Acetic acid
- Formula: C2H4O2
- Molecular weight: 60.0520
- IUPAC Standard InChIKey: QTBSBXVTEAMEQO-UHFFFAOYSA-N
- CAS Registry Number: 64-19-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
View 3d structure (requires JavaScript / HTML 5) - Isotopologues:
- Other names: Ethanoic acid; Ethylic acid; Glacial acetic acid; Methanecarboxylic acid; Vinegar acid; CH3COOH; Acetasol; Acide acetique; Acido acetico; Azijnzuur; Essigsaeure; Octowy kwas; Acetic acid, glacial; Kyselina octova; UN 2789; Aci-jel; Shotgun; Ethanoic acid monomer; NSC 132953
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Gas phase thermochemistry data
- Condensed phase thermochemistry data
- Phase change data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 79
- Henry's Law data
- Gas phase ion energetics data
- Ion clustering data
- IR Spectrum
- Mass spectrum (electron ionization)
- UV/Visible spectrum
- Vibrational and/or electronic energy levels
- Gas Chromatography
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Normal alkane RI, non-polar column, temperature ramp
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
| Column type | Capillary | Capillary | Capillary | Capillary | Capillary |
|---|---|---|---|---|---|
| Active phase | Optima-5 MS | DB-5 | VF-5 MS | VF-5 MS | DB-5 MS |
| Column length (m) | 30. | 25. | 60. | 60. | 25. |
| Carrier gas | Helium | Helium | Helium | Helium | Helium |
| Substrate | |||||
| Column diameter (mm) | 0.25 | 0.20 | 0.32 | 0.32 | 0.20 |
| Phase thickness (μm) | 0.25 | 0.33 | 0.25 | 0.25 | 0.33 |
| Tstart (C) | 35. | 50. | 30. | 30. | 40. |
| Tend (C) | 250. | 240. | 260. | 260. | 250. |
| Heat rate (K/min) | 10. | 20. | 2. | 2. | 10. |
| Initial hold (min) | 3. | 1. | 1. | ||
| Final hold (min) | 5. | 28. | 28. | ||
| I | 609. | 640. | 587. | 588. | 623. |
| Reference | Goeminne, Vandendriessche, et al., 2012 | Cais-Sokolinska, Majcher, et al., 2011 | Leffingwell and Alford, 2011 | Leffingwell and Alford, 2011 | Majcher, Lawrowski, et al., 2010 |
| Comment | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI |
| Column type | Capillary | Capillary | Capillary | Capillary | Capillary |
|---|---|---|---|---|---|
| Active phase | HP-5 MS | HP-5 | RTX-5 | RTX-5 | DB-5 |
| Column length (m) | 30. | 10. | 30. | 60. | 60. |
| Carrier gas | Helium | Helium | He | Helium | |
| Substrate | |||||
| Column diameter (mm) | 0.32 | 0.10 | 0.25 | 0.32 | 0.32 |
| Phase thickness (μm) | 0.25 | 0.40 | 0.25 | 1. | 1.0 |
| Tstart (C) | 50. | 40. | 40. | 40. | 35. |
| Tend (C) | 240. | 280. | 250. | 205. | 240. |
| Heat rate (K/min) | 4. | 20. | 20. | 4. | 15. |
| Initial hold (min) | 2. | 1. | 5. | 5. | 7. |
| Final hold (min) | 10. | 1. | 5. | 10. | |
| I | 602. | 641. | 622. | 610. | 600. |
| Reference | Pino, Marquez, et al., 2010 | Mildner-Szkudlarz and Jelen, 2008 | Pham, Schilling, et al., 2008 | Berdague, Tournayre, et al., 2007 | Gogus, Ozel, et al., 2007 |
| Comment | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI |
| Column type | Capillary | Capillary | Capillary | Capillary | Capillary |
|---|---|---|---|---|---|
| Active phase | 5 % Phenyl methyl siloxane | 5 % Phenyl methyl siloxane | DB-5 | DB-5 | DB-5 |
