Acetic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-433. ± 3.kJ/molAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
gas282.84J/mol*KN/AWeltner W., 1955Other third-law entropy values at 298.15 K are 284.5 [ Chao J., 1986] and 290.37(4.18) J/mol*K [ Halford J.O., 1941].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
39.5450.Chao J., 1986p=1 bar. Selected entropies and heat capacities differ from other statistically calculated values [ Weltner W., 1955] by 1.0-1.3 J/mol*K for S(T) and 3.1-5.4 J/mol*K for Cp(T). Please also see Chao J., 1978.; GT
40.42100.
42.74150.
48.34200.
59.38273.15
63.44 ± 0.11298.15
63.74300.
79.66400.
93.93500.
106.18600.
116.63700.
125.50800.
132.99900.
139.261000.
144.461100.
148.761200.
152.301300.
155.221400.
157.631500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-483.52 ± 0.36kJ/molCcbSteele, Chirico, et al., 1997ALS
Δfliquid-484.5 ± 0.2kJ/molCcbLebedeva, 1964ALS
Δfliquid-484.1 ± 0.4kJ/molCcbEvans and Skinner, 1959ALS
Δfliquid-487.0kJ/molCmCarson and Skinner, 1949Unpublished result by Rossini; ALS
Quantity Value Units Method Reference Comment
Δcliquid-875.16 ± 0.34kJ/molCcbSteele, Chirico, et al., 1997Corresponding Δfliquid = -483.52 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-874.2 ± 0.2kJ/molCcbLebedeva, 1964Corresponding Δfliquid = -484.47 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-874.5 ± 0.4kJ/molCcbEvans and Skinner, 1959Corresponding Δfliquid = -484.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-872.4kJ/molCcbSchjanberg, 1935Corresponding Δfliquid = -486.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid158.0J/mol*KN/AMartin and Andon, 1982DH
liquid193.7J/mol*KN/AParks and Kelley, 1925Extrapolation below 90 K. 76.82 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
123.1298.15Martin and Andon, 1982T = 13 to 450 K. Data also given by equation.; DH
139.7332.Swietoslawski and Zielenkiewicz, 1958Mean value 22 to 96°C.; DH
120.5298.Radulescu and Jula, 1934DH
121.3297.1Neumann, 1932T = 23.9 to 80.5°C. Value is unsmoothed experimental datum.; DH
159.8298.1Parks, Kelley, et al., 1929Extrapolation below 90 K, 42.68 J/mol*K. Revision of previous data.; DH
123.4294.7Parks and Kelley, 1925T = 87 to 295 K. Value is unsmoothed experimental datum.; DH
137.287. - 335.Pickering, 1895T = 260 to 335 K.; DH
123.5298.von Reis, 1881T = 292 to 358 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil391.2 ± 0.6KAVGN/AAverage of 80 out of 90 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus289.6 ± 0.5KAVGN/AAverage of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple289.8KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple289.69KN/AMartin and Andon, 1982, 2Uncertainty assigned by TRC = 0.04 K; TRC
Ttriple289.8KN/AParks and Kelley, 1925, 2Uncertainty assigned by TRC = 0.15 K; TRC
Quantity Value Units Method Reference Comment
Tc593. ± 3.KAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Pc57.81barN/AAndereya and Chase, 1990Uncertainty assigned by TRC = 0.20 bar; TRC
Pc58.2901barN/AD'Souza and Teja, 1987Uncertainty assigned by TRC = 0.90 bar; Ambrose's procedure; TRC
Pc57.86barN/AAmbrose, Ellender, et al., 1977Uncertainty assigned by TRC = 0.08 bar; TRC
Pc57.87barN/AYoung, 1910Uncertainty assigned by TRC = 1.0132 bar; TRC
Pc57.867barN/AYoung, 1891Uncertainty assigned by TRC = 0.2666 bar; TRC
Quantity Value Units Method Reference Comment
ρc5.84mol/lN/AVandana and Teja, 1995Uncertainty assigned by TRC = 0.02 mol/l; TRC
ρc5.838mol/lN/AYoung, 1910Uncertainty assigned by TRC = 0.02 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap50.3kJ/molCGCVerevkin, 2000Based on data from 303. - 378. K.; AC
Δvap51.6kJ/molN/AMajer and Svoboda, 1985 
Δvap51.6 ± 1.5kJ/molCKonicek and Wadso, 1970ALS
Δvap51.6 ± 1.6kJ/molCKonicek, Wadsö, et al., 1970AC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
23.7391.1N/AMajer and Svoboda, 1985 
39.1360.EBMuñoz and Krähenbühl, 2001Based on data from 345. - 383. K.; AC
40.9335.N/AVercher, Vázquez, et al., 2001Based on data from 320. - 395. K.; AC
37.9406.AStephenson and Malanowski, 1987Based on data from 391. - 550. K.; AC
42.0305.AStephenson and Malanowski, 1987Based on data from 290. - 396. K.; AC
38.7406.AStephenson and Malanowski, 1987Based on data from 391. - 447. K.; AC
38.1452.AStephenson and Malanowski, 1987Based on data from 437. - 535. K.; AC
38.8540.AStephenson and Malanowski, 1987Based on data from 525. - 593. K.; AC
41.6304.AStephenson and Malanowski, 1987Based on data from 289. - 392. K. See also Dykyj, 1970.; AC
43.0308.N/ATamir, Dragoescu, et al., 1983AC
40.3340.N/AMcDonald, Shrader, et al., 1959Based on data from 325. - 391. K.; AC
41.6318.MMPotter and Ritter, 1954Based on data from 303. - 399. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. - 392.
A (kJ/mol) 22.84
α 0.0184
β -0.0454
Tc (K) 592.7
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference
290.26 - 391.014.682061642.54-39.764McDonald, Shrader, et al., 1959

