Home Symbol which looks like a small house Up Solid circle with an upward pointer in it

Methyl Alcohol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - H.Y. Afeefy, J.F. Liebman, and S.E. Stein
DRB - D.R. Burgess
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Deltafgas-205. ± 10.kJ/molAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Deltacgas-763.68 ± 0.20kJ/molCmRossini, 1932Flame Calorimetry; Corresponding «DELTA»fgas = -201.49 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.0050.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with other statistically calculated values [ Ivash E.V., 1955, Zhuravlev E.Z., 1959, Chen S.S., 1977, Chao J., 1986, Gurvich, Veyts, et al., 1989]. Please also see Chao J., 1986, 2.; GT
36.95100.
38.64150.
39.71200.
42.59273.15
44.06 ± 0.03298.15
44.17300.
51.63400.
59.70500.
67.19600.
73.86700.
79.76800.
84.95900.
89.541000.
93.571100.
97.121200.
100.241300.
102.981400.
105.401500.
110.21750.
113.82000.
116.52250.
118.62500.
120.2750.
121.3000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
42.4 ± 1.3279.Stromsoe E., 1970Heat capacity at 279 K was obtained by thermal conductivity [ Halford J.O., 1957]. Vapor heat capacities from calorimetric measurements [ De Vries T., 1941] were converted to the ideal gas heat capacities by corrections for the gas imperfection effects [ Chen S.S., 1977, Chao J., 1986, 2]. Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.17 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see De Vries T., 1941, Weltner W., 1951, Halford J.O., 1957.; GT
48.0 ± 1.3345.6
46.8 ± 1.2347.35
46.1 ± 1.3349.65
47.6 ± 1.2356.55
46.7 ± 1.3358.15
48.2 ± 1.3358.85
48.8 ± 1.3359.85
50.3 ± 1.3368.15
49.0 ± 1.2373.35
51.3 ± 1.3382.15
51.1 ± 1.2398.95
52.3 ± 1.3401.15
51.3 ± 1.2401.35
52.01 ± 0.42403.2
53.2 ± 1.3420.15
53.9 ± 1.2431.45
54.8 ± 1.2442.15
55.9 ± 1.3442.65
56.0 ± 1.2457.35
57.20 ± 0.42464.0
57.8 ± 1.2477.75
58.4 ± 1.2485.05
59.5 ± 1.2498.95
60.4 ± 1.3521.2
61.4 ± 1.2521.35
64.3 ± 1.2555.95
66.4 ± 1.2581.35
66.8 ± 1.2585.35

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - H.Y. Afeefy, J.F. Liebman, and S.E. Stein
DRB - D.R. Burgess
DH - E.S. Domalski and E.D. Hearing

Quantity Value Units Method Reference Comment
Deltafliquid-238.4kJ/molCcrBaroody and Carpenter, 1972ALS
Deltafliquid-239.5 ± 0.2kJ/molCcbChao and Rossini, 1965see Rossini, 1934; ALS
Deltafliquid-238.9 ± 3.6kJ/molCcbGreen, 1960Reanalyzed by Cox and Pilcher, 1970, Original value = -238.5 ± 0.2 kJ/mol; ALS
Deltafliquid-250.6kJ/molCcbParks, 1925ALS
Deltafliquid-251.3 ± 5.0kJ/molCcbRichards and Davis, 1920DRB
Quantity Value Units Method Reference Comment
Deltacliquid-725.7 ± 0.1kJ/molCcbChao and Rossini, 1965see Rossini, 1934; Corresponding «DELTA»fliquid = -239.5 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-726.5 ± 0.2kJ/molCcbGreen, 1960Corresponding «DELTA»fliquid = -238.7 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-726.34 ± 0.20kJ/molCcbRossini, 1931Corresponding «DELTA»fliquid = -238.83 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-715.05kJ/molCcbParks, 1925Corresponding «DELTA»fliquid = -250.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Deltacliquid-713.83kJ/molCcbRichards and Davis, 1920At 291 K; Corresponding «DELTA»fliquid = -251.34 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid127.19J/mol*KN/ACarlson and Westrum, 1971DH
liquid126.8J/mol*KN/AKelley, 1929DH
liquid129.7J/mol*KN/AParks, Kelley, et al., 1929Extrapolation below 90 K, 34.3 J/mol*K. Revision of previous data.; DH
liquid136.4J/mol*KN/AParks, 1925Extrapolation below 90 K, 40.75 J/mol*K.; DH
Quantity Value Units Method Reference Comment
solid,1 bar1.117J/mol*KN/AAhlberg, Blanchard, et al., 1937DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
79.5298.15Filatov and Afanas'ev, 1992DH
81.11298.15Khasanshin and Zykova, 1989T = 175 to 338 K. Unsmoothed experimental datum.; DH
80.24298.15Andreoli-Ball, Patterson, et al., 1988DH
80.35298.15Okano, Ogawa, et al., 1988DH
81.0298.15Lankford and Criss, 1987DH
81.32298.Korolev, Kukharenko, et al., 1986DH
80.28298.15Ogawa and Murakami, 1986DH
81.56298.15Tanaka, Toyama, et al., 1986DH
80.22298.15Costas and Patterson, 1985T = 298.15, 313.15 K.; DH
81.47298.15Zegers and Somsen, 1984DH
78.90288.15Benson and D'Arcy, 1982DH
81.92298.15Villamanan, Casanova, et al., 1982DH
80.8293.15Atalla, El-Sharkawy, et al., 1981DH
81.13298.15Carlson and Westrum, 1971T = 5 to 332 K.; DH
83.7298.Deshpande and Bhatagadde, 1971T = 298 to 318 K.; DH
85.8313.2Paz Andrade, Paz, et al., 1970DH
85.8298.2Katayama, 1962T = 10 to 60°C.; DH
80.8311.Swietoslawski and Zielenkiewicz, 1960Mean value 21 to 56°C.; DH
86.2323.Hough, Mason, et al., 1950T = 323 to 353 K.; DH
75.77270.Staveley and Gupta, 1949T = 90 to 270 K.; DH
86.6300.8Phillip, 1939DH
83.56313.15Fiock, Ginnings, et al., 1931T = 40 to 110°C.; DH
79.9292.0Kelley, 1929T = 16 to 293 K. Value is unsmoothed experimental datum.; DH
78.2270.Mitsukuri and Hara, 1929T = 190 to 270 K.; DH
79.9290.1Parks, 1925T = 89 to 290 K. Value is unsmoothed experimental datum.; DH
83.3298.von Reis, 1881T = 288 to 335 K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
68.39120.Sugisaki, Suga, et al., 1968glass phase; T = 20 to 120 K.; DH
5.4020.5Ahlberg, Blanchard, et al., 1937T = 5 to 28 K.; DH
105.173.Maass and Walbauer, 1925T = 93 to 173 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, M. Frenkel director
DH - E.S. Domalski and E.D. Hearing
AC - W.E. Acree, Jr., J.S. Chickos
ALS - H.Y. Afeefy, J.F. Liebman, and S.E. Stein
DRB - D.R. Burgess
CAL - J.S. Chickos, W.E. Acree, Jr., J.F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil337.8 ± 0.3KAVGN/AAverage of 155 out of 172 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus176. ± 1.KAVGN/AAverage of 14 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple175.5 ± 0.5KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Tc513. ± 1.KAVGN/AAverage of 27 out of 31 values; Individual data points
Quantity Value Units Method Reference Comment
Pc81. ± 1.barAVGN/AAverage of 17 out of 20 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.117l/molN/AGude and Teja, 1995 
Vc0.113024l/molN/ACraven and de Reuck, 1986TRC
Vc0.118l/molN/AFrancesconi, Lentz, et al., 1981Uncertainty assigned by TRC = 0.004 l/mol; TRC
Vc0.11663l/molN/AZubarev and Bagdonas, 1969Uncertainty assigned by TRC = 0.0035 l/mol; TRC
Quantity Value Units Method Reference Comment
rhoc8.51 ± 0.07mol/lAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Deltavap37.6 ± 0.5kJ/molAVGN/AAverage of 11 out of 12 values; Individual data points