| Column length (m) | 30. | 30. | 60. | 60. | 30. |
| Carrier gas | He | He | He | He | He |
| Substrate | |||||
| Column diameter (mm) | 0.25 | 0.25 | 0.32 | 0.32 | 0.32 |
| Phase thickness (μm) | 1. | 1. | 0.25 | ||
| Tstart (C) | 40. | 40. | 60. | 50. | 60. |
| Tend (C) | 250. | 250. | 250. | 250. | 280. |
| Heat rate (K/min) | 7. | 7. | 4. | 4. | 5. |
| Initial hold (min) | 10. | 10. | 5. | 5. | 0.5 |
| Final hold (min) | 5. | 5. | 2. | ||
| I | 615. | 615. | 662. | 658. | 600. |
| Reference | Ramirez R. and Cava R., 2007 | Ramirez R. and Cava R., 2007 | Fadel, Mageed, et al., 2006 | Fadel, Mageed, et al., 2006, 2 | Ozel, Gogus, et al., 2006 |
| Comment | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI |
| Column type | Capillary | Capillary | Capillary | Capillary | Capillary |
|---|---|---|---|---|---|
| Active phase | HP-5MS | MDN-5 | OV-101 | 5 % Phenyl methyl siloxane | MDN-5 |
| Column length (m) | 30. | 60. | 25. | 0. | 30. |
| Carrier gas | He | N2/He | He | He | |
| Substrate | |||||
| Column diameter (mm) | 0.25 | 0.25 | 0.20 | 0.25 | 0.25 |
| Phase thickness (μm) | 0.25 | 0.25 | 0.10 | 1. | 0.25 |
| Tstart (C) | 38. | 40. | 50. | 40. | 40. |
| Tend (C) | 220. | 270. | 250. | 250. | 280. |
| Heat rate (K/min) | 5. | 4. | 6. | 7. | 20. |
| Initial hold (min) | 1. | 4. | 10. | 1. | |
| Final hold (min) | 2. | 5. | 5. | 1. | |
| I | 660. | 649. | 638. | 660. | 641. |
| Reference | Krist, Stuebiger, et al., 2005 | van Loon, Linssen, et al., 2005 | Zenkevich, 2005 | Ramírez, Estévez, et al., 2004 | Mildner-Szkudlarz, Jelen, et al., 2003 |
| Comment | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI |
| Column type | Capillary | Capillary | Capillary | Capillary | Capillary |
|---|---|---|---|---|---|
| Active phase | DB-5 | SPB-1 | SPB-1 | RSL-200 | RSL-200 |
| Column length (m) | 30. | 30. | 30. | 30. | 30. |
| Carrier gas | H2 | He | He | H2 | H2 |
| Substrate | |||||
| Column diameter (mm) | 0.25 | 0.25 | 0.25 | 0.32 | 0.25 |
| Phase thickness (μm) | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| Tstart (C) | 60. | 40. | 40. | 40. | 40. |
| Tend (C) | 280. | 200. | 200. | 280. | 280. |
| Heat rate (K/min) | 4. | 3. | 3. | 6. | 6. |
| Initial hold (min) | 10. | 10. | 10. | 5. | 2. |
| Final hold (min) | 40. | 5. | 10. | ||
| I | 600. | 617. | 617. | 603. | 603. |
| Reference | Pino, Marbot, et al., 2003 | Vichi, Castellote, et al., 2003 | Vichi, Pizzale, et al., 2003 | Jirovetz, Buchbauer, et al., 2002 | Jirovetz, Smith, et al., 2002 |
| Comment | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI |
| Column type | Capillary | Capillary | Capillary | Capillary | Capillary |
|---|---|---|---|---|---|
| Active phase | DB-5 | AT-1 | DB-5MS | DB-5 | DB-5 |
| Column length (m) | 60. | 30. | 30. | 30. | |
| Carrier gas | He | He | He | H2 | H2 |
| Substrate | |||||
| Column diameter (mm) | 0.32 | 0.32 | 0.32 | 0.32 | |
| Phase thickness (μm) | 1. | 0.25 | 0.5 | 0.5 | |
| Tstart (C) | 40. | 50. | 40. | 60. | 60. |
| Tend (C) | 200. | 300. | 195. | 245. | 245. |
| Heat rate (K/min) | 3. | 10. | 5. | 3. | 3. |
| Initial hold (min) | 5. | 2. | 5. | 3. | 3. |
| Final hold (min) | 40. | 20. | 20. | ||
| I | 606. | 584. | 637. | 628. | 628. |