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
67. ± 1.223.TE,MECalis-Van Ginkel, Calis, et al., 1978Based on data from 213. - 230. K.; AC
70. ± 1.213.TE,MECalis-Van Ginkel, Calis, et al., 1978Based on data from 213. - 230. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
11.72298.7Domalski and Hearing, 1996See also Martin and Andon, 1982.; AC
11.728289.9Parks and Kelley, 1925DH
10.83289.8Louguinine and Dupont, 1911AC
11.52283.7Meyer, 1910AC
11.126290.06Pickering, 1895DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
40.47289.9Parks and Kelley, 1925DH
38.36290.06Pickering, 1895DH

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
11.720298.69crystaline, IliquidMartin and Andon, 1982DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
40.5298.69crystaline, IliquidMartin and Andon, 1982DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Fluorine anion + Acetic acid = (Fluorine anion • Acetic acid)

By formula: F- + C2H4O2 = (F- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr185. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr153. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

C2H5O+ + Acetic acid = (C2H5O+ • Acetic acid)

By formula: C2H5O+ + C2H4O2 = (C2H5O+ • C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr118.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr123.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr118.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M
Δr117.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr88.7kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

Chlorine anion + Acetic acid = (Chlorine anion • Acetic acid)

By formula: Cl- + C2H4O2 = (Cl- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr102.1 ± 0.84kJ/molTDAsSieck, 1985gas phase; B,M
Δr90.4 ± 8.4kJ/molTDAsYamdagni and Kebarle, 1971gas phase; B,M
Δr100. ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSSieck, 1985gas phase; M
Δr100.J/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr80.8J/mol*KPHPMSYamdagni and Kebarle, 1971gas phase; M
Quantity Value Units Method Reference Comment
Δr77.8 ± 1.3kJ/molTDAsSieck, 1985gas phase; B
Δr66.1 ± 8.4kJ/molTDAsYamdagni and Kebarle, 1971gas phase; B
Δr69.9 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M

MeCO2 anion + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Δr1457. ± 5.9kJ/molCIDCAngel and Ervin, 2006gas phase; B
Δr1456. ± 9.2kJ/molG+TSTaft and Topsom, 1987gas phase; B
Δr1459. ± 8.8kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Δr1459. ± 9.2kJ/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr1435.9 ± 2.9kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1427. ± 8.4kJ/molIMRETaft and Topsom, 1987gas phase; B
Δr1429. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B
Δr1430. ± 8.4kJ/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B

C2H7O+ + Acetic acid = (C2H7O+ • Acetic acid)

By formula: C2H7O+ + C2H4O2 = (C2H7O+ • C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr123.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr119.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr87.0kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

CH6N+ + Acetic acid = (CH6N+ • Acetic acid)

By formula: CH6N+ + C2H4O2 = (CH6N+ • C2H4O2)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr92.0kJ/molPHPMSMeot-Ner, 1984gas phase; M
Δr89.5kJ/molPHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSMeot-Ner, 1984gas phase; M
Δr100.J/mol*KN/AMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
43.1459.PHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

(C2H5O+ • 3Acetic acid) + Acetic acid = (C2H5O+ • 4Acetic acid)

By formula: (C2H5O+ • 3C2H4O2) + C2H4O2 = (C2H5O+ • 4C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr50.kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
26.245.PHPMSMeot-Ner (Mautner), 1992gas phase; Entropy change calculated or estimated; M

(MeCO2 anion • 2Acetic acid • Water) + Acetic acid = (MeCO2 anion • 3Acetic acid • Water)

By formula: (C2H3O2- • 2C2H4O2 • H2O) + C2H4O2 = (C2H3O2- • 3C2H4O2 • H2O)

Quantity Value Units Method Reference Comment
Δr52.3 ± 2.5kJ/molN/AMeot-ner, Elmore, et al., 1999gas phase; B
Δr67.8 ± 4.2kJ/molTDAsMeot-Ner and Sieck, 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr24.0kJ/molTDAsMeot-ner, Elmore, et al., 1999gas phase; B
Δr26. ± 4.2kJ/molTDAsMeot-Ner and Sieck, 1986gas phase; B

