 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 25.4 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: (C3H9O+ 5C3H8O) + C3H8O = (C3H9O+
6C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 11.1 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 28.8 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: (C3H9O+ 6C3H8O) + C3H8O = (C3H9O+
7C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 10.9 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 30.5 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
By formula: (C3H9O+ 7C3H8O) + C3H8O = (C3H9O+
8C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 11. | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 30. | cal/mol*K | N/A | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
![]() |
T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.1 | 215. | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; Entropy change calculated or estimated; M |
By formula: C3H9Si+ + C3H8O = (C3H9Si+ C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 43.3 | kcal/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+))H2O, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 30.8 | cal/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+))H2O, Entropy change calculated or estimated; M |
Free energy of reaction
![]() |
T (K) | Method | Reference | Comment |
---|---|---|---|---|
28.9 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+))H2O, Entropy change calculated or estimated; M |
By formula: C3H9Sn+ + C3H8O = (C3H9Sn+ C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 35.5 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 32. | cal/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Free energy of reaction
![]() |
T (K) | Method | Reference | Comment |
---|---|---|---|---|
18.7 | 525. | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: C4H9O- + C3H8O = (C4H9O- C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 27.3 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 18.6 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
By formula: C4H11O+ + C3H8O = (C4H11O+ C3H8O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 31.7 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 29.2 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 23.0 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C5H11O- + C3H8O = (C5H11O- C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 26.9 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 18.2 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B |
By formula: C6H5S- + C3H8O = (C6H5S- C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 15.0 | kcal/mol | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 26.0 | cal/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
By formula: C8H5- + C3H8O = (C8H5- C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 22.5 ± 2.9 | kcal/mol | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 29.3 | cal/mol*K | N/A | Caldwell, Rozeboom, et al., 1984 | gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 13.8 ± 2.0 | kcal/mol | IMRE | Caldwell, Rozeboom, et al., 1984 | gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M |
By formula: Cl- + C3H8O = (Cl- C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 20.40 ± 0.50 | kcal/mol | TDAs | Hiraoka, 1987 | gas phase; B,B,M |
![]() | 17.7 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 29.0 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
![]() | 23.2 | cal/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 11.70 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
![]() | 11.7 ± 2.0 | kcal/mol | TDAs | Hiraoka, 1987 | gas phase; B |
![]() | 10.8 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984 | gas phase; B,M |
By formula: (Cl- C3H8O) + C3H8O = (Cl-
2C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 15.8 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 25.4 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 8.2 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- 2C3H8O) + C3H8O = (Cl-
3C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 14.2 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 31.2 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 4.8 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- 3C3H8O) + C3H8O = (Cl-
4C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 13.3 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 32.1 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 3.7 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- 4C3H8O) + C3H8O = (Cl-
5C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 12.6 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 32.9 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 2.7 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- 5C3H8O) + C3H8O = (Cl-
6C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 11.6 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 31.0 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 2.3 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- 6C3H8O) + C3H8O = (Cl-
7C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 11.0 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 30.2 | cal/mol*K | PHPMS | Hiraoka and Mizuse, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 1.9 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; B |
By formula: (Cl- 7C3H8O) + C3H8O = (Cl-
8C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 10.8 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 30. | cal/mol*K | N/A | Hiraoka and Mizuse, 1987 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 1.8 ± 1.0 | kcal/mol | TDAs | Hiraoka and Mizuse, 1987 | gas phase; Estimated entropy; single temperature measurement; B |
+
= C3H7D8FO-
By formula: F- + C3H8O = C3H7D8FO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 24.3 ± 2.0 | kcal/mol | IMRE | Wilkinson, Szulejko, et al., 1992 | gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B |
By formula: F- + C3H8O = (F- C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 32.3 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 25.4 | cal/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
![]() | 24.7 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1983 | gas phase; B,M |
By formula: Li+ + C3H8O = (Li+ C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 40.9 ± 1.9 | kcal/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Mg+ + C3H8O = (Mg+ C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 64. ± 5. | kcal/mol | ICR | Operti, Tews, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M |
By formula: Na+ + C3H8O = (Na+ C3H8O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
![]() | 25.8 ± 1.0 | kcal/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
![]() | 25.8 ± 1.0 | kcal/mol | CIDT | Rodgers and Armentrout, 1999 | RCD |
Free energy of reaction
![]() |
T (K) | Method | Reference | Comment |
---|---|---|---|---|
0.0 | 0. | CIDT | Rodgers and Armentrout, 1999 | RCD |
References
Go To: Top, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr.,
Thermochemical data on Ggs-phase ion-molecule association and clustering reactions,
J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]
Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E.,
Anion-alcohol hydrogen bond strengths in the gas phase,
J. Am. Chem. Soc., 1984, 106, 4660. [all data]
Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M.,
Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol,
J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014
. [all data]
Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P.,
Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase,
J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076
. [all data]
Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W.,
Relative acidities of water and methanol, and the stabilities of the dimer adducts,
J. Phys. Chem., 1986, 90, 6687. [all data]
Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M.,
Intermolecular Forces in Organic Clusters,
J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024
. [all data]
Deakyne, Meot-Ner (Mautner), et al., 1986
Deakyne, C.A.; Meot-Ner (Mautner), M.; Campbell, C.L.; Hughes, M.G.; Murphy, S.P.,
Multicomponent Cluster Ions. 1. The Acetonitrile - Water System,
J. Chem. Phys., 1986, 90, 4648. [all data]
Hiraoka, Morise, et al., 1986
Hiraoka, K.; Morise, K.; Nishijima, T.; Nakamura, S.; Nakazato, M.; Ohkuma, K.,
Gas Phase Ion Equilibria Studies of Protons and Chloride Ions in Propanol and Acetone,
Int. J. Mass Spectrom. Ion Proc., 1986, 68, 1-2, 99, https://doi.org/10.1016/0168-1176(86)87071-9
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities.,
J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079
. [all data]
Hiraoka, 1987
Hiraoka, K.,
Relation Between Gas Phase Stepwise and Bulk Solvation of Cl- with Water and Aliphatic Alcohols,
Bull. Chem. Soc. Japan, 1987, 60, 7, 2555, https://doi.org/10.1246/bcsj.60.2555
. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S.,
Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH,
Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4
. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B.,
Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions,
Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M
. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S.,
Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques,
J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B.,
Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]
Notes
Go To: Top, Ion clustering data, References
- Symbols used in this document:
T Temperature rG°
Free energy of reaction at standard conditions rH°
Enthalpy of reaction at standard conditions rS°
Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.