Enthalpy of vaporization

DeltavapH (kJ/mol) Temperature (K) Method Reference Comment
35.21337.7N/AMajer and Svoboda, 1985 
39.2258.AStephenson and Malanowski, 1987Based on data from 175. - 273. K.; AC
36.9353.AStephenson and Malanowski, 1987Based on data from 338. - 487. K.; AC
43.7213.AStephenson and Malanowski, 1987Based on data from 188. - 228. K.; AC
38.9275.AStephenson and Malanowski, 1987Based on data from 224. - 290. K.; AC
38.3300.AStephenson and Malanowski, 1987Based on data from 285. - 345. K.; AC
37.0350.AStephenson and Malanowski, 1987Based on data from 335. - 376. K.; AC
36.1388.AStephenson and Malanowski, 1987Based on data from 373. - 458. K.; AC
35.1468.AStephenson and Malanowski, 1987Based on data from 453. - 513. K.; AC
32.7373.CYerlett and Wormald, 1986AC
28.1423.CYerlett and Wormald, 1986AC
20.6473.CYerlett and Wormald, 1986AC
7.4510.CYerlett and Wormald, 1986AC
37.5331.EBCervenkova and Boublik, 1984Based on data from 316. - 336. K.; AC
38.3303.N/AGibbard and Creek, 1974Based on data from 288. - 337. K. See also Boublik, Fried, et al., 1984.; AC
35.2 ± 0.1338.CCounsell and Lee, 1973AC
35.6 ± 0.1331.CCounsell and Lee, 1973AC
36.2 ± 0.1321.CCounsell and Lee, 1973AC
37.0 ± 0.1306.CCounsell and Lee, 1973AC
36.7 ± 0.1313.CSvoboda, Veselý, et al., 1973AC
36.2 ± 0.1323.CSvoboda, Veselý, et al., 1973AC
35.6 ± 0.1333.CSvoboda, Veselý, et al., 1973AC
35.3 ± 0.1338.CSvoboda, Veselý, et al., 1973AC
34.7 ± 0.1343.CSvoboda, Veselý, et al., 1973AC
37.0352.N/AWilhoit and Zwolinski, 1973Based on data from 337. - 383. K.; AC
38.7290.EBBoublík and Aim, 1972Based on data from 275. - 336. K. See also Stephenson and Malanowski, 1987.; AC
38.3303.EBAmbrose and Sprake, 1970Based on data from 288. - 357. K.; AC
36.3368.N/AHirata, Suda, et al., 1967Based on data from 353. - 483. K.; AC
38.4293.N/AKlyueva, Mischenko, et al., 1960Based on data from 278. - 323. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. - 477.
A (kJ/mol) 45.3
alpha -0.31
beta 0.4241
Tc (K) 512.6
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
353.5 - 512.635.158531569.613-34.846Ambrose, Sprake, et al., 1975Coefficents calculated by NIST from author's data.
288.1 - 356.835.204091581.341-33.50Ambrose and Sprake, 1970Coefficents calculated by NIST from author's data.
353. - 483.5.313011676.569-21.728Hirata and Suda, 1967Coefficents calculated by NIST from author's data.

Enthalpy of fusion

DeltafusH (kJ/mol) Temperature (K) Reference Comment
3.18175.3Domalski and Hearing, 1996AC
2.196176.Maass and Walbauer, 1925DH

Entropy of fusion

DeltafusS (J/mol*K) Temperature (K) Reference Comment
12.5176.Maass and Walbauer, 1925DH

Entropy of fusion

DeltafusS (J/mol*K) Temperature (K) Reference Comment
3.7161.1Domalski and Hearing, 1996CAL
18.1175.3
4.0157.3
18.3175.6

Enthalpy of phase transition

DeltaHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.6360157.34crystaline, IIcrystaline, ICarlson and Westrum, 1971DH
3.2154175.59crystaline, IliquidCarlson and Westrum, 1971DH
1.540103.crystalineglassSugisaki, Suga, et al., 1968Glass transition.; DH
0.711157.8crystaline, IIcrystaline, IStaveley and Gupta, 1949DH
3.159175.4crystaline, IliquidStaveley and Gupta, 1949DH
0.6456157.4crystaline, IIcrystaline, IKelley, 1929DH
3.167175.2crystaline, IliquidKelley, 1929DH
0.590161.1crystaline, IIcrystaline, IParks, 1925DH
3.176175.3crystaline, IliquidParks, 1925DH

Entropy of phase transition

DeltaStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
4.04157.34crystaline, IIcrystaline, ICarlson and Westrum, 1971DH
18.31175.59crystaline, IliquidCarlson and Westrum, 1971DH
14.95103.crystalineglassSugisaki, Suga, et al., 1968Glass; DH
4.51157.8crystaline, IIcrystaline, IStaveley and Gupta, 1949DH
18.01175.4crystaline, IliquidStaveley and Gupta, 1949DH
4.10157.4crystaline, IIcrystaline, IKelley, 1929DH
18.08175.2crystaline, IliquidKelley, 1929DH
3.66161.1crystaline, IIcrystaline, IParks, 1925DH
18.12175.3crystaline, IliquidParks, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - J.E. Bartmess
M - M. M. Meot-Ner (Mautner) and S. G. Lias
RCD - R.C. Dunbar
ALS - H.Y. Afeefy, J.F. Liebman, and S.E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Chlorine anion + Methyl Alcohol = (Chlorine anion bullet Methyl Alcohol)

By formula: Cl- + CH4O = (Cl- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar69. ± 10.kJ/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar94.6J/mol*KHPMSEvans and Keesee, 1991gas phase; M
Deltar101.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Deltar92.0J/mol*KPHPMSSieck, 1985gas phase; M
Deltar95.8J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Deltar61.9J/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Deltar42. ± 3.kJ/molAVGN/AAverage of 10 values; Individual data points

CH3O- + Hydrogen cation = Methyl Alcohol

By formula: CH3O- + H+ = CH4O

Quantity Value Units Method Reference Comment
Deltar1597. ± 8.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Deltar1573.3 ± 2.6kJ/molH-TSNee, Osterwalder, et al., 2006gas phase; B
Deltar1573.4 ± 2.3kJ/molH-TSOsborn, Leahy, et al., 1998gas phase; B
Deltar1565. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale; B
Deltar1567. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Deltar1569.4 ± 2.5kJ/molTDEqMeot-ner and Sieck, 1986gas phase; Experimental entropy: 21.5 eu, 0.6 less than H2O; B