| Reference | Joffraud, Leroi, et al., 2001 | Kelling, 2001 | Suriyaphan, Drake, et al., 2001 | Kotseridis and Baumes, 2000 | Kotseridis and Baumes, 2000 |
| Comment | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI |
| Column type | Capillary | Capillary | Capillary | Capillary | Capillary |
|---|---|---|---|---|---|
| Active phase | OV-101 | Methyl Silicone | SE-54 | DB-1 | DB-1 |
| Column length (m) | 50. | 60. | 25. | 60. | 60. |
| Carrier gas | Nitrogen | He | He | ||
| Substrate | |||||
| Column diameter (mm) | 0.25 | 0.25 | 0.31 | 0.32 | 0.32 |
| Phase thickness (μm) | 0.25 | 1.0 | 1.0 | ||
| Tstart (C) | 40. | 40. | 35. | 40. | 40. |
| Tend (C) | 200. | 220. | 250. | 280. | 280. |
| Heat rate (K/min) | 2. | 5. | 4. | 2. | 2. |
| Initial hold (min) | 10. | 10. | 3. | ||
| Final hold (min) | |||||
| I | 580. | 620.77 | 616. | 650. | 650. |
| Reference | Tamura, Boonbumrung, et al., 2000 | Baraldi, Rapparini, et al., 1999 | Ding, Deng, et al., 1998 | Tai and Ho, 1998 | Tai and Ho, 1998 |
| Comment | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI |
| Column type | Capillary | Capillary | Capillary | Capillary | Capillary |
|---|---|---|---|---|---|
| Active phase | DB-5 | Ultra-2 | DB-1 | DB-1 | DB-1 |
| Column length (m) | 60. | 50. | 60. | 60. | 60. |
| Carrier gas | He | He | He | He | |
| Substrate | |||||
| Column diameter (mm) | 0.32 | 0.32 | 0.25 | 0.25 | 0.25 |
| Phase thickness (μm) | 1. | 0.52 | 1.0 | 1.0 | 1. |
| Tstart (C) | 40. | 40. | 40. | 40. | 40. |
| Tend (C) | 200. | 250. | 260. | 260. | 260. |
| Heat rate (K/min) | 3. | 4. | 2. | 2. | 2. |
| Initial hold (min) | 5. | 3. | 5. | 5. | 5. |
| Final hold (min) | 2. | 30. | 60. | 60. | 60. |
| I | 608. | 602. | 611. | 600. | 622. |
| Reference | Kondjoyan, Viallon, et al., 1997 | King, Matthews, et al., 1995 | Yu, Wu, et al., 1994 | Yu, Wu, et al., 1994 | Yu, Wu, et al., 1994, 2 |
| Comment | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI | MSDC-RI |
| Column type | Capillary | Capillary |
|---|---|---|
| Active phase | DB-1 | DB-1 |
| Column length (m) | 60. | 50. |
| Carrier gas | He | |
| Substrate | ||
| Column diameter (mm) | 0.32 | 0.32 |
| Phase thickness (μm) | 1.2 | |
| Tstart (C) | 30. | 0. |
| Tend (C) | 240. | 250. |
| Heat rate (K/min) | 3. | 3. |
| Initial hold (min) | 10. | |
| Final hold (min) | ||
| I | 646. | 621. |
| Reference | Ciccioli, Cecinato, et al., 1992 | Habu, Flath, et al., 1985 |
| Comment | MSDC-RI | MSDC-RI |
References
Go To: Top, Normal alkane RI, non-polar column, temperature ramp, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Goeminne, Vandendriessche, et al., 2012
Goeminne, P.C.; Vandendriessche, T.; Van Eldere, J.; Nicolai, B.M.; Hertog, M.L.; Dupont, L.J.,
Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis,
Respiratory Res., 2012, 13, 87, 1-9. [all data]
Cais-Sokolinska, Majcher, et al., 2011
Cais-Sokolinska, D.; Majcher, M.; Pikul, J.; Bielinska, S.; Czauderma, M.; Wojtowski, J.,
The effect of Camelia sativa cake diet supplementation on sensory and volatile profiles of ewe's milk,
African J. Biotechnol., 2011, 10, 37, 7245-7252. [all data]
Leffingwell and Alford, 2011
Leffingwell, J.; Alford, E.D.,