(MeCO2 anion • Acetic acid • Water) + Acetic acid = (MeCO2 anion • 2Acetic acid • Water)

By formula: (C2H3O2- • C2H4O2 • H2O) + C2H4O2 = (C2H3O2- • 2C2H4O2 • H2O)

Quantity Value Units Method Reference Comment
Δr82.4 ± 2.1kJ/molN/AMeot-ner, Elmore, et al., 1999gas phase; B
Δr67.8 ± 4.2kJ/molTDAsMeot-Ner and Sieck, 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr45.23kJ/molTDAsMeot-ner, Elmore, et al., 1999gas phase; B
Δr26. ± 4.2kJ/molTDAsMeot-Ner and Sieck, 1986gas phase; B

Acetyl chloride + Water = Acetic acid + Hydrogen chloride

By formula: C2H3ClO + H2O = C2H4O2 + HCl

Quantity Value Units Method Reference Comment
Δr-94.47kJ/molCmDevore and O'Neal, 1969liquid phase; Heat of hydrolysis; ALS
Δr-92.30kJ/molCmPritchard and Skinner, 1950liquid phase; Heat of hydrolysis at 298 K, see Carson and Skinner, 1949; ALS
Δr-92.42kJ/molCmCarson and Skinner, 1949liquid phase; ALS

Acetic anhydride + Water = 2Acetic acid

By formula: C4H6O3 + H2O = 2C2H4O2

Quantity Value Units Method Reference Comment
Δr-56.6 ± 4.0kJ/molCmBecker and Maelicke, 1967liquid phase; ALS
Δr-58.6 ± 0.4kJ/molCmWadso, 1962liquid phase; ALS
Δr-58.4 ± 0.4kJ/molCmConn, Kistiakowsky, et al., 1942liquid phase; Heat of hydrolysis at 303 K; ALS

Iodide + Acetic acid = (Iodide • Acetic acid)

By formula: I- + C2H4O2 = (I- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr70.7 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr89.1J/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr43.9 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B

C2H3O2- + Hydrogen cation = Acetic acid

By formula: C2H3O2- + H+ = C2H4O2

Quantity Value Units Method Reference Comment
Δr1540. ± 13.kJ/molG+TSGrabowski and Cheng, 1989gas phase; B
Δr1539. ± 19.kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1511. ± 13.kJ/molIMRBGrabowski and Cheng, 1989gas phase; B

C6H5NO2- + Acetic acid = (C6H5NO2- • Acetic acid)

By formula: C6H5NO2- + C2H4O2 = (C6H5NO2- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr94.56 ± 0.42kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr112.J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr61.09 ± 0.84kJ/molTDAsSieck, 1985gas phase; B

phenoxide anion + Acetic acid = (phenoxide anion • Acetic acid)

By formula: C6H5O- + C2H4O2 = (C6H5O- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr115.kJ/molPHPMSMeot-Ner and Sieck, 1986gas phase; calculated from CH3COO-.C6H5OH; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; calculated from CH3COO-.C6H5OH; M

(C2H5O+ • 2Acetic acid) + Acetic acid = (C2H5O+ • 3Acetic acid)

By formula: (C2H5O+ • 2C2H4O2) + C2H4O2 = (C2H5O+ • 3C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr54.8kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr93.7J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

(C2H5O+ • Acetic acid) + Acetic acid = (C2H5O+ • 2Acetic acid)

By formula: (C2H5O+ • C2H4O2) + C2H4O2 = (C2H5O+ • 2C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr77.4kJ/molPHPMSMeot-Ner (Mautner), 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSMeot-Ner (Mautner), 1992gas phase; M

C6H12NO3+ + Acetic acid = (C6H12NO3+ • Acetic acid)

By formula: C6H12NO3+ + C2H4O2 = (C6H12NO3+ • C2H4O2)

Bond type: Hydrogen bonds with polydentate bonding in positive ions

Quantity Value Units Method Reference Comment
Δr75.7kJ/molPHPMSMeot-Ner, 1984, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr114.J/mol*KPHPMSMeot-Ner, 1984, 2gas phase; M

Diacetamide + Water = Acetamide + Acetic acid

By formula: C4H7NO2 + H2O = C2H5NO + C2H4O2

Quantity Value Units Method Reference Comment
Δr-18.1 ± 0.2kJ/molCmHill and Wadso, 1968solid phase; Heat of hydrolysis; ALS
Δr-18.1 ± 0.2kJ/molCmWadso, 1965solid phase; Heat of hydrolysis; ALS

C4H10NO+ + Acetic acid = (C4H10NO+ • Acetic acid)

By formula: C4H10NO+ + C2H4O2 = (C4H10NO+ • C2H4O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr77.0kJ/molPHPMSMeot-Ner, 1984, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSMeot-Ner, 1984, 2gas phase; M

Acetyl iodide + Water = Hydrogen iodide + Acetic acid

By formula: C2H3IO + H2O = HI + C2H4O2

Quantity Value Units Method Reference Comment
Δr-93.97kJ/molCmDevore and O'Neal, 1969liquid phase; Heat of hydrolysis; ALS
Δr-90.33kJ/molCmCarson and Skinner, 1949liquid phase; Heat of hydrolysis; ALS