CH5O+ + Methyl Alcohol = (CH5O+ bullet Methyl Alcohol)

By formula: CH5O+ + CH4O = (CH5O+ bullet CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar136.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar135.kJ/molPHPMSSzulejko and McMahon, 1992gas phase; M
Deltar134.kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; M
Deltar138.kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Deltar141.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Deltar121.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar122.J/mol*KPHPMSSzulejko and McMahon, 1992gas phase; M
Deltar111.J/mol*KPHPMSMeot-Ner(Mautner), 1986gas phase; M
Deltar128.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M
Deltar119.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Deltar105.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O; Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

CH3O- + Methyl Alcohol = (CH3O- bullet Methyl Alcohol)

By formula: CH3O- + CH4O = (CH3O- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar123. ± 4.2kJ/molTDAsPaul and Kebarle, 1990gas phase; B,M
Deltar120.5 ± 1.3kJ/molTDAsMeot-ner and Sieck, 1986gas phase; B,M
Deltar123. ± 10.kJ/molTDAsCaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Deltar79.5 ± 8.4kJ/molN/AMoylan, Dodd, et al., 1985gas phase; B
Quantity Value Units Method Reference Comment
Deltar133.J/mol*KPHPMSPaul and Kebarle, 1990gas phase; M
Deltar112.J/mol*KPHPMSMeot-Ner(Mautner), 1986gas phase; n; M
Quantity Value Units Method Reference Comment
Deltar84.94kJ/molIMREMustanir, Matsuoka, et al., 2006gas phase; B
Deltar82.8 ± 4.2kJ/molTDAsPaul and Kebarle, 1990gas phase; B
Deltar87.0 ± 2.1kJ/molTDAsMeot-ner and Sieck, 1986gas phase; B
Deltar84.9 ± 6.7kJ/molTDAsCaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
79.9296.FAMacKay and Bohme, 1978gas phase; From thermochemical cycle,switching reaction(CH3O-)H2O; Meot-Ner(Mautner), 1986; M

C4H9O- + Methyl Alcohol = (C4H9O- bullet Methyl Alcohol)

By formula: C4H9O- + CH4O = (C4H9O- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar107. ± 4.2kJ/molTDEqMeot-Ner and Sieck, 1986gas phase; B,M
Deltar97.9 ± 9.2kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Deltar109. ± 10.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; B,M
Quantity Value Units Method Reference Comment
Deltar117.J/mol*KN/AMeot-Ner and Sieck, 1986gas phase; Entropy change calculated or estimated; M
Deltar123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Deltar42.68kJ/molIMREMustanir, Matsuoka, et al., 2006gas phase; B
Deltar71.5 ± 6.7kJ/molTDEqMeot-Ner and Sieck, 1986gas phase; B
Deltar72.4 ± 6.7kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; B,M

C2H5O- + Methyl Alcohol = (C2H5O- bullet Methyl Alcohol)

By formula: C2H5O- + CH4O = (C2H5O- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar114. ± 12.kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Deltar107. ± 7.9kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Quantity Value Units Method Reference Comment
Deltar123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Deltar77.8 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
56.1296.FAMackay, Rakshit, et al., 1982gas phase; From thermochemical cycle,switching reaction(CH3O-)CH3OH; Caldwell and Kebarle, 1986, Taft, 1983; M

(Chlorine anion bullet Methyl Alcohol) + Methyl Alcohol = (Chlorine anion bullet 2Methyl Alcohol)

By formula: (Cl- bullet CH4O) + CH4O = (Cl- bullet 2CH4O)

Quantity Value Units Method Reference Comment
Deltar59.0 ± 1.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar57.32 ± 0.84kJ/molTDAsEvans and Keesee, 1991gas phase; B,M
Deltar59.0 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Deltar54.4 ± 2.9kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar101.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Deltar92.0J/mol*KHPMSEvans and Keesee, 1991gas phase; M
Deltar81.2J/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Deltar30.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar29.7kJ/molTDAsEvans and Keesee, 1991gas phase; B
Deltar28. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Deltar30.1 ± 1.7kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

(Chlorine anion bullet 2Methyl Alcohol) + Methyl Alcohol = (Chlorine anion bullet 3Methyl Alcohol)

By formula: (Cl- bullet 2CH4O) + CH4O = (Cl- bullet 3CH4O)

Quantity Value Units Method Reference Comment
Deltar48.12 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar45.2 ± 1.3kJ/molTDAsEvans and Keesee, 1991gas phase; B,M
Deltar49.4 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Deltar51.5 ± 2.5kJ/molN/AYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar95.8J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Deltar95.0J/mol*KHPMSEvans and Keesee, 1991gas phase; M
Deltar98.7J/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Deltar21.2kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar16.7kJ/molTDAsEvans and Keesee, 1991gas phase; B
Deltar21. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Deltar21.8 ± 1.3kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

C8H5- + Methyl Alcohol = (C8H5- bullet Methyl Alcohol)

By formula: C8H5- + CH4O = (C8H5- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar90.0 ± 8.4kJ/molIMREChabinyc and Brauman, 1999gas phase; B
Deltar90. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Deltar123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Deltar46.0 ± 8.4kJ/molIMREChabinyc and Brauman, 1999gas phase; B
Deltar53.1 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

CN- + Methyl Alcohol = (CN- bullet Methyl Alcohol)

By formula: CN- + CH4O = (CN- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar65.7 ± 3.3kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B,M
Deltar69.5 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B
Deltar69. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar96.J/mol*KPHPMSLarson, Szulejko, et al., 1988gas phase; M
Deltar102.J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Deltar36.8 ± 0.84kJ/molTDAsLarson, Szulejko, et al., 1988gas phase; B
Deltar43.5 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B
Deltar38. ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

Lithium ion (1+) + Methyl Alcohol = (Lithium ion (1+) bullet Methyl Alcohol)

By formula: Li+ + CH4O = (Li+ bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar154. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD
Deltar159.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Deltar160.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Deltar110.J/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Deltar127.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

Iodide + Methyl Alcohol = (Iodide bullet Methyl Alcohol)

By formula: I- + CH4O = (I- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar49.79 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar47.3 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Deltar46.9kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Deltar46.kJ/molPHPMSCaldwell, Masucci, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar71.5J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Deltar74.5J/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Deltar24.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar25. ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B
Deltar24. ± 8.4kJ/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..I- of Caldwell and Kebarle, 1984; B

C2H5O+ + Methyl Alcohol = (C2H5O+ bullet Methyl Alcohol)

By formula: C2H5O+ + CH4O = (C2H5O+ bullet CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar127.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Deltar113.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Deltar93.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C2H7O+ + Methyl Alcohol = (C2H7O+ bullet Methyl Alcohol)

By formula: C2H7O+ + CH4O = (C2H7O+ bullet CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar124.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Deltar111.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Deltar90.8kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H7O- + Methyl Alcohol = (C3H7O- bullet Methyl Alcohol)

