Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Methyl Alcohol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - H.Y. Afeefy, J.F. Liebman, and S.E. Stein
DRB - D.R. Burgess
DH - E.S. Domalski and E.D. Hearing

QuantityValueUnitsMethodReferenceComment
Deltafliquid-238.4kJ/molCcrBaroody and Carpenter, 1972ALS
Deltafliquid-239.5 ± 0.2kJ/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Deltafliquid-238.9 ± 3.6kJ/molCcbGreen, 1960Reanalyzed by Cox and Pilcher, 1970, Original value = -238.5 ± 0.2 kJ/mol; ALS
Deltafliquid-250.6kJ/molCcbParks, 1925ALS
Deltafliquid-251.3 ± 5.0kJ/molCcbRichards and Davis, 1920DRB
QuantityValueUnitsMethodReferenceComment
Deltacliquid-725.7 ± 0.1kJ/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding «DELTA»fliquid = -239.5 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-726.5 ± 0.2kJ/molCcbGreen, 1960Corresponding «DELTA»fliquid = -238.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-726.34 ± 0.20kJ/molCcbRossini, 1931Corresponding «DELTA»fliquid = -238.83 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-715.05kJ/molCcbParks, 1925Corresponding «DELTA»fliquid = -250.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-713.83kJ/molCcbRichards and Davis, 1920At 291 K; Corresponding «DELTA»fliquid = -251.34 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
QuantityValueUnitsMethodReferenceComment
liquid127.19J/mol*KN/ACarlson and Westrum, 1971DH
liquid126.8J/mol*KN/AKelley, 1929DH
liquid129.7J/mol*KN/AParks, Kelley, et al., 1929Extrapolation below 90 K, 34.3 J/mol*K. Revision of previous data.; DH
liquid136.4J/mol*KN/AParks, 1925Extrapolation below 90 K, 40.75 J/mol*K.; DH
QuantityValueUnitsMethodReferenceComment
solid,1 bar1.117J/mol*KN/AAhlberg, Blanchard, et al., 1937DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K)Temperature (K)ReferenceComment
79.5298.15Filatov and Afanas'ev, 1992DH
81.11298.15Khasanshin and Zykova, 1989T = 175 to 338 K. Unsmoothed experimental datum.; DH
80.24298.15Andreoli-Ball, Patterson, et al., 1988DH
80.35298.15Okano, Ogawa, et al., 1988DH
81.0298.15Lankford and Criss, 1987DH
81.32298.Korolev, Kukharenko, et al., 1986DH
80.28298.15Ogawa and Murakami, 1986DH
81.56298.15Tanaka, Toyama, et al., 1986DH
80.22298.15Costas and Patterson, 1985T = 298.15, 313.15 K.; DH
81.47298.15Zegers and Somsen, 1984DH
78.90288.15Benson and D'Arcy, 1982DH
81.92298.15Villamanan, Casanova, et al., 1982DH
80.8293.15Atalla, El-Sharkawy, et al., 1981DH
81.13298.15Carlson and Westrum, 1971T = 5 to 332 K.; DH
83.7298.Deshpande and Bhatagadde, 1971T = 298 to 318 K.; DH
85.8313.2Paz Andrade, Paz, et al., 1970DH
85.8298.2Katayama, 1962T = 10 to 60°C.; DH
80.8311.Swietoslawski and Zielenkiewicz, 1960Mean value 21 to 56°C.; DH
86.2323.Hough, Mason, et al., 1950T = 323 to 353 K.; DH
75.77270.Staveley and Gupta, 1949T = 90 to 270 K.; DH
86.6300.8Phillip, 1939DH
83.56313.15Fiock, Ginnings, et al., 1931T = 40 to 110°C.; DH
79.9292.0Kelley, 1929T = 16 to 293 K. Value is unsmoothed experimental datum.; DH
78.2270.Mitsukuri and Hara, 1929T = 190 to 270 K.; DH
79.9290.1Parks, 1925T = 89 to 290 K. Value is unsmoothed experimental datum.; DH
83.3298.von Reis, 1881T = 288 to 335 K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K)Temperature (K)ReferenceComment
68.39120.Sugisaki, Suga, et al., 1968glass phase; T = 20 to 120 K.; DH
5.4020.5Ahlberg, Blanchard, et al., 1937T = 5 to 28 K.; DH
105.173.Maass and Walbauer, 1925T = 93 to 173 K.; DH

References

Go To: Top, Condensed phase thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Baroody and Carpenter, 1972
Baroody, E.E.; Carpenter, G.A., Heats of formation of propellant compounds (U), Rpt. Naval Ordnance Systems Command Task No. 331-003/067-1/UR2402-001 for Naval Ordance Station, Indian Head, MD, 1972, 1-9. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Green, 1960
Green, J.H.S., Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Parks, 1925
Parks, G.S., Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols, J. Am. Chem. Soc., 1925, 47, 338-345. [all data]