(MeCO2 anion • Water) + Acetic acid = (MeCO2 anion • Acetic acid • Water)

By formula: (C2H3O2- • H2O) + C2H4O2 = (C2H3O2- • C2H4O2 • H2O)

Quantity Value Units Method Reference Comment
Δr123. ± 4.2kJ/molTDAsMeot-Ner and Sieck, 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr85.4 ± 6.7kJ/molTDAsMeot-Ner and Sieck, 1986gas phase; B

Acetic anhydride + 1-Butanamine = Acetamide, N-butyl- + Acetic acid

By formula: C4H6O3 + C4H11N = C6H13NO + C2H4O2

Quantity Value Units Method Reference Comment
Δr-113.2 ± 0.46kJ/molCmWadso, 1962liquid phase; ALS
Δr-163.7 ± 0.3kJ/molCmWadso, 1958liquid phase; Heat of aminolysis; ALS

Acetyl bromide + Water = Hydrogen bromide + Acetic acid

By formula: C2H3BrO + H2O = HBr + C2H4O2

Quantity Value Units Method Reference Comment
Δr-97.53kJ/molCmDevore and O'Neal, 1969liquid phase; Heat of hydrolysis; ALS
Δr-96.48kJ/molCmCarson and Skinner, 1949liquid phase; ALS

thiophenoxide anion + Acetic acid = C8H9O2S-

By formula: C6H5S- + C2H4O2 = C8H9O2S-

Quantity Value Units Method Reference Comment
Δr84.94 ± 0.42kJ/molTDAsSieck and Meot-ner, 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr52.3 ± 1.7kJ/molTDAsSieck and Meot-ner, 1989gas phase; B

(MeCO2 anion • 2Acetic acid) + Acetic acid = (MeCO2 anion • 3Acetic acid)

By formula: (C2H3O2- • 2C2H4O2) + C2H4O2 = (C2H3O2- • 3C2H4O2)

Quantity Value Units Method Reference Comment
Δr67.8kJ/molPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr139.J/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M

(MeCO2 anion • Acetic acid) + Acetic acid = (MeCO2 anion • 2Acetic acid)

By formula: (C2H3O2- • C2H4O2) + C2H4O2 = (C2H3O2- • 2C2H4O2)

Quantity Value Units Method Reference Comment
Δr82.0kJ/molPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M

thiophenoxide anion + Acetic acid = (thiophenoxide anion • Acetic acid)

By formula: C6H5S- + C2H4O2 = (C6H5S- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr84.9kJ/molPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M

Lithium ion (1+) + Acetic acid = (Lithium ion (1+) • Acetic acid)

By formula: Li+ + C2H4O2 = (Li+ • C2H4O2)

Quantity Value Units Method Reference Comment
Δr174.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M

MeCO2 anion + Acetic acid = (MeCO2 anion • Acetic acid)

By formula: C2H3O2- + C2H4O2 = (C2H3O2- • C2H4O2)

Quantity Value Units Method Reference Comment
Δr123.kJ/molPHPMSMeot-Ner and Sieck, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KPHPMSMeot-Ner and Sieck, 1986gas phase; M

2,3-Butanediol, diacetate + 2Water = 2,3-Butanediol + 2Acetic acid

By formula: C8H14O4 + 2H2O = C4H10O2 + 2C2H4O2

Quantity Value Units Method Reference Comment
Δr-22.3 ± 2.1kJ/molCmShlechter, Othmer, et al., 1945liquid phase; Heat of formation derived by Cox and Pilcher, 1970; ALS

1H-Imidazole, 1-acetyl- + Water = 1H-Imidazole + Acetic acid

By formula: C5H6N2O + H2O = C3H4N2 + C2H4O2

Quantity Value Units Method Reference Comment
Δr-20.2 ± 0.2kJ/molCmWadso, 1960liquid phase; solvent: Aqueous; Heat of hydrolysis; ALS

2,3-Butanediol + 2Acetic acid = 2,3-Butanediol, diacetate + 2Water

By formula: C4H10O2 + 2C2H4O2 = C8H14O4 + 2H2O

Quantity Value Units Method Reference Comment
Δr22.30kJ/molEqkShlechter, Othmer, et al., 1945liquid phase; Heat of esterification at 338-453 K; ALS

2,3-Butanediol monoacetate + Acetic acid = 2,3-Butanediol, diacetate + Water

By formula: C6H12O3 + C2H4O2 = C8H14O4 + H2O

Quantity Value Units Method Reference Comment
Δr1.85kJ/molEqkShlechter, Othmer, et al., 1945liquid phase; Heat of esterification at 338-453 K; ALS

N,N,N-Triacetylamine + 2Water = Acetamide + 2Acetic acid

By formula: C6H9NO3 + 2H2O = C2H5NO + 2C2H4O2

Quantity Value Units Method Reference Comment
Δr-103.5 ± 0.08kJ/molCmHill and Wadso, 1968liquid phase; Heat of hydrolysis; ALS