By formula: C3H7O- + CH4O = (C3H7O- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar113. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Deltar123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Deltar76.1 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

Fluorine anion + Methyl Alcohol = (Fluorine anion bullet Methyl Alcohol)

By formula: F- + CH4O = (F- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar124. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Deltar123. ± 9.2kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Deltar97.5 ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar105.J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Deltar94.6J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Deltar95.4 ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Deltar66.1 ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Chlorine anion bullet 3Methyl Alcohol) + Methyl Alcohol = (Chlorine anion bullet 4Methyl Alcohol)

By formula: (Cl- bullet 3CH4O) + CH4O = (Cl- bullet 4CH4O)

Quantity Value Units Method Reference Comment
Deltar43.9 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Deltar43.93kJ/molTDAsEvans and Keesee, 1991gas phase; B
Deltar46.9 ± 2.5kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar95.8J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Deltar110.J/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Deltar15. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Deltar15.5kJ/molTDAsEvans and Keesee, 1991gas phase; B
Deltar13.8 ± 0.84kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

Bromine anion + Methyl Alcohol = (Bromine anion bullet Methyl Alcohol)

By formula: Br- + CH4O = (Br- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar60.67 ± 0.42kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar58.2 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar73.6J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar33.5 ± 0.42kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar36. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B
Deltar35. ± 8.4kJ/molIMRETanabe, Morgon, et al., 1996gas phase; Anchored to H2O..Br- of Hiraoka, Mizure, et al., 19882; B

C3H9Si+ + Methyl Alcohol = (C3H9Si+ bullet Methyl Alcohol)

By formula: C3H9Si+ + CH4O = (C3H9Si+ bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar164.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar124.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
106.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Sodium ion (1+) + Methyl Alcohol = (Sodium ion (1+) bullet Methyl Alcohol)

By formula: Na+ + CH4O = (Na+ bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar97.1 ± 5.4kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Deltar91.6 ± 5.9kJ/molCIDTArmentrout and Rodgers, 2000RCD
Deltar100. ± 0.8kJ/molHPMSHoyau, Norrman, et al., 1999RCD
Deltar111. ± 0.8kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar85800.J/mol*KHPMSHoyau, Norrman, et al., 1999RCD
Deltar102.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
72.4298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(Chlorine anion bullet 4Methyl Alcohol) + Methyl Alcohol = (Chlorine anion bullet 5Methyl Alcohol)

By formula: (Cl- bullet 4CH4O) + CH4O = (Cl- bullet 5CH4O)

Quantity Value Units Method Reference Comment
Deltar38. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Deltar43.9 ± 2.1kJ/molN/AYamdagni, Payzant, et al., 1973gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar90.8J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Deltar107.J/mol*KPHPMSYamdagni, Payzant, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Deltar11. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Deltar12.1 ± 0.42kJ/molTDAsYamdagni, Payzant, et al., 1973gas phase; B

Water + Propane, 2,2-dimethoxy- = 2Methyl Alcohol + Acetone

By formula: H2O + C5H12O2 = 2CH4O + C3H6O

Quantity Value Units Method Reference Comment
Deltar20.3 ± 0.04kJ/molCmWiberg, Morgan, et al., 1994liquid phase; ALS
Deltar20.43 ± 0.04kJ/molCmWiberg and Squires, 1979liquid phase; Heat of hydrolysis; ALS
Deltar20.433 ± 0.028kJ/molCmWiberg and Squires, 1979, 2liquid phase; solvent: Water; Hydrolysis; ALS
Deltar-16.5 ± 0.2kJ/molCmStern and Dorer, 1962liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 15.4 ± 0.2 kJ/mol; Heat of hydrolysis; ALS

(CH5O+ bullet Methyl Alcohol) + Methyl Alcohol = (CH5O+ bullet 2Methyl Alcohol)

By formula: (CH5O+ bullet CH4O) + CH4O = (CH5O+ bullet 2CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar88.7kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar87.9kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; M
Deltar89.1kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Deltar113.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar108.J/mol*KPHPMSMeot-Ner(Mautner), 1986gas phase; M
Deltar118.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

C5H11O- + Methyl Alcohol = (C5H11O- bullet Methyl Alcohol)

By formula: C5H11O- + CH4O = (C5H11O- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar108. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Deltar71.1 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

C6H11S2- + Methyl Alcohol = (C6H11S2- bullet Methyl Alcohol)

By formula: C6H11S2- + CH4O = (C6H11S2- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar92. ± 10.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Deltar55.2 ± 6.7kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

(Copper ion (1+) bullet Methyl Alcohol) + Methyl Alcohol = (Copper ion (1+) bullet 2Methyl Alcohol)

By formula: (Cu+ bullet CH4O) + CH4O = (Cu+ bullet 2CH4O)

Quantity Value Units Method Reference Comment
Deltar57.7kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Deltar100.J/mol*KN/AEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Deltar26.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M

(CH5O+ bullet 2Water bullet 3Methyl Alcohol) + Water = (CH5O+ bullet 3Water bullet 3Methyl Alcohol)

By formula: (CH5O+ bullet 2H2O bullet 3CH4O) + H2O = (CH5O+ bullet 3H2O bullet 3CH4O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Deltar38.kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar92.J/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
13.272.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

(CH5O+ bullet 3Water bullet 2Methyl Alcohol) + Water = (CH5O+ bullet 4Water bullet 2Methyl Alcohol)

By formula: (CH5O+ bullet 3H2O bullet 2CH4O) + H2O = (CH5O+ bullet 4H2O bullet 2CH4O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Deltar39.kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar92.J/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
13.272.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

(CH5O+ bullet 4Water bullet Methyl Alcohol) + Water = (CH5O+ bullet 5Water bullet Methyl Alcohol)

By formula: (CH5O+ bullet 4H2O bullet CH4O) + H2O = (CH5O+ bullet 5H2O bullet CH4O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Deltar39.kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar92.J/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
15.269.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

(CH5O+ bullet Water) + Methyl Alcohol = (CH5O+ bullet Methyl Alcohol bullet Water)

By formula: (CH5O+ bullet H2O) + CH4O = (CH5O+ bullet CH4O bullet H2O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar103.kJ/molPHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar120.J/mol*KN/AMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
48.5452.PHPMSMeot-Ner(Mautner), 1986gas phase; n, Entropy change calculated or estimated; M

C6H5NO2- + Methyl Alcohol = (C6H5NO2- bullet Methyl Alcohol)

By formula: C6H5NO2- + CH4O = (C6H5NO2- bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar63.18 ± 0.84kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar109.J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Deltar30.5 ± 1.7kJ/molTDAsSieck, 1985gas phase; B
Deltar26. ± 6.7kJ/molIMREChowdhury, Grimsrud, et al., 1987gas phase; Free energy affinity at 70°C.; B

Free energy of reaction

DeltarG° (kJ/mol) T (K) Method Reference Comment
26.343.PHPMSChowdhury, 1987gas phase; M

Copper ion (1+) + Methyl Alcohol = (Copper ion (1+) bullet Methyl Alcohol)

By formula: Cu+ + CH4O = (Cu+ bullet CH4O)