Volatile constituents of the giant pufball mushroom (Calvatia gigantea),
Leffingwell Rep., 2011, 4, 1-17. [all data]
Majcher, Lawrowski, et al., 2010
Majcher, M.; Lawrowski, P.; Jelen, H.,
Comparison of original and adulterated oscypek cheese based on volatile and sensory profiles,
Acta Sci. Pol. Technol. Aliment., 2010, 9, 3, 265-275. [all data]
Pino, Marquez, et al., 2010
Pino, J.A.; Marquez, E.; Quijano, C.E.; Castro, D.,
Volatile compounds in noni (Morinda citrifolia L.) at two ripening stages,
Ciencia e Technologia de Alimentos, 2010, 30, 1, 183-187, https://doi.org/10.1590/S0101-20612010000100028
. [all data]
Mildner-Szkudlarz and Jelen, 2008
Mildner-Szkudlarz, S.; Jelen, H.H.,
The potential of different techniques for volatile compounds analysis coupled with PCA for the detection of the adulteration of olive oil with hazelnut oil,
Food Chem., 2008, 110, 3, 751-761, https://doi.org/10.1016/j.foodchem.2008.02.053
. [all data]
Pham, Schilling, et al., 2008
Pham, A.J.; Schilling, M.W.; Yoon, Y.; Kamadia, V.V.; Marshall, D.L.,
Characterization of fish sauce aroma-impact compounds using GC-MS, SPME-Osme-GCO, and Stevens' power law exponents,
J. Food. Sci., 2008, 73, 4, c268-c274, https://doi.org/10.1111/j.1750-3841.2008.00709.x
. [all data]
Berdague, Tournayre, et al., 2007
Berdague, J.L.; Tournayre, P.; Cambou, S.,
Novel multi-gas chromatography?olfactometry device and software for the identification of odour-active compounds,
J. Chromatogr. A, 2007, 1146, 1, 85-92, https://doi.org/10.1016/j.chroma.2006.12.102
. [all data]
Gogus, Ozel, et al., 2007
Gogus, F.; Ozel, M.Z.; Lewis, A.C.,
The Effect of Various Drying Techniques on Apricot Volatiles Analysed Using Direct Desorption-GC-TOF/MS,
Talanta, 2007, 73, 2, 321-325, https://doi.org/10.1016/j.talanta.2007.03.048
. [all data]
Ramirez R. and Cava R., 2007
Ramirez R.; Cava R.,
Volatile profiles of dry-cured meat products from three different Iberian x Duroc genotypes,
J. Agric. Food Chem., 2007, 55, 5, 1923-1931, https://doi.org/10.1021/jf062810l
. [all data]
Fadel, Mageed, et al., 2006
Fadel, H.H.M.; Mageed, M.A.A.; Lotfy, S.N.,
Quality and flavour stability of coffee substitute prepared by extrusion of wheat germ and chicory roots,
Amino Acids, 2006, https://doi.org/10.1007/s007260200008
. [all data]
Fadel, Mageed, et al., 2006, 2
Fadel, H.H.M.; Mageed, M.A.A.; Samad, A.K.M.E.A.; Lotfy, S.N.,
Cocoa substitute: Evaluation of sensory qualities and flavour stability,
Eur. Food Res. Technol., 2006, 223, 1, 125-131, https://doi.org/10.1007/s00217-005-0162-3
. [all data]
Ozel, Gogus, et al., 2006
Ozel, M.Z.; Gogus, F.; Lewis, A.C.,
Comparison of direct thermal desorption with water distillation and superheated water extraction for the analysis of volatile components of Rosa damascena Mill. using GCxGC-TOF/MS,
Anal. Chim. Acta., 2006, 566, 2, 172-177, https://doi.org/10.1016/j.aca.2006.03.014
. [all data]
Krist, Stuebiger, et al., 2005
Krist, S.; Stuebiger, G.; Unterweger, H.; Bandion, F.; Buchbauer, G.,
Analysis of volatile compounds and triglycerides of seed oils extracted from different poppy varieties (Papaver somniferum L.),
J. Agric. Food Chem., 2005, 53, 21, 8310-8316, https://doi.org/10.1021/jf0580869
. [all data]