2Water + Ethene, 1,1-dimethoxy- = Acetic acid + 2Methyl Alcohol

By formula: 2H2O + C4H8O2 = C2H4O2 + 2CH4O

Quantity Value Units Method Reference Comment
Δr-74.4 ± 3.6kJ/molCmGuthrie and Liu, 1995liquid phase; Heat of hydrolysis; ALS

1,3-Dehydroadamantane + Acetic acid = Tricyclo[3.3.1.13,7]decan-1-ol, acetate

By formula: C10H14 + C2H4O2 = C12H18O2

Quantity Value Units Method Reference Comment
Δr-182.0 ± 0.3kJ/molCacWiberg, Connon, et al., 1979liquid phase; solvent: Acetic acid; ALS

Thioacetic acid + Water = Acetic acid + Hydrogen sulfide

By formula: C2H4OS + H2O = C2H4O2 + H2S

Quantity Value Units Method Reference Comment
Δr-2.7 ± 0.3kJ/molCmSunner and Wadso, 1957liquid phase; Heat of hydrolysis; ALS

Acetamide + Water = Acetic acid + Ammonia

By formula: C2H5NO + H2O = C2H4O2 + H3N

Quantity Value Units Method Reference Comment
Δr76.1 ± 1.4kJ/molCmHill and Wadso, 1968solid phase; Heat of hydrolysis; ALS

Acetamide, N-butyl- + Acetic acid = Acetamide, N-acetyl-N-butyl- + Water

By formula: C6H13NO + C2H4O2 = C8H15NO2 + H2O

Quantity Value Units Method Reference Comment
Δr40.5 ± 0.50kJ/molCmWadso, 1965liquid phase; Heat of hydrolysis; ALS

Ethanethioic acid, S-propyl ester + Water = Propyl mercaptan + Acetic acid

By formula: C5H10OS + H2O = C3H8S + C2H4O2

Quantity Value Units Method Reference Comment
Δr-3.9 ± 0.3kJ/molCmWadso, 1957liquid phase; Heat of hydrolysis; ALS

Acetamide, N-phenyl- + Acetic acid = C10H11NO2 + Water

By formula: C8H9NO + C2H4O2 = C10H11NO2 + H2O

Quantity Value Units Method Reference Comment
Δr45.5 ± 0.3kJ/molCmWadso, 1965solid phase; Heat of hydrolysis; ALS

m-Cresyl acetate + Water = Phenol, 3-methyl- + Acetic acid

By formula: C9H10O2 + H2O = C7H8O + C2H4O2

Quantity Value Units Method Reference Comment
Δr-18.4 ± 0.59kJ/molCmSunner, 1957liquid phase; Heat of hydrolysis; ALS

Water + Ethanethioic acid, S-butyl ester = 1-Butanethiol + Acetic acid

By formula: H2O + C6H12OS = C4H10S + C2H4O2

Quantity Value Units Method Reference Comment
Δr-4.6 ± 0.3kJ/molCmWadso, 1957liquid phase; Heat of hydrolysis; ALS

1-Acetyl-1H-tetrazole + Water = 1H-Tetrazole + Acetic acid

By formula: C3H4N4O + H2O = CH2N4 + C2H4O2

Quantity Value Units Method Reference Comment
Δr-43.1 ± 0.4kJ/molCmWadso, 1960solid phase; Heat of hydrolysis; ALS

Benzoic acid, 4-(acetylthio)- + Water = Benzoic acid, 4-mercapto- + Acetic acid

By formula: C9H8O3S + H2O = C7H6O2S + C2H4O2

Quantity Value Units Method Reference Comment
Δr-11.5 ± 0.4kJ/molCmNelander, 1964solid phase; Heat of hydrolysis; ALS

Acetamide, N-phenyl- + Water = Aniline + Acetic acid

By formula: C8H9NO + H2O = C6H7N + C2H4O2

Quantity Value Units Method Reference Comment
Δr-42.0 ± 0.3kJ/molCmWadso, 1965solid phase; Heat of hydrolysis; ALS

Acetic acid + Acetone = 1-Propen-2-ol, acetate + Water

By formula: C2H4O2 + C3H6O = C5H8O2 + H2O

Quantity Value Units Method Reference Comment
Δr60.2 ± 0.3kJ/molCmSunner, 1957liquid phase; Heat of hydrolysis; ALS

S-Ethyl ethanethioate + Water = Acetic acid + Ethanethiol

By formula: C4H8OS + H2O = C2H4O2 + C2H6S

Quantity Value Units Method Reference Comment
Δr-4.0 ± 0.3kJ/molCmWadso, 1957liquid phase; Heat of hydrolysis; ALS

Water + Ethanethioic acid, S-(1-methylethyl) ester = Acetic acid + 2-Propanethiol