Quantity Value Units Method Reference Comment
Deltar56.1kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Deltar100.J/mol*KN/AEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Deltar25.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M

(Fluorine anion bullet Methyl Alcohol) + Methyl Alcohol = (Fluorine anion bullet 2Methyl Alcohol)

By formula: (F- bullet CH4O) + CH4O = (F- bullet 2CH4O)

Quantity Value Units Method Reference Comment
Deltar84.9 ± 1.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar80.8 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar97.1J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar54.27kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar51.9 ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Fluorine anion bullet 2Methyl Alcohol) + Methyl Alcohol = (Fluorine anion bullet 3Methyl Alcohol)

By formula: (F- bullet 2CH4O) + CH4O = (F- bullet 3CH4O)

Quantity Value Units Method Reference Comment
Deltar63.2 ± 2.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar60.7 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar88.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar33.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar34. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Bromine anion bullet 2Methyl Alcohol) + Methyl Alcohol = (Bromine anion bullet 3Methyl Alcohol)

By formula: (Br- bullet 2CH4O) + CH4O = (Br- bullet 3CH4O)

Quantity Value Units Method Reference Comment
Deltar39.7 ± 2.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar44.4 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar90.4J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar17.8kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar18. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Bromine anion bullet Methyl Alcohol) + Methyl Alcohol = (Bromine anion bullet 2Methyl Alcohol)

By formula: (Br- bullet CH4O) + CH4O = (Br- bullet 2CH4O)

Quantity Value Units Method Reference Comment
Deltar50.21 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar52.3 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar86.6J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar23.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar26. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Iodide bullet 2Methyl Alcohol) + Methyl Alcohol = (Iodide bullet 3Methyl Alcohol)

By formula: (I- bullet 2CH4O) + CH4O = (I- bullet 3CH4O)

Quantity Value Units Method Reference Comment
Deltar32.2 ± 2.5kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar41. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar93.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar14.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar13. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Iodide bullet Methyl Alcohol) + Methyl Alcohol = (Iodide bullet 2Methyl Alcohol)

By formula: (I- bullet CH4O) + CH4O = (I- bullet 2CH4O)

Quantity Value Units Method Reference Comment
Deltar39.7 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar46.4 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B,M
Quantity Value Units Method Reference Comment
Deltar94.6J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Deltar17.8kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Deltar18. ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; B

(Chlorine anion bullet 10Methyl Alcohol) + Methyl Alcohol = (Chlorine anion bullet 11Methyl Alcohol)

By formula: (Cl- bullet 10CH4O) + CH4O = (Cl- bullet 11CH4O)

Quantity Value Units Method Reference Comment
Deltar31. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Deltar84.J/mol*KN/AHiraoka and Mizuse, 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar5.4 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B

(Sodium ion (1+) bullet Methyl Alcohol) + Methyl Alcohol = (Sodium ion (1+) bullet 2Methyl Alcohol)

By formula: (Na+ bullet CH4O) + CH4O = (Na+ bullet 2CH4O)

Quantity Value Units Method Reference Comment
Deltar85.8 ± 5.9kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Deltar89.5 ± 6.7kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Deltar85.8 ± 6.7kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Deltar84.5 ± 0.8kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Deltar90.8J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

H4ClO2- + Methyl Alcohol + 2Water = CH8ClO3-

By formula: H4ClO2- + CH4O + 2H2O = CH8ClO3-

Quantity Value Units Method Reference Comment
Deltar43.51 ± 0.84kJ/molTDAsEvans and Keesee, 1991gas phase; B
Deltar47.7 ± 1.3kJ/molTDAsEvans and Keesee, 1991gas phase; For solvation by MeOH of core ion; B
Quantity Value Units Method Reference Comment
Deltar24.3kJ/molTDAsEvans and Keesee, 1991gas phase; B
Deltar25.1kJ/molTDAsEvans and Keesee, 1991gas phase; For solvation by MeOH of core ion; B

(CH5O+ bullet 2Methyl Alcohol) + Dimethyl ether = (CH5O+ bullet Dimethyl ether bullet 2Methyl Alcohol)

By formula: (CH5O+ bullet 2CH4O) + C2H6O = (CH5O+ bullet C2H6O bullet 2CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar72.0kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Deltar120.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

(CH5O+ bullet 3Methyl Alcohol) + Dimethyl ether = (CH5O+ bullet Dimethyl ether bullet 3Methyl Alcohol)

By formula: (CH5O+ bullet 3CH4O) + C2H6O = (CH5O+ bullet C2H6O bullet 3CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar57.3kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Deltar129.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

(CH5O+ bullet 2Methyl Alcohol) + Methyl Alcohol = (CH5O+ bullet 3Methyl Alcohol)

By formula: (CH5O+ bullet 2CH4O) + CH4O = (CH5O+ bullet 3CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar58.6kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar67.4kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Deltar100.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar121.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ bullet 3Methyl Alcohol) + Methyl Alcohol = (CH5O+ bullet 4Methyl Alcohol)

By formula: (CH5O+ bullet 3CH4O) + CH4O = (CH5O+ bullet 4CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar47.3kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar56.5kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Deltar93.3J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar120.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ bullet 4Methyl Alcohol) + Methyl Alcohol = (CH5O+ bullet 5Methyl Alcohol)

By formula: (CH5O+ bullet 4CH4O) + CH4O = (CH5O+ bullet 5CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar42.7kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar52.3kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Deltar98.3J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar130.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ bullet Methyl Alcohol) + Dimethyl ether = (CH5O+ bullet Dimethyl ether bullet Methyl Alcohol)

By formula: (CH5O+ bullet CH4O) + C2H6O = (CH5O+ bullet C2H6O bullet CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar91.6kJ/molPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M
Quantity Value Units Method Reference Comment
Deltar105.J/mol*KPHPMSHiraoka, Grimsrud, et al., 1974gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M

(CH5O+ bullet 5Methyl Alcohol) + Methyl Alcohol = (CH5O+ bullet 6Methyl Alcohol)

By formula: (CH5O+ bullet 5CH4O) + CH4O = (CH5O+ bullet 6CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar39.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar49.8kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Deltar98.3J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar138.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(CH5O+ bullet 6Methyl Alcohol) + Methyl Alcohol = (CH5O+ bullet 7Methyl Alcohol)

By formula: (CH5O+ bullet 6CH4O) + CH4O = (CH5O+ bullet 7CH4O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Deltar38.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar50.2kJ/molPHPMSGrimsrud and Kebarle, 1973gas phase; M
Quantity Value Units Method Reference Comment
Deltar108.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Deltar149.J/mol*KPHPMSGrimsrud and Kebarle, 1973gas phase; M

(Fluorine anion bullet 11Methyl Alcohol) + Methyl Alcohol = (Fluorine anion bullet 12Methyl Alcohol)

By formula: (F- bullet 11CH4O) + CH4O = (F- bullet 12CH4O)