van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J.,
Identification and olfactometry of French fries flavour extracted at mouth conditions,
Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005
. [all data]
Zenkevich, 2005
Zenkevich, I.G.,
Experimentally measured retention indices., 2005. [all data]
Ramírez, Estévez, et al., 2004
Ramírez, M.R.; Estévez, M.; Morcuende, D.; Cava, R.,
Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS,
J. Agric. Food Chem., 2004, 52, 25, 7637-7643, https://doi.org/10.1021/jf049207s
. [all data]
Mildner-Szkudlarz, Jelen, et al., 2003
Mildner-Szkudlarz, S.; Jelen, H.H.; Zawirska-Wojtasiak, R.; Wasowicz, E.,
Application of headspace - solid phase microextraction and multivariate analysis for plant oils differentiation,
Food Chem., 2003, 83, 4, 515-522, https://doi.org/10.1016/S0308-8146(03)00147-X
. [all data]
Pino, Marbot, et al., 2003
Pino, J.A.; Marbot, R.; Fuentes, V.,
Characterization of volatiles in Bullock's heart (Annona reticulata L.) fruit cultivars from Cuba,
J. Agric. Food Chem., 2003, 51, 13, 3836-3839, https://doi.org/10.1021/jf020733y
. [all data]
Vichi, Castellote, et al., 2003
Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E.,
Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection,
J. Chromatogr. A, 2003, 983, 1-2, 19-33, https://doi.org/10.1016/S0021-9673(02)01691-6
. [all data]
Vichi, Pizzale, et al., 2003
Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E.,
Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: characterization of virgin olive oils from two distinct geographical areas of Northern Italy,
J. Agric. Food Chem., 2003, 51, 22, 6572-6577, https://doi.org/10.1021/jf030269c
. [all data]
Jirovetz, Buchbauer, et al., 2002
Jirovetz, L.; Buchbauer, G.; Ngassoum, M.B.; Geissler, M.,
Aroma compound analysis of Piper nigrum and Piper guineense essential oils from Cameroon using solid-phase microextraction-gas chromatography, solid-phase microextraction-gas chromatography-mass spectrometry and olfactometry,
J. Chromatogr. A, 2002, 976, 1-2, 265-275, https://doi.org/10.1016/S0021-9673(02)00376-X
. [all data]
Jirovetz, Smith, et al., 2002
Jirovetz, L.; Smith, D.; Buchbauer, G.,
Aroma compound analysis of Eruca sativa (Brassicaceae) SPME headspace leaf samples using GC, GC-MS, and olfactometry,
J. Agric. Food Chem., 2002, 50, 16, 4643-4646, https://doi.org/10.1021/jf020129n
. [all data]
Joffraud, Leroi, et al., 2001
Joffraud, J.J.; Leroi, F.; Roy, C.; Berdagué, J.L.,
Characterisation of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon,
Int. J. Food Microbiol., 2001, 66, 3, 175-184, https://doi.org/10.1016/S0168-1605(00)00532-8
. [all data]
Kelling, 2001
Kelling, F.J.,
Olfaction in houseflies: morphology and electrophysiology. Chapter 7. Chemical and electrophysiological analysis of components, present in natural products that attract houseflies, Dissertation, University of Groningen, The Netherlands, 2001. [all data]
Suriyaphan, Drake, et al., 2001
Suriyaphan, O.; Drake, M.; Chen, X.Q.; Cadwallader, K.R.,
Characteristic aroma components of British farmhouse cheddar cheese,
J. Agric. Food Chem., 2001, 49, 3, 1382-1387, https://doi.org/10.1021/jf001121l
. [all data]
Kotseridis and Baumes, 2000