By formula: H2O + C5H10OS = C2H4O2 + C3H8S

Quantity Value Units Method Reference Comment
Δr-5.8 ± 0.3kJ/molCmWadso, 1957liquid phase; Heat of hydrolysis; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 80
NIST MS number 227635

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   Cs     Symmetry Number σ = 1


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a' 1 OH str 3583  B 3583 M gas
a' 2 CH3 d-str 3051  B 3051 VW gas
a' 3 CH3 s-str 2944  B 2944 VW gas
a' 4 C=O str 1788  B 1788 VS gas
a' 5 CH3 d-deform 1430  C 1430 sh gas SF14)
a' 6 CH3 s-deform 1382  B 1382 M gas
a' 7 OH bend 1264  B 1264 M gas
a' 8 C-O str 1182  B 1182 S gas
a' 9 CH3 rock 989  B 989 M gas
a' 10 CC str 847  B 847 W gas
a' 11 OCO deform 657  B 657 S gas
a' 12 CCO deform 581  B 581 M gas
a 13 CH3 d-str 2996  B 2996 VW gas
a 14 CH3 d-deform 1430  C 1430 sh gas SF5)
a 15 CH3 rock 1048  B 1048 W gas
a 16 C=O op-bend 642  B 642 S gas
a 17 C-O torsion 534  B 534 M gas
a 18 CH3 torsion 93  E CF

Source: Shimanouchi, 1972

Notes

VSVery strong
SStrong
MMedium
WWeak
VWVery weak
shShoulder
CFCalculated frequency
SFCalculation shows that the frequency approximately equals that of the vibration indicated in the parentheses.
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
E15~30 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Weltner W., 1955
Weltner W., Jr., The vibrational spectrum, associative and thermodynamic properties of acetic acid vapor, J. Am. Chem. Soc., 1955, 77, 3941-3950. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Halford J.O., 1941
Halford J.O., The entropy of acetic acid, J. Chem. Phys., 1941, 9, 859-863. [all data]

Chao J., 1978
Chao J., Ideal gas thermodynamic properties of methanoic and ethanoic acids, J. Phys. Chem. Ref. Data, 1978, 7, 363-377. [all data]

Steele, Chirico, et al., 1997
Steele, W.V.; Chirico, R.D.; Cowell, A.B.; Knipmeyer, S.E.; Nguyen, A., Thermodynamic properties and ideal-gas enthalpies of formation for 2-aminoisobutyric acid (2-methylalanine), acetic acid, (4-methyl-3-penten-2-one), 4-methylpent-1-ene, 2,2'-bis(phenylthio)propane, and glycidyl phenyl ether (1,2-epoxy-3-phenoxypropane), J. Chem. Eng. Data, 1997, 42, 1052-1066. [all data]

Lebedeva, 1964
Lebedeva, N.D., Heats of combustion of monocarboxylic acids, Russ. J. Phys. Chem. (Engl. Transl.), 1964, 38, 1435-1437. [all data]

Evans and Skinner, 1959
Evans, F.W.; Skinner, H.A., The heat of combustion of acetic acid, Trans. Faraday Soc., 1959, 55, 260-261. [all data]

Carson and Skinner, 1949
Carson, A.S.; Skinner, H.A., 201. Carbon-halogen bond energies in the acetyl halides, J. Chem. Soc., 1949, 936-939. [all data]

Schjanberg, 1935
Schjanberg, E., Die Verbrennungswarmen und die Refraktionsdaten einiger chlorsubstituierter Fettsauren und Ester., Z. Phys. Chem. Abt. A, 1935, 172, 197-233. [all data]

Martin and Andon, 1982
Martin, J.F.; Andon, R.J.L., Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids, J. Chem. Thermodynam., 1982, 14, 679-688. [all data]

Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K., Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds, J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]

Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat of some ternary azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 365-366. [all data]

Radulescu and Jula, 1934
Radulescu, D.; Jula, O., Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen, Z. Phys. Chem., 1934, B26, 390-393. [all data]

Neumann, 1932
Neumann, M.B., Die Untersuchung der Wärmekapazität vom binären System CH3COOH + H2O bei verschiedenen Temperaturen, Z. Phys. Chem., 1932, A158, 258-264. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Pickering, 1895
Pickering, S.U., A comparison of some properties of acetic acid and its chloro- and bromo-derivatives, J. Chem. Soc., 1895, 67, 664-684. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Martin and Andon, 1982, 2
Martin, J.F.; Andon, R.J.L., Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids., J. Chem. Thermodyn., 1982, 14, 679-88. [all data]

Parks and Kelley, 1925, 2
Parks, G.S.; Kelley, K.K., Thermal Data on Organic Compounds II. The Heat Capacities of Five Organic Compounds. The Entropies and Free Energies of Some Homologous Series of Aliphatic Compounds, J. Am. Chem. Soc., 1925, 47, 2089-97. [all data]

Andereya and Chase, 1990
Andereya, E.; Chase, J.D., Chem. Eng. Technol., 1990, 13, 304-12. [all data]

