Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Cyclopentene, 1-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Normal alkane RI, non-polar column, custom temperature program

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Column type CapillaryCapillaryCapillaryCapillaryCapillary
Active phase SqualaneSqualaneMethyl SiliconeMethyl SiliconeMethyl Silicone
Column length (m)      
Carrier gas      
Substrate      
Column diameter (mm)      
Phase thickness (mum)      
Program not specifiednot specifiednot specifiednot specifiednot specified
I 646.654.674.647.647.
ReferenceChen, 2008Chen, 2008N/AZenkevich, 2000Spieksma, 1999
Comment MSDC-RI MSDC-RI MSDC-RI MSDC-RI MSDC-RI
Column type CapillaryCapillaryPackedPacked
Active phase Methyl SiliconeOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.SE-30Squalane
Column length (m) 115.50.6.13.0
Carrier gas  HydrogenN2N2
Substrate   Chromosorb WEmbacel
Column diameter (mm) 0.200.32  
Phase thickness (mum) 0.30   
Program not specifiednot specified50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)25C(5min) => 2C/min => 35 => 4C/min => 95C(hold)
I 643.654.662.653.
ReferenceMeng and Liu, 1991Waggott and Davies, 1984Robinson and Odell, 1971Robinson and Odell, 1971
Comment MSDC-RI MSDC-RI MSDC-RI MSDC-RI

References

Go To: Top, Normal alkane RI, non-polar column, custom temperature program, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chen, 2008
Chen, H.-F., Quantitative prediction of gas chromatography retention indices with support vector machines, radial basis neutral networks and multiple linear regression, Anal. Chim. Acta, 2008, 609, 1, 24-36, https://doi.org/10.1016/j.aca.2008.01.003 . [all data]

Zenkevich, 2000
Zenkevich, I.G., Mutual Correlation between Gas Chromatographic Retention Indices of Unsaturated and Saturated Hydrocarbons found by Molecular Dynamics, Z. Anal. Chem., 2000, 55, 10, 1091-1097. [all data]

Spieksma, 1999
Spieksma, W., Determination of vapor liquid equilibrium from the Kovats retention index on dimethylsilicone using the Wilson mixing tool, J. Hi. Res. Chromatogr., 1999, 22, 10, 565-588, https://doi.org/10.1002/(SICI)1521-4168(19991001)22:10<565::AID-JHRC565>3.0.CO;2-2 . [all data]

Meng and Liu, 1991
Meng, W.; Liu, C., Gas chromatographic analysis of alkene imourities in solvent naphtha, China Synth. Rubber Ind., 1991, 14, 2, 109-111. [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]


Notes

Go To: Top, Normal alkane RI, non-polar column, custom temperature program, References