Kotseridis, Y.; Baumes, R.,
Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine,
J. Agric. Food Chem., 2000, 48, 2, 400-406, https://doi.org/10.1021/jf990565i
. [all data]
Tamura, Boonbumrung, et al., 2000
Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W.,
Volatile components of the essential oil in the pulp of four yellow mangoes (Mangifera indica L.) in Thailand,
Food Sci. Technol. Res., 2000, 6, 1, 68-73, https://doi.org/10.3136/fstr.6.68
. [all data]
Baraldi, Rapparini, et al., 1999
Baraldi, R.; Rapparini, F.; Rossi, F.; Latella, A.; Ciccioli, P.,
Volatile organic compound emissions from flowers of the most occurring and economically important species of fruit trees,
Phys. Chem. Earth, 1999, 24, 6, 729-732, https://doi.org/10.1016/S1464-1909(99)00073-8
. [all data]
Ding, Deng, et al., 1998
Ding, Q.; Deng, Y.; Sun, Y.; Huagn, A.; Sun, Y.,
Analysis of volatile components in ox feces by capillary gas chromatography,
Beijing Daxue Xuebao Ziran Kexueban, 1998, 34, 6, 720-725. [all data]
Tai and Ho, 1998
Tai, C.-Y.; Ho, C.-T.,
Influence of glutathione oxidation and pH on thermal formation of Maillard-type volatile compounds,
J. Agric. Food Chem., 1998, 46, 6, 2260-2265, https://doi.org/10.1021/jf971111t
. [all data]
Kondjoyan, Viallon, et al., 1997
Kondjoyan, N.; Viallon, C.; Berdagué, J.L.; Daridan, D.; Simon, M.-N.; Legault, C.,
Analyse comparative de la fraction volatile de jambons secs de porcs Gascon et Large-White x Landrace Français,
J. Rech. C.N.R.S., 1997, 29, 405-410, retrieved from http://www.rennes.inra.fr/srp/jrp/1997/97txtQualite/Q9704.pdf. [all data]
King, Matthews, et al., 1995
King, M.-F.; Matthews, M.A.; Rule, D.C.; Field, R.A.,
Effect of beef packaging method on volatile compounds developed by oven roasting or microwave cooking,
J. Agric. Food Chem., 1995, 43, 3, 773-778, https://doi.org/10.1021/jf00051a039
. [all data]
Yu, Wu, et al., 1994
Yu, T.-H.; Wu, C.-M.; Ho, C.-T.,
Meat-like flavor generated from thermal interactions of glucose and alliin or deoxyalliin,
J. Agric. Food Chem., 1994, 42, 4, 1005-1009, https://doi.org/10.1021/jf00040a032
. [all data]
Yu, Wu, et al., 1994, 2
Yu, T.-H.; Wu, C.-M.; Rosen, R.T.; Hartman, T.G.; Ho, C.-T.,
Volatile compounds in generated from thermal degradation of alliin and deoxyalliin in an aqueous solution,
J. Agric. Food Chem., 1994, 42, 1, 146-153, https://doi.org/10.1021/jf00037a026
. [all data]
Ciccioli, Cecinato, et al., 1992
Ciccioli, P.; Cecinato, A.; Brancaleoni, E.; Frattoni, M.; Liberti, A.,
Use of carbon adsorption traps combined with high resolution gas chromatography - mass spectrometry for the analysis of polar and non-polar C4-C14 hydrocarbons involved in photochemical smog formation,
J. Hi. Res. Chromatogr., 1992, 15, 2, 75-84, https://doi.org/10.1002/jhrc.1240150205
. [all data]
Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F.,
Volatile components of Rooibos tea (Aspalathus linearis),
J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024
. [all data]
Notes
Go To: Top, Normal alkane RI, non-polar column, temperature ramp, References
- Symbols used in this document:
Tend Final temperature Tstart Initial temperature - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.