D'Souza and Teja, 1987
D'Souza, R.; Teja, A.S., The prediction of the vapor pressures of carboxylic acids, Chem. Eng. Commun., 1987, 61, 13. [all data]

Ambrose, Ellender, et al., 1977
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R., Thermo. Prop. of Org. Oxygen Compounds XLV. The Vapor Pressure of Acetic Acid, J. Chem. Thermodyn., 1977, 9, 735. [all data]

Young, 1910
Young, S., The Internal Heat of Vaporization constants of thirty pure substances, Sci. Proc. R. Dublin Soc., 1910, 12, 374. [all data]

Young, 1891
Young, S., J. Chem. Soc., 1891, 59, 903. [all data]

Vandana and Teja, 1995
Vandana, V.; Teja, A.S., The critical temperatures and densities of acetic acid-water mixtures, Fluid Phase Equilib., 1995, 103, 113-18. [all data]

Verevkin, 2000
Verevkin, S.P., Measurement and Prediction of the Monocarboxylic Acids Thermochemical Properties, J. Chem. Eng. Data, 2000, 45, 5, 953-960, https://doi.org/10.1021/je990282m . [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Konicek and Wadso, 1970
Konicek, J.; Wadso, I., Enthalpies of vaporization of organic compounds. VII. Some carboxylic acids, Acta Chem. Scand., 1970, 24, 2612-26. [all data]

Konicek, Wadsö, et al., 1970
Konicek, Jiri; Wadsö, Ingemar; Munch-Petersen, J.; Ohlson, Ragnar; Shimizu, Akira, Enthalpies of Vaporization of Organic Compounds. VII. Some Carboxylic Acids., Acta Chem. Scand., 1970, 24, 2612-2616, https://doi.org/10.3891/acta.chem.scand.24-2612 . [all data]

Muñoz and Krähenbühl, 2001
Muñoz, Laura A.L.; Krähenbühl, M. Alvina, Isobaric Vapor Liquid Equilibrium (VLE) Data of the Systems n -Butanol + Butyric Acid and n -Butanol + Acetic Acid, J. Chem. Eng. Data, 2001, 46, 1, 120-124, https://doi.org/10.1021/je000033u . [all data]

Vercher, Vázquez, et al., 2001
Vercher, Ernesto; Vázquez, M. Isabel; Martínez-Andreu, Antoni, Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + Lithium Acetate, J. Chem. Eng. Data, 2001, 46, 6, 1584-1588, https://doi.org/10.1021/je010106p . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1970
Dykyj, J., Petrochemica, 1970, 10, 2, 51. [all data]

Tamir, Dragoescu, et al., 1983
Tamir, Abraham; Dragoescu, Claudia; Apelblat, Alexander; Wisniak, Jaime, Heats of vaporization and vapor-liquid equilibria in associated solutions containing formic acid, acetic acid, propionic acid and carbon tetrachloride, Fluid Phase Equilibria, 1983, 10, 1, 9-42, https://doi.org/10.1016/0378-3812(83)80002-8 . [all data]

McDonald, Shrader, et al., 1959
McDonald, R.A.; Shrader, S.A.; Stull, D.R., Vapor Pressures and Freezing Points of Thirty Pure Organic Compounds., J. Chem. Eng. Data, 1959, 4, 4, 311-313, https://doi.org/10.1021/je60004a009 . [all data]

Potter and Ritter, 1954
Potter, Andrew E.; Ritter, H.L., The Vapor Pressure of Acetic Acid and Acetic-d 3 Acid-d. The Liquid Density of Acetic-d 3 Acid-d, J. Phys. Chem., 1954, 58, 11, 1040-1042, https://doi.org/10.1021/j150521a025 . [all data]

Calis-Van Ginkel, Calis, et al., 1978
Calis-Van Ginkel, C.H.D.; Calis, G.H.M.; Timmermans, C.W.M.; de Kruif, C.G.; Oonk, H.A.J., Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic, and butanoic acids, The Journal of Chemical Thermodynamics, 1978, 10, 11, 1083-1088, https://doi.org/10.1016/0021-9614(78)90082-4 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Louguinine and Dupont, 1911
Louguinine, W.; Dupont, G., Bull. Soc. Chim. Fr., 1911, 9, 219. [all data]

Meyer, 1910
Meyer, J., Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1910, 72, 225. [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

Yamdagni and Kebarle, 1971
Yamdagni, R.; Kebarle, P., Hydrogen bonding energies to negative ions from gas phase measurements of ionic equilibria, J. Am. Chem. Soc., 1971, 93, 7139. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Angel and Ervin, 2006
Angel, L.A.; Ervin, K.M., Gas-phase acidities and O-H bond dissociation enthalpies of phenol, 3-methylphenol, 2,4,6-trimethylphenol, and ethanoic acid, J. Phys. Chem. A, 2006, 110, 35, 10392-10403, https://doi.org/10.1021/jp0627426 . [all data]