Quantity Value Units Method Reference Comment
Deltar36. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1991gas phase; Entropy estimated.; B,M
Quantity Value Units Method Reference Comment
Deltar100.J/mol*KN/AHiraoka and Yamabe, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Deltar4.6 ± 8.4kJ/molTDAsHiraoka and Yamabe, 1991gas phase; Entropy estimated.; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: T.L. Myers, R.G. Tonkyn, A.M. Oeck, T.O. Danby, J.S. Loring, M.S. Taubman, S.W. Sharpe, J.C. Birnbaum, and T.J. Johnson

Data compiled by: P.M. Chu, F.R. Guenther, G.C. Rhoderick, and W.J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spec Data Center, S.E. Stein, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 72
NIST MS number 229809

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: T. Shimanouchi

Gas     Symmetry:   Cs     Symmetry Number sigma = 1


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a' 1 OH str 3681  A 3681 M gas
a' 2 CH3 d-str 3000  C 3000 M gas
a' 3 CH3 s-str 2844  A 2844 S gas
a' 4 CH3 d-deform 1477  B 1477 M gas OV(«nu»10)
a' 5 CH3 s-deform 1455  A 1455 M gas
a' 6 OH bend 1345  B 1345 S gas
a' 7 CH3 rock 1060  D 1060 W gas OV(«nu»8)
a' 8 CO str 1033  A 1033 VS gas 1032 gas
a 9 CH3 d-str 2960  C 2960 S gas 2955 gas
a 10 CH3 d-deform 1477  B 1477 M gas OV(«nu»4)
a 11 CH3 rock 1165  C 1165 liq.
a 12 Torsion 295  A 80~300 gas ?/? Value of «nu»12 is undefined because of large coupling between internal & overall rotations.
a 12 Torsion 200  E 80~300 gas ?/? Value of «nu»12 is undefined because of large coupling between internal & overall rotations.

Source: Shimanouchi, 1972

Liquid     Symmetry:   Cs     Symmetry Number sigma = 1


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a' 1 OH str 3328  D 3328 vb liq. 3270-3480 liq.
a' 2 CH3 d-str 2980  C 2980 M liq. 2993 liq.
a' 3 CH3 s-str 2834  C 2834 S liq. 2834 liq.
a' 4 CH3 d-deform 1480  C 1480 M liq. 1464 liq. OV(«nu»10)
a' 5 CH3 s-deform 1450  C 1450 M liq.
a' 6 OH bend 1418  C 1418 M b liq.
a' 7 CH3 rock 1115  C 1115 M liq. 1107 liq.
a' 8 CO str 1030  C 1030 VS liq. 1033 liq.
a 9 CH3 d-str 2946  C 2946 S liq. 2940 liq.
a 10 CH3 d-deform 1480  C 1480 M liq. 1464 liq. OV(«nu»4)
a 11 CH3 rock 1165  C 1165 liq.
a 12 Torsion 655  D 655 vb liq.

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
bBroad
vbVery broad
OVOverlapped by band indicated in parentheses.
A0~1 cm-1 uncertainty
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Rossini, 1932
Rossini, F.D., The heats of combustion of methyl and ethyl alcohols, J. Res. NBS, 1932, 8, 119-139. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Ivash E.V., 1955
Ivash E.V., Thermodynamic properties of ideal gaseous methanol, J. Chem. Phys., 1955, 23, 1814-1818. [all data]

Zhuravlev E.Z., 1959
Zhuravlev E.Z., Isotopic effect on thermodynamic functions of some organic deuterocompounds in the ideal gas state, Tr. Khim. i Khim. Tekhnol., 1959, 2, 475-485. [all data]

Chen S.S., 1977
Chen S.S., Thermodynamic properties of normal and deuterated methanols, J. Phys. Chem. Ref. Data, 1977, 6, 105-112. [all data]

Chao J., 1986
Chao J., Ideal gas thermodynamic properties of simple alkanols, Int. J. Thermophys., 1986, 7, 431-442. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Chao J., 1986, 2
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

De Vries T., 1941
De Vries T., The heat capacity of organic vapors. I. Methyl alcohol, J. Am. Chem. Soc., 1941, 63, 1343-1346. [all data]

Weltner W., 1951
Weltner W., Jr., Methyl alcohol: the entropy, heat capacity and polymerization equilibria in the vapor, and potential barrier to internal rotation, J. Am. Chem. Soc., 1951, 73, 2606-2610. [all data]

Baroody and Carpenter, 1972
Baroody, E.E.; Carpenter, G.A., Heats of formation of propellant compounds (U), Rpt. Naval Ordnance Systems Command Task No. 331-003/067-1/UR2402-001 for Naval Ordance Station, Indian Head, MD, 1972, 1-9. [all data]

Chao and Rossini, 1965
Chao, J.; Rossini, F.D., Heats of combustion, formation, and isomerization of nineteen alkanols, J. Chem. Eng. Data, 1965, 10, 374-379. [all data]

Rossini, 1934
Rossini, F.D., Heats of combustion and of formation of the normal aliphatic alcohols in the gaseous and liquid states, and the energies of their atomic linkages, J. Res. NBS, 1934, 13, 189-197. [all data]

Green, 1960
Green, J.H.S., Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Parks, 1925
Parks, G.S., Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols, J. Am. Chem. Soc., 1925, 47, 338-345. [all data]

Richards and Davis, 1920
Richards, T.W.; Davis, H.S., The heats of combustion of benzene, toluene, aliphatic alcohols, cyclohexanol, and other carbon compounds, J. Am. Chem. Soc., 1920, 42, 1599-1617. [all data]

Rossini, 1931
Rossini, F.D., The heat of combustion of methyl alcohol, Proc. Nat'l Acad. Sci., 1931, 17, 343-347. [all data]

Carlson and Westrum, 1971
Carlson, H.G.; Westrum, E.F., Jr., Methanol: heat capacity, enthalpies of transition and melting, and thermodynamic properties from 5-300K, J. Chem. Phys., 1971, 54, 1464-1471. [all data]

Kelley, 1929
Kelley, K.K., The heat capacity of methyl alcohol from 16K to 298K and the corresponding entropy and free energy, J. Am. Chem. Soc., 1929, 51, 180-187. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Ahlberg, Blanchard, et al., 1937
Ahlberg, J.E.; Blanchard, E.R.; Lundberg, W.O., The heat capacities of benzene, methyl alcohol and glycerol at very low temperatures, J. Chem. Phys., 1937, 5, 537-551. [all data]

Filatov and Afanas'ev, 1992
Filatov, V.A.; Afanas'ev, V.N., Differential heat-flux calorimeter, Izv. Vysshikh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1992, 35(8), 97-100. [all data]

Khasanshin and Zykova, 1989
Khasanshin, T.S.; Zykova, T.B., Specific heat of saturated monatomic alcohols, Inzh. -Fiz. Zhur., 1989, 56(6), 991-994. [all data]

Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]

Okano, Ogawa, et al., 1988
Okano, T.; Ogawa, H.; Murakami, S., Molar excess volumes, isentropic compressions, and isobaric heat capacities of methanol-isomeric butanol systems at 298.15 K, Can. J. Chem., 1988, 66, 713-717. [all data]

Lankford and Criss, 1987
Lankford, J.I.; Criss, C.M., Partial molar heat caqpacities of selected electrolytes and benzene in methanol and dimethyldulfoxide at 25, 40 and 80°C, J. Solution Chem., 1987, 16(11), 885-906. [all data]