Richards and Davis, 1920
Richards, T.W.; Davis, H.S., The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds, J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]

Rossini, 1931
Rossini, F.D., The heat of combustion of methyl alcohol, Proc. Nat'l Acad. Sci., 1931, 17, 343-347. [all data]

Carlson and Westrum, 1971
Carlson, H.G.; Westrum, E.F., Jr., Methanol: heat capacity, enthalpies of transition and melting, and thermodynamic properties from 5-300K, J. Chem. Phys., 1971, 54, 1464-1471. [all data]

Kelley, 1929
Kelley, K.K., The heat capacity of methyl alcohol from 16K to 298K and the corresponding entropy and free energy, J. Am. Chem. Soc., 1929, 51, 180-187. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Ahlberg, Blanchard, et al., 1937
Ahlberg, J.E.; Blanchard, E.R.; Lundberg, W.O., The heat capacities of benzene, methyl alcohol and glycerol at very low temperatures, J. Chem. Phys., 1937, 5, 537-551. [all data]

Filatov and Afanas'ev, 1992
Filatov, V.A.; Afanas'ev, V.N., Differential heat-flux calorimeter, Izv. Vysshikh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1992, 35(8), 97-100. [all data]

Khasanshin and Zykova, 1989
Khasanshin, T.S.; Zykova, T.B., Specific heat of saturated monatomic alcohols, Inzh. -Fiz. Zhur., 1989, 56(6), 991-994. [all data]

Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]

Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, S., Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K, Can. J. Chem., 1988, 66, 713-717. [all data]

Lankford and Criss, 1987
Lankford, J.I.; Criss, C.M., Partial molar heat caqpacities of selected electrolytes and benzene in methanol and dimethyldulfoxide at 25, 40 and 80°C, J. Solution Chem., 1987, 16(11), 885-906. [all data]

Korolev, Kukharenko, et al., 1986
Korolev, V.P.; Kukharenko, V.A.; Krestov, G.A., Specific heat of binary mixtures of aliphatic alcohols with N,N-dimethylformamide and dimethylsulphoxide, Zhur. Fiz. Khim., 1986, 60, 1854-1857. [all data]

Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S., Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K, Thermochim. Acta, 1986, 109, 145-154. [all data]

Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]

Costas and Patterson, 1985
Costas, M.; Patterson, D., Self-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 635-654. [all data]

Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]

Benson and D'Arcy, 1982
Benson, G.C.; D'Arcy, P.J., Excess isobaric heat capacities of water - n-alcohol mixtures, J. Chem. Eng. Data, 1982, 27, 439-442. [all data]

Villamanan, Casanova, et al., 1982
Villamanan, M.A.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.E., Thermochemical behavior of mixtures of n-alcohol + aliphatic ether: heat capacities and volumes at 298.15 K, Thermochim. Acta, 1982, 52, 279-283. [all data]

Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A., Measurement of thermal properties of liquids with an AC heated-wire technique, Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]

Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G., Heat capacities at constant volume, free volumes, and rotational freedom in some liquids, Aust. J. Chem., 1971, 24, 1817-1822. [all data]

Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]

Katayama, 1962
Katayama, T., Heats of mixing, liquid heat capacities and enthalpy, concentration charts for methanol-water and isopropanol-water systems, Kagaku Kogaku, 1962, 26, 361-372. [all data]

Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]

Hough, Mason, et al., 1950
Hough, E.W.; Mason, D.M.; Sage, B.H., Heat capacities of several organic liquids, J. Am. Chem. Soc., 1950, 72, 5775-5777. [all data]

Staveley and Gupta, 1949
Staveley, L.A.K.; Gupta, A.K., A semi-micro low-temperature calorimeter, and a comparison of some thermodynamic properties of methyl alcohol and methyl deuteroxide, Trans. Faraday Soc., 1949, 45, 50-61. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B., Calorimetric determinations of thermal properties of methyl alcohol, ethyl alcohol, and benzene, J. Res., 1931, NBS 6, 881-900. [all data]

Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K., Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at low temperatures, Bull. Chem. Soc. Japan, 1929, 4, 77-81. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Sugisaki, Suga, et al., 1968
Sugisaki, M.; Suga, H.; Seki, S., Calorimetric study of the glassy state. III. Novel type calorimeter for study of glassy state and heat capacity of glassy methanol, Bull. Chem. Soc. Japan, 1968, 41, 2586-2591. [all data]

Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J., The specific heats and latent heats of fusion of ice and of several organic compounds, J. Am. Chem. Soc., 1925, 47, 1-9. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, References