Taft and Topsom, 1987
Taft, R.W.; Topsom, R.D., The Nature and Analysis of Substituent Effects, Prog. Phys. Org. Chem., 1987, 16, 1. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Meot-ner, Elmore, et al., 1999
Meot-ner, M.; Elmore, D.E.; Scheiner, S., Ionic Hydrogen Bond Effects on the Acidities, Basicities, Solvation, Solvent Bridging and Self-assembly of Carboxylic Groups, J. Am. Chem. Soc., 1999, 121, 33, 7625, https://doi.org/10.1021/ja982173i . [all data]

Meot-Ner and Sieck, 1986
Meot-Ner, M.; Sieck, L.W., The ionic hydrogen bond and ion solvation. 5. OH...O- bonds. Gas phase solvation and clustering of alkoxide and carboxylate anions, J. Am. Chem. Soc., 1986, 108, 7525. [all data]

Devore and O'Neal, 1969
Devore, J.A.; O'Neal, H.E., Heats of formation of the acetyl halides and of the acetyl radical, J. Phys. Chem., 1969, 73, 2644-2648. [all data]

Pritchard and Skinner, 1950
Pritchard, H.O.; Skinner, H.A., The heats of hydrolysis of the chloro-substituted acetyl chlorides, J. Chem. Soc., 1950, 272-276. [all data]

Becker and Maelicke, 1967
Becker, F.; Maelicke, A., Thermokinetische Messungen nach dem Prinzip der Wärmefluβkalorimetrie, Z. Phys. Chem. (Neue Folge), 1967, 55, 280-295. [all data]

Wadso, 1962
Wadso, I., Heats of aminolysis and hydrolysis of some N-acetyl compounds and of acetic anhydride, Acta Chem. Scand., 1962, 16, 471-478. [all data]

Conn, Kistiakowsky, et al., 1942
Conn, J.B.; Kistiakowsky, G.B.; Roberts, R.M.; Smith, E.A., Heats of organic reactions. XIII. Heats of hydrolysis of some acid anhydrides, J. Am. Chem. Soc., 1942, 64, 1747-17. [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Grabowski and Cheng, 1989
Grabowski, J.J.; Cheng, X., Gas-Phase Formation of the Enolate Monoanion of Acetic Acid by Proton Abstraction, J. Am. Chem. Soc., 1989, 111, 8, 3106, https://doi.org/10.1021/ja00190a078 . [all data]

Meot-Ner, 1984, 2
Meot-Ner, (Mautner), The Ionic Hydrogen Bond. 4. Intramolecular and Multiple Bonds. Proton Affinities, Hydration and Complexes of Amides and Amino Acid Derivatives, J. Am. Chem. Soc., 1984, 106, 2, 278, https://doi.org/10.1021/ja00314a003 . [all data]

Hill and Wadso, 1968
Hill, J.O.; Wadso, I., Some thermochemical properties of N,N,N-triacetylammonia, Acta Chem. Scand., 1968, 22, 1590-1594. [all data]

Wadso, 1965
Wadso, I., Thermochemical properties of diacetimide, N-butyldiacetimide and N-phenyldiacetimide, Acta Chem. Scand., 1965, 19, 1079-1087. [all data]

Wadso, 1958
Wadso, I., The heats of aminolysis of n-butyl thiolacetate and acetic anhydride, Acta Chem. Scand., 1958, 12, 635-640. [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Shlechter, Othmer, et al., 1945
Shlechter, N.; Othmer, D.F.; Marshak, S., Esterification of 2,3-butylene glycol with acetic acid, Ind. Eng. Chem., 1945, 37, 900-905. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Wadso, 1960
Wadso, I., Heats of hydrolysis of N-acetylated imidazole, 1,2,4-triazole and tetrazole, Acta Chem. Scand., 1960, 14, 903-908. [all data]

Guthrie and Liu, 1995
Guthrie, J.P.; Liu, Z., The enols of acetic acid and methyl acetate, Can. J. Chem., 1995, 73, 1395-2398. [all data]

Wiberg, Connon, et al., 1979
Wiberg, K.B.; Connon, H.A.; Pratt, W.E., Enthalpies of acetolysis of tricyclo[3.2.1.01,5]octane ([3.2.1]propellane) and 1,3-dehydroadamantane, J. Am. Chem. Soc., 1979, 101, 6970-6972. [all data]

Sunner and Wadso, 1957
Sunner, S.; Wadso, I., The heat of hydrolysis of thiolacetic acid, Trans. Faraday Soc., 1957, 53, 455-459. [all data]

Wadso, 1957
Wadso, I., The heats of hydrolysis of some alkyl thiolesters, Acta Chem. Scand., 1957, 11, 1745-1751. [all data]

Sunner, 1957
Sunner, S., The heat of hydrolysis of i-propenyl acetate and m-cresyl acetate and the heat of formation of acetone, Acta Chem. Scand., 1957, 11, 1757-1760. [all data]

Nelander, 1964
Nelander, L., The heats of hydrolysis of aspirin, thioaspirin, and their p-analogues, Acta Chem. Scand., 1964, 18, 973-984. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References