Korolev, Kukharenko, et al., 1986
Korolev, V.P.; Kukharenko, V.A.; Krestov, G.A., Specific heat of binary mixtures of aliphatic alcohols with N,N-dimethylformamide and dimethylsulphoxide, Zhur. Fiz. Khim., 1986, 60, 1854-1857. [all data]

Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S., Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K, Thermochim. Acta, 1986, 109, 145-154. [all data]

Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]

Costas and Patterson, 1985
Costas, M.; Patterson, D., Self-association of alcohols in inert solvents, J. Chem. Soc., Faraday Trans. 1, 1985, 81, 635-654. [all data]

Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]

Benson and D'Arcy, 1982
Benson, G.C.; D'Arcy, P.J., Excess isobaric heat capacities of water - n-alcohol mixtures, J. Chem. Eng. Data, 1982, 27, 439-442. [all data]

Villamanan, Casanova, et al., 1982
Villamanan, M.A.; Casanova, C.; Roux-Desgranges, G.; Grolier, J.-P.E., Thermochemical behavior of mixtures of n-alcohol + aliphatic ether: heat capacities and volumes at 298.15 K, Thermochim. Acta, 1982, 52, 279-283. [all data]

Atalla, El-Sharkawy, et al., 1981
Atalla, S.R.; El-Sharkawy, A.A.; Gasser, F.A., Measurement of thermal properties of liquids with an AC heated-wire technique, Inter. J. Thermophys., 1981, 2(2), 155-162. [all data]

Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G., Heat capacities at constant volume, free volumes, and rotational freedom in some liquids, Aust. J. Chem., 1971, 24, 1817-1822. [all data]

Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]

Katayama, 1962
Katayama, T., Heats of mixing, liquid heat capacities and enthalpy, concentration charts for methanol-water and isopropanol-water systems, Kagaku Kogaku, 1962, 26, 361-372. [all data]

Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]

Hough, Mason, et al., 1950
Hough, E.W.; Mason, D.M.; Sage, B.H., Heat capacities of several organic liquids, J. Am. Chem. Soc., 1950, 72, 5775-5777. [all data]

Staveley and Gupta, 1949
Staveley, L.A.K.; Gupta, A.K., A semi-micro low-temperature calorimeter, and a comparison of some thermodynamic properties of methyl alcohol and methyl deuteroxide, Trans. Faraday Soc., 1949, 45, 50-61. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Fiock, Ginnings, et al., 1931
Fiock, E.F.; Ginnings, D.C.; Holton, W.B., Calorimetric determinations of thermal properties of methyl alcohol, ethyl alcohol, and benzene, J. Res., 1931, NBS 6, 881-900. [all data]

Mitsukuri and Hara, 1929
Mitsukuri, S.; Hara, K., Specific heats of acetone, methyl-, ethyl-, and n-propyl-alcohols at low temperatures, Bull. Chem. Soc. Japan, 1929, 4, 77-81. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Sugisaki, Suga, et al., 1968
Sugisaki, M.; Suga, H.; Seki, S., Calorimetric study of the glassy state. III. Novel type calorimeter for study of glassy state and heat capacity of glassy methanol, Bull. Chem. Soc. Japan, 1968, 41, 2586-2591. [all data]

Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J., The specific heats and latent heats of fusion of ice and of several organic compounds, J. Am. Chem. Soc., 1925, 47, 1-9. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Craven and de Reuck, 1986
Craven, R.J.B.; de Reuck, K.M., Ideal-Gas and Saturation Properties of Methanol, Int. J. Thermophys., 1986, 7, 541. [all data]

Francesconi, Lentz, et al., 1981
Francesconi, A.Z.; Lentz, H.; Franck, E.U., Phase Equilibriums and PVT Data for the Methane-Methanol System to 300 MPa and 240 degree C, J. Phys. Chem., 1981, 85, 3303. [all data]

Zubarev and Bagdonas, 1969
Zubarev, V.N.; Bagdonas, A., Saturation Curve Properties and Specific Volumes of Methanol, Teploenergetika (Moscow), 1969, 16, 88-91. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Yerlett and Wormald, 1986
Yerlett, T.K.; Wormald, C.J., The enthalpy of methanol, The Journal of Chemical Thermodynamics, 1986, 18, 8, 719-726, https://doi.org/10.1016/0021-9614(86)90105-9 . [all data]

Cervenkova and Boublik, 1984
Cervenkova, Irena; Boublik, Tomas, Vapor pressure, refractive indexes and densities at 20.0.degree.C, and vapor-liquid equilibrium at 101.325 kPa in the tert-amyl methyl ether-methanol system, J. Chem. Eng. Data, 1984, 29, 4, 425-427, https://doi.org/10.1021/je00038a017 . [all data]

Gibbard and Creek, 1974
Gibbard, H. Frank; Creek, Jefferson L., Vapor pressure of methanol from 288.15 to 337.65.deg.K, J. Chem. Eng. Data, 1974, 19, 4, 308-310, https://doi.org/10.1021/je60063a013 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Counsell and Lee, 1973
Counsell, J.F.; Lee, D.A., Thermodynamic properties of organic oxygen compounds 31. Vapour heat capacity and enthalpy of vaporization of methanol, The Journal of Chemical Thermodynamics, 1973, 5, 4, 583-589, https://doi.org/10.1016/S0021-9614(73)80107-7 . [all data]

Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature, Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Boublík and Aim, 1972
Boublík, T.; Aim, K., Heats of vaporization of simple non-spherical molecule compounds, Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513 . [all data]

Ambrose and Sprake, 1970
Ambrose, D.; Sprake, C.H.S., Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols, The Journal of Chemical Thermodynamics, 1970, 2, 5, 631-645, https://doi.org/10.1016/0021-9614(70)90038-8 . [all data]

Hirata, Suda, et al., 1967
Hirata, Mitsuho; Suda, Seijiro; Onodera, Yutaka, Vapor Pressure of Methanol in High Pressure Regions, Chemical engineering, 1967, 31, 4, 339-342,a1, https://doi.org/10.1252/kakoronbunshu1953.31.339 . [all data]

Klyueva, Mischenko, et al., 1960
Klyueva, M.L.; Mischenko, K.P.; Fedorov, M.K., Zh. Prikl. Khim. (S.-Peterburg), 1960, 3, 473. [all data]

Ambrose, Sprake, et al., 1975
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature, J. Chem. Thermodyn., 1975, 7, 2, 185-190, https://doi.org/10.1016/0021-9614(75)90267-0 . [all data]

Hirata and Suda, 1967
Hirata, M.; Suda, S., Vapor Pressure on Methanol in High Pressure Regions, Kagaku Kogaku, 1967, 31, 4, 339-342, https://doi.org/10.1252/kakoronbunshu1953.31.339 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Evans and Keesee, 1991
Evans, D.H.; Keesee, R.G., Thermodynamics of Gas-Phase Mixed-Solvent Cluster Ions - Water and Methanol on K+ and Cl- and Comparison to Liquid Solutions, J. Phys. Chem., 1991, 95, 9, 3558, https://doi.org/10.1021/j100162a024 . [all data]

Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S., Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH, Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4 . [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Yamdagni, Payzant, et al., 1973
Yamdagni, R.; Payzant, J.D.; Kebarle, P., Solvation of Cl- and O2- with H2O, CH3OH, and CH3CN in the gas phase, Can. J. Chem., 1973, 51, 2507. [all data]

Nee, Osterwalder, et al., 2006
Nee, M.J.; Osterwalder, A.; Zhou, J.; Neumark, D.M., Slow electron velocity-map imaging photoelectron spectra of the methoxide anion, J. Chem. Phys., 2006, 125, 1, 014306, https://doi.org/10.1063/1.2212411 . [all data]

Osborn, Leahy, et al., 1998
Osborn, D.L.; Leahy, D.J.; Kim, E.H.; deBeer, E.; Neumark, D.M., Photoelectron spectroscopy of CH3O- and CD3O-, Chem. Phys. Lett., 1998, 292, 4-6, 651-655, https://doi.org/10.1016/S0009-2614(98)00717-9 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Szulejko and McMahon, 1992
Szulejko, J.; McMahon, T.B., personal communication, 1992. [all data]

Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M., Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol, J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P., Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase, J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076 . [all data]

Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E., Anion-alcohol hydrogen bond strengths in the gas phase, J. Am. Chem. Soc., 1984, 106, 4660. [all data]

Moylan, Dodd, et al., 1985
Moylan, C.R.; Dodd, J.A.; Brauman, J.I., Electron photodetachment spectroscopy of Sslvated anions. A probe of structure and energetics, Chem. Phys. Lett., 1985, 118, 38. [all data]

Mustanir, Matsuoka, et al., 2006
Mustanir; Matsuoka, M.; Mishima, M.; Koch, H., Stability of complexes of phenylacetylides and benzyl alkoxides with methanol in the gas phase. Acid-base correlation in the ionic hydrogen-bond strength, Bull. Chem. Soc. Japan, 2006, 79, 7, 1118-1125, https://doi.org/10.1246/bcsj.79.1118 . [all data]

MacKay and Bohme, 1978
MacKay, G.I.; Bohme, D.K., Proton-Transfer Reactions in Nitromethane at 297K, Int. J. Mass Spectrom. Ion Phys., 1978, 26, 4, 327, https://doi.org/10.1016/0020-7381(78)80052-7 . [all data]

Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W., The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions, J. Am. Chem. Soc., 1986, 108, 7525. [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Mackay, Rakshit, et al., 1982
Mackay, G.I.; Rakshit, A.B.; Bohme, D.K., An Experimental Study of the Reactivity and Relative Basicity of the Methoxide Anion in the Gas Phase at Room Temperature, and their Perturbation by Methanol Solvent, Can. J. Chem., 1982, 60, 20, 2594, https://doi.org/10.1139/v82-373 . [all data]

Caldwell and Kebarle, 1986
Caldwell, G.; Kebarle, P., Mobility of Gaseous Ions in Weak Electric Fields in Unpublished results, 1986. [all data]

Taft, 1983
Taft, R.W., Protonic acidities and basicities in the gas phase and in solution: Substiuent and solvent effects, Prog. Phys. Org. Chem., 1983, 14, 247. [all data]

Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B., Stepwise solvation of halides by alcohol molecules in the gas phase, Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5 . [all data]

Chabinyc and Brauman, 1999
Chabinyc, M.L.; Brauman, J.I., Hydrogen bond strength and acidity. Structural and energetic correlations for acetylides and alcohols, J. Phys. Chem. A, 1999, 103, 46, 9163-9166, https://doi.org/10.1021/jp992852v . [all data]

Larson, Szulejko, et al., 1988
Larson, J.W.; Szulejko, J.E.; McMahon, T.B., Gas Phase Lewis Acid-Base Interactions. An Experimental Determination of Cyanide Binding Energies From Ion Cyclotron Resonance and High-Pressure Mass Spectrometric Equilibrium Measurements., J. Am. Chem. Soc., 1988, 110, 23, 7604, https://doi.org/10.1021/ja00231a004 . [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S., Solvation of Halide Ions with CH3OH in the gas Phase, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 133, https://doi.org/10.1016/0168-1176(91)85101-Q . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Tanabe, Morgon, et al., 1996
Tanabe, F.K.J.; Morgon, N.H.; Riveros, J.M., Relative Bromide and Iodide Affinity of Simple Solvent Molecules Determined by FT-ICR, J. Phys. Chem., 1996, 100, 8, 2862-2866, https://doi.org/10.1021/jp952290p . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Hiraoka, Mizure, et al., 1988
Hiraoka, K.; Mizure, S.; Yamabe, S.; Nakatsuji, Y., Gas Phase Clustering Reactions of CN- and CH2CN- with MeCN, Chem. Phys. Lett., 1988, 148, 6, 497, https://doi.org/10.1016/0009-2614(88)80320-8 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B., Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments, Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Hoyau, Norrman, et al., 1999
Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G., A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase, J. Am. Chem. Soc., 1999, 121, 38, 8864, https://doi.org/10.1021/ja9841198 . [all data]

Guo, Conklin, et al., 1989
Guo, B.C.; Conklin, B.J.; Castleman, A.W., Thermochemical Properties of Ion Complexes Na+(M)n in the Gas Phase, J. Am. Chem. Soc., 1989, 111, 17, 6506, https://doi.org/10.1021/ja00199a005 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Wiberg, Morgan, et al., 1994
Wiberg, K.B.; Morgan, K.M.; Maltz, H., Thermochemistry of carbonyl reactions. 6. A study of hydration equilibria, J. Am. Chem. Soc., 1994, 116, 11067-11077. [all data]

Wiberg and Squires, 1979
Wiberg, K.B.; Squires, R.R., Thermodynamics of hydrolysis aliphatic ketals. An entropy component of steric effects, J. Am. Chem. Soc., 1979, 101, 5512-5515. [all data]

Wiberg and Squires, 1979, 2
Wiberg, K.B.; Squires, R.R., A microprocessor-controlled system for precise measurement of temperature changes. Determination of the enthalpies of hydrolysis of some polyoxygenated hydrocarbons, J. Chem. Thermodyn., 1979, 11, 773-786. [all data]

Stern and Dorer, 1962
Stern, J.H.; Dorer, F.H., Standard heats of formation of 2,2-Dimethoxypropane (1), and 2,2 -Diethoxypropane (1). Group additivity theory and calculated heats of formation and five ketals, J. Phys. Chem., 1962, 66, 97-99. [all data]

El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M., Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry, J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002 . [all data]

Chowdhury, Grimsrud, et al., 1987
Chowdhury, S.; Grimsrud, E.P.; Kebarle, P., Bonding of Charged Delocalized Anions to Protic and Dipolar Aprotic Solvent Molecules, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Chowdhury, 1987
Chowdhury, S. Grimsrud, Bonding of Charge Delocalized Anions to Protic and Dipolar Aprotic Solvents, J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021 . [all data]

Hiraoka, Grimsrud, et al., 1974
Hiraoka, K.; Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Hydrogen Ion in Water - Dimethyl Ether and Methanol - Dimethyl Ether Mixtures, J. Am. Chem. Soc., 1974, 96, 11, 3359, https://doi.org/10.1021/ja00818a004 